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Windowing queries - examples

= Interaction in GIS
— Select subset by outlining
— Zoom in and re-center
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Windowing versus range queries

O Range queries (see range trees in Lecture 03)
— Points
— Often in higher dimensions

= Windowing queries
— Line segments, curves, ...
— Usually in low dimension (2D, 3D)

= The goal for both:
Preprocess the data into a data structure

— so that the objects intersected by the query rectangle
can be reported efficiently
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Windowing queries on line segments

1 '/\

1. Axis parallel line segments 2. Arbitrary line segments
(non-crossing)
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists )
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
— segment tree
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1. Windowing of axis parallel line segments
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1. Windowing of axis parallel line segments

Window query

s Given
— a set of orthogonal line segments S (preprocessed),
— and orthogonal query rectangle W=[x:x']°[y:y ]

= Count or report all the line segments of S that

intersect W 1 I o )
W .
= Such segments have i F) ;
a) 1 endpointin : ., c) { i
b) 2 end points in — Included . . 1 °
c) no end pointin — Cross over I )
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Line segments with 1 or 2 points inside

O

a) 1 point inside o I ¢ o

— Use arange tree (Lesson 3) ‘ l}a)

— O(n log n) storage i o | |

— O(log? n + k) query tmeor | ©® b) o |}

— O(log n + k) with fractional | Y
cascading Qe o—-; ________________ 5

b) 2 points inside — as a) 1 point inside
— Avoid reporting twice
1. Mark segment when reported (clear after the query)

2. When end point found, check the other end-point.
Report only the leftmost or bottom endpoint
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Line segments that cross over the window

c) No points inside
— not detected using , l
a range tree e o :
— Cross the boundary twice . N

or Or=mm=- O M
contain one boundary edge S I

— Itis enough to O
detect segments intersected by the left and bottom
boundary edges (not having end point inside)

— For left boundary: Report the segments intersecting
vertical query line segment (B)

— Let’s discuss vertical quer\y‘/ine first (A)
— Bottom boundary is rotated 90°
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
[a) Line stabbing (IT with sorted lists ) J
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
— segment tree
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a) Segment intersected by vertical line->1D

= Query line ¢:= (x=q,) £

Report the segments
stabbed by a vertical line

— . : e
= 1 dimensional problem

(x,¥) (")
(ignore y coordinate)

=> Report the interval
containing query point q, —+ I |

X dx x/
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Interval tree principle

S1
53 - 52
S4
'.S -'
Ss O
M ST

Interval tree on Interval tree on
Sz and sx So and s~
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Static interval tree [Edelsbrunner80]
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Primary structure — static tree for endpoints

vV =vertex

d(v)= midpoint of
segment
endpoints

I\
5 6

1 2 3 4 5 o




Secondary lists — sorted segments in M

ML(v) — intervals containing v

(sorted of ascending /o points)

24 65

M(V)  Mg(V)

MR(v) — intervals containing v
(descending
hi endpoints)

5 6
1 |2 |3 |4 |5 |6

= —/_—I_ -
+++++ ® ®
>~ o = [Kukral]
-~ DCGI Felkel: Computational geometry
(15/406)




Interval tree construction (all intervals at once)

ConstructintervalTree( S) /l Intervals all active —no active lists
Input:  Set S of intervals on the real line — on x-axis
Output:  The root of an interval tree for S

1. if (JS| == 0) return null // no more

2. else

3. xMed = median endpoint of intervals in S // median endpoint
4. L = { [xlo, xhi] in S | xhi < xMed } /I left of median

d. R = {[xlo, xhi] in S | xlo > xMed } // right of median
6. M = { [xlo, xhi] in S | xlo <= xMed <= xhi } // contains median
/. G:ML = sort M in increasing order of xlo // sort M

8. MR = sort M in decreasing order of xhi

0. t = new IntTreeNode(xMed, ML, MR) // this node

10.  tleft = ConstructintervalTree(L) /I left subtree

11.  t.right = ConstructintervalTree(R) // right subtree

12. return t
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Line stabbing query for an interval tree

Stab( t, xq)

Input:

IntTreeNode t, Scalar xq

Output: prints the intersected intervals
1.

NOoO kWD

8.

9
1
1

0.
1.

- Nete; Small inefficiency for xq == t.xMed — recurse.on rigit.

if (t == null) return
if (xq < t.xMed)

for (i=0; i < t.ML.length; i++)
if (t.ML[i].lo <= xq) print(t.ML][i])

else break
stab(t.left, xq)
else // (xq - t.xMed)
median

for (i = 0; i <t.MR.length; i++) {
if (t.MR[i].hi - xq) print(t. MR[i])

else break
stab(t.right, xq)

e o =S
- o+ =+

+

// fell out of tree

// left of median?

/l traverse ML

// ..report if in range
/] ..else done

/] recurse on left

// right of or equal to

/[ traverse MR

I ..report if in range
/I ..else done

// recurse on right

DCGI
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Complexity of line stabbing via interval tree

= Construction - O(n log n) time

— Each step divides at maximum into two halves or less
(minus elements of M) => tree height O(log n)

— If presorted the endpoints in three lists L,R,M
then median in O(1) and copy to new L,R,M in O(n)]
= Vertical line stabbing query - O(k + log n) time
— One node processed in O(1 + k'), k'=reported intervals
— v visited nodes in O(v + k), k=total reported intervals
— v = tree height = O(log n)
= Storage - O(n)

— Tree has O(n) nodes, each segment stored twice

. =~ = (two endpoints) %
Felkel: Computational geometry
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists )
Lb) Line segment stabbing (/T with range trees) ]
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
— segment tree
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a) Segment intersected by vertical

= Queryliner:=(x=q,)

Report the segments
stabbed by a vertical line

= 1 dimensional problem 7T .0

(ignore y coordinate)
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a) Segment intersected by vertical line - 2D

= Querylinef:=q,°[— :—] —_—

= Horizontal seément of M stabs the query

line [ iff its left endpoint lies in
halph-space
(__ :QX]O ['_ :_]
= In IT node with stored median xMid

report all segments from M
— whose left point lies in

f

(__ . qx] [ @
if  lies left from xMid .
— whose right point lies in
(qx : +_] i
. . s . .' Inspired by-[Berg]
~_,_if £ lies right from xMid . |
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b) Segment intersected by vertical line segment

= Querysegmentq:=q,°[q,:q] —_—

= Horizontal segment of M stabs the query

segment q iff its left endpoint lies in
semi-infinite rectangular region
(__ ! qx] ° [qy; q’y]
= InIT node with stored median xMid
report all segments

q

- (qx,q5)

O

— whose left point lies in °

(_ :qx] © [qy’ q’y]

if g lies left from xMid * ,
— whose right point lies in [—o: ] X [gy : /]
(qx D] [qy; q’y] “'_‘ [Berg]
_ -~ = if g lies right from xMid . —
e Felkel: Computational geometry I X|V||id__
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Data structure for endpoints

= Storage of ML and MR
— Sorted lists not enough for line segments
— Use two range trees

= Instead O(n) sequential search in ML and MR

perform O(log n) search
In range tree with fractional cascading
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2D range tree (without fractional casc. - see more in Lecture 3)

X—range tree

y—range tre 5
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Complexity of line segment stabbing

= Construction - O(n log n) time

— Each step divides at maximum into two halves L,R
or less (minus elements of M) => tree height O(log n)

— If the range trees are efficiently build in O(n)

= Vertical line segment stab. q. - O(k + log? n) time
— One node processed in O(log n + k'), k'=reported inter.
— v visited nodes in O(v log n + k), k=total reported inter.
— v = tree height = O(Icfg n)
— O(k +log? n) time - range tree with fractional cascading
— O(k + log? n) time - range tree without fractional casc.

= Storage - O(n log n)

_ - == Dominated by the range trees %
o o Felkel: Computational geometry
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists )
b) Line segment stabbing (/T with range trees)
[c) Line segment stabbing (/T with priority search trees)]

2. Windowing of line segments in general position
— segment tree
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c) Priority search trees [McCreight85]

= Priority search trees — in case c) on slide 8

— Exploit the fact that query rectangle in range queries is
unbounded

— Can be used as secondary data structures for both left
and right endpoints (ML and MR) of segments
(intervals) in nodes of interval tree

— Improve the storage to O(n) for horizontal segment
Intersection with window edge (Range tree has O(n log n))

= Forcases a)and b) - O(n log n) remains
— we need range trees for windowing segment endpoints
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Rectangular range gueries variants

= LetP={p, p,..., p,}Iis set of points in plane

= (Goal: rectangular range queries of the form
(__ : QX] ° [qy’ q’y]
= In 1D: search for nodes vwith v, u (— : q,]
— range tree O(log n + k) time
— ordered list O(1 + k) time
(start in the leftmost, stop on v with v,>q,)
— use heap O(1 + k) time
(traverse all children, stop when v,>q,)

= In 2D — use heap for points with x u (— : q,]
+ integrate information about y-coordinate

- o —f—
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Heap for 1D unbounded range queries

= Traverse all children, stop when v,>q,
= Example: Query (— :10]
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Heap for 1D unbounded range queries

= Traverse all children, stop when v,>q, —

= Example: Query (— :10]

report

o A o~ == =
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Priority search tree (PST)

= Heap in 2D can incorporate info about both x,y
— BST on y-coordinate (horizontal slabs) ~ range tree
— Heap on x-coordinate (minimum x from slab along x)

= |If P isempty, PST is empty leaf

= else
- Pmin = point with smallest x-coordinate in P --- a heap root
Ymed = y-coord. median of points P\ {p,.,.} ---BST root

_ Pbelow:={pp-P\{pmin}:py c ymed}

= Paove :={P 11 P\{pyn} :py>ymed}
= Point p,,;, and scalar y, ., are stored in the PST root
= The left subtree is PST of P,

= The right subtree is PST of P

above
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Priority search tree construction example
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Priority search tree definition

PrioritySearchTree( P)

Input:  set P of points in plane
Output: priority search tree T

1. if P=p then PST is an empty leaf

2. else

3. Pmin = point with smallest x-coordinate in P // heap on x root
4. Ymeg = y-coord. median of points P\ {p,.;.} // BST on y root
5. Split points P \ {p,,,;.} into two subsets — according to y,..4

6. Preiow = { P 1 P \{Ppmn} : Py . Ymed

/. Pavove :={ P12 P \{Ppin} :py>ymed}

8. T = newTreeNode() Notation in alg:
9. I.pb=p,, [lpoint[x,y] .. p(v)

10. T.y=y.., [l skalar o Y(V)

11.  T.left = PrioritySearchTree( Py, ) ... le(v)

12.  T.rigft = PrioritySearchTree( P, e ) ... rc(v)

13. O(nlogn), but O(n) if presorted on y-coordinate and bottomup - - -
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Query Priority Search Tree

QueryPrioritySearchTree( T, (— :q,] - [q,:; q’,])
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search withq,and q’,in T //BST on y-coordinate — select y range
Let v,,;; be the node where the two search paths split (split node)

2. for each node v on the search path of g, or g°, // points along the paths
3. if p(v) u (— :q, °[g,; g, ]thenreport p(v) // starting in tree root

4. for each node v on the path of g, in the left subtree of v .. //inner freas
5. if the search path goes left at v

6. ReportinSubtree( re(v), q,) // report right sul
/. for each node v on the path of q’, in right subtree o
8 if the search path goes right at v

9 ReportinSubtree( Ic(v), q,) /I rep. left subtre

- =
- =~ —— —
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DCGI Felkel: Computational geometry . _ -.
(34 /46) :




Reporting of subtrees between the paths

ReportinSubtree( v, q, )
Input: The root v of a subtree of a priority search tree and a value q,.
Output: All points in the subtree with x-coordinate at most q,.

1. ifvisnotaleafand x( p(v)) . q, /X1 (— :q,] - heapcondition
2. Report p(v).

3. ReportinSubtree( /c(v),
4.

)
ReportinSubtree( re(v), q,,)

Q22
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Priority search tree query

Given interval y,i1--Ymax
Given x

1. select y range (y-BVS~ 1D range tree)

2. report points on paths (x-heap) max
3. report subtrees (x-heap)
11 ¢ 15
""" B s e s T
\15/9 y |
- 2° ; J
__________________________________________________________________ _'____________.
6.
______________________________ A e——
_____ 5-
_____________________________________________________________________ S S NCT P S (I S
1 3¢
________________ O e N e
\7/

~~ y-range path
@ x ok — report this point

_x too high — stop

- + —+
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Priority search tree complexity

For set of n points in the plane
= Build O(n log n)

= Storage  O(n)

= Query O( k + log n)

— points in query range (— :q,] ° [q,;q,])
— k is number of reported points

s Use PST as associated data structure for interval
trees for storage of M
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists )
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

[2. Windowing of line segments in general position ]
— segment tree
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2. Windowing of line segments in general position
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Windowing of arbitrary oriented line segments

= [wo cases of intersection
a,b) Endpoint inside the query window => range tree
c) Segment intersects side of query window => 7?7

= Intersection with BBOX (segment bounding box)?

— Intersection with 4n sides
— But segments may not intersect the window —> query y

N window
/| ]

Y
v i
+ / X
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists )
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
L — segment tree ]
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Segment tree [Bentley, 1977]

= EXxploits locus approach
— Partition parameter space into regions of same answer
— Localization of such region = knowing the answer

= For given set S of n intervals (segments) on real line
— Finds m elementary intervals (induced by interval end-points)
— Partitions 1D parameter space into these elementary

Intervals o 000- 000—000——000——000-000—080—0
-0 of P2 P3 Py F oo

(—oo:pl)’[pl :pl]v(pl :p2)a[p2 : p2]7'°°a
(pm—l . Pm), [pm . Pm], (pm : +°°)
— Stores intervals s; with the elementary intervals

— Reports the intervals s; containing query point q,.
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Segment tree example

DCGI Felkel: Computatlonal geometry . - _
(43 / 46) _

Intervals
S={[X XL X i %], s X i X1} O
S =[x :x
L2 ()
§2.855 55
® @ |
5 (. 33 ()
) @ ® el & © o=
. . LY | . $3.54
. i ;
Elementary Intervals ~ *>**3 o o
O : O00O0— : C0O0——000 0@ O0— OOO—OOO—0.0—_O
(-1 py) (P1:P2) (P
[P4: P4l [Po: Po] [P2: Pal
Intervals | | . -
- 59 53
b I — =
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Segment tree definition

Segment tree
= Skeleton is a balanced binary tree T

= Leaves ~ elementary intervals Int(v)

= Internal nodes v
~ union of elementary intervals of its children

— Store: 1. interval Int(v) = union of elementary intervals
of its children segments s,
2. canonical set S(v) of intervals [x: x]Tu S
— Holds Int(v) A [x : x] and Int(parent(v)] t+ [x : x]
(node interval is not larger than a segment)

— Intervals [x : x’] are stored as high as possible, such that
. Int(v) is completely contained in the segment

- -~
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Segments span the slab

Segments span the slab of the node,
but not of its parent
(stored as up as possible)

S(vy) = {s1,52} @ @ S(v3) = {s4,56}

B —
-

= {53}

—
Int(v;) As, o
and 52 .\- "
\.
Int(parent(v))] t s;
S4

o | o

<+« Int(v,)) ——> ¥ «—— Int(vy)) ——»

. P Int(v,) > ' |
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Query segment tree

QuerySegmentTree(v, q,)
Input:  The root of a (subtree of a) segment tree and a query point q,
Output: All intervals in the tree containing q,.

1. Report all the intervals s; in S(v). // current node
2. 1f vis not a leaf

3 if g, 1 Int( /e(v) ) I/ go left

4, QuerySegmentTree( Ic(v), q, )

3 else // or go right

6 QuerySegmentTree( rc(v), q, )

Query time O( log n + k), where k is the number of reported intervals

Height O(log n ), O( 1 + k, ) for node
Storage O( nlogn)
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Segment tree construction

ConstructSegmentTree( S)
Set of intervals S - segments
Output: segment tree

Input:

1.

2.

SRS

Sort endpoints of segments in S -> get elemetary intervals ...O(n log

n)

Construct a binary search tree T on elementary intervals
(bottom up) and determine the interval Int(v) it represents

...0(n)

Compute the canonical subsets for the nodes (lists of their segments):

v =root( T)

for all segments s;=[x: xTu S
InsertSegmentTree( v, [x : x])

Felkel: Computational geometry
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Segment tree construction — interval insertion

InsertSegmentTree( v, [x: x7])
Input: The root of (a subtree of) a segment tree and an interval.
Output: The interval will be stored in the subtree.

1. ifInt(v)A[x:x'] // Int(v) contains s; =[ x : X’]
2. store[x:x']atv

3. elseifiInt(le(v)) N[x:x' 10 P

4. InsertSegmentTree( Ic(v), [x: X' ])

3) ifInt(re(v) ) N[x:x’ ]G D

6 InsertSegmentTree(rc(v), [x: x'])

One interval is stored at most twice in one level =>
Single interval insert O( log n))
Construction total O( nlog n )

- —:_ —
> A o~ == =
DC GI Felkel: Computational geometry
(48 1 46) a




Segment tree complexity

A segment tree for set S of n intervals in the plane,
= Build O(n log n)

= Storage O(nlog n)

= Query O( k + log n)

— Report all intervals that contain a query point
— k is number of reported intervals

- o —f—
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Segment tree versus Interval tree

= Segment tree
— O(nlog n) storage x O(n) of Interval tree
— But returns exactly the intersected segments s, interval
tree must search the lists ML and/or MR
= Good for
1. extensions (allows different structuring of intervals)
2. stabbing counting queries
— store number of intersected intervals in nodes
— O(n) storage and O(log n ) query time = optimal
3. higher dimensions — multilevel segment trees
(Interval and priority search trees do not exist in *dims)
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists )
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position

— segment tree
[— the algorithm ]
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Windowing of arbitrary oriented line segments

= Let S be a set of arbitrarily oriented line segments
In the plane.

= Report the segments intersecting a vertical query
segmentq:=q,°[q,:q),]
= Segment tree T on x intervals of segmentsin S

— node v of T corresponds to vertical slab Int(v) © (— : —)

— segments span the slab of the o |
node, but not of its parent 52 | D o)

— segments do not intersect = | ' 5)
=> segments in the slab (node) - T $5)
can be vertically ordered — BST }

- o —f—
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Segments between vertical segment endpoints

= Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST

— Each node v of the x segment tree
has an associated y BST

— BST T(v) of node v stores the canonical subset S(v)
according to the vertical order

— Intersected segments can be found by searching T(v) in
O( k, + log n), k,is the number of intersected segments
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Segments between vertical segment endpoints

= Segment s is intersected by vert.query segment q iff
— The lower endpoint (B) of g is below s and
— The upper endpoint (A) of g is above s

A above
B below

A below

B below A above

B below

A above
B below

A above
B above
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Windowing complexity

Structure associated to node (BST) uses storage
linear in the size of S(v)

= Build O(n log n)
= Storage O(nlog n)
= Query O( k +log? n)

— Report all segments that contain a query point
— k is number of reported segments
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