

WINDOWING

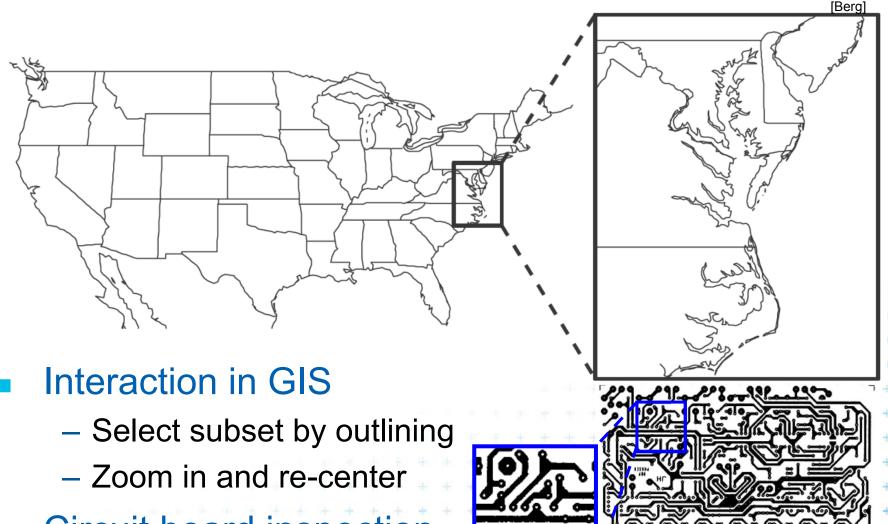
PETR FELKEL

FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Mount]

Version from 28.11.2013

Windowing queries - examples



Felkel: Computational geometry

Circuit board inspection,...

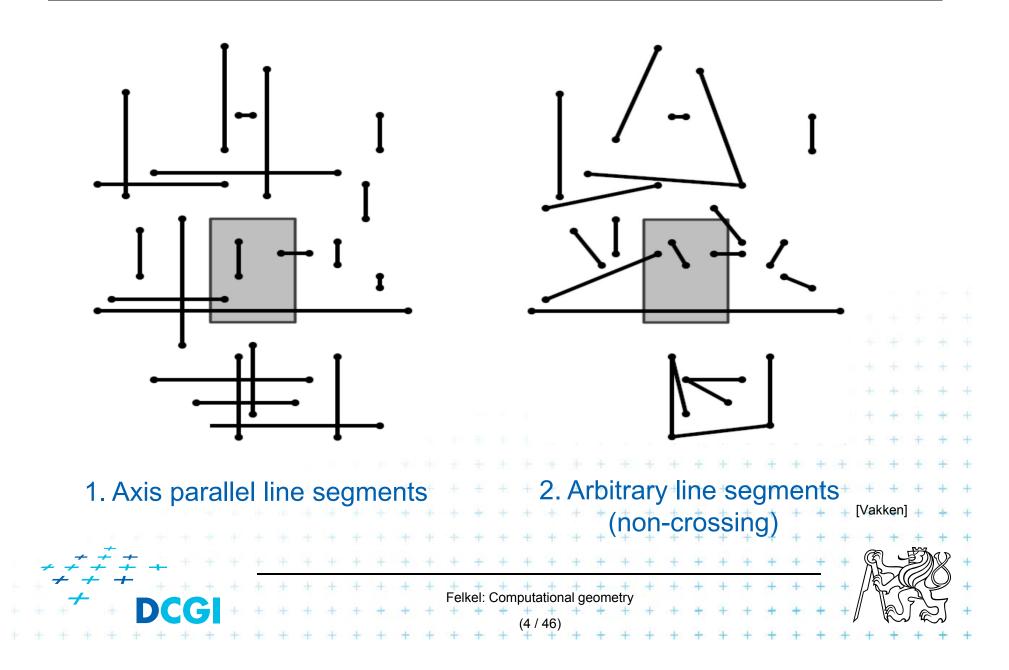
+ + + + + + + + +

Windowing versus range queries

- Range queries (see range trees in Lecture 03)
 - Points
 - Often in higher dimensions
- Windowing queries
 - Line segments, curves, ...
 - Usually in low dimension (2D, 3D)
- The goal for both:
 Preprocess the data into a data structure
 so that the objects intersected by the query rectangle
 - can be reported efficiently

Felkel: Computational geometry

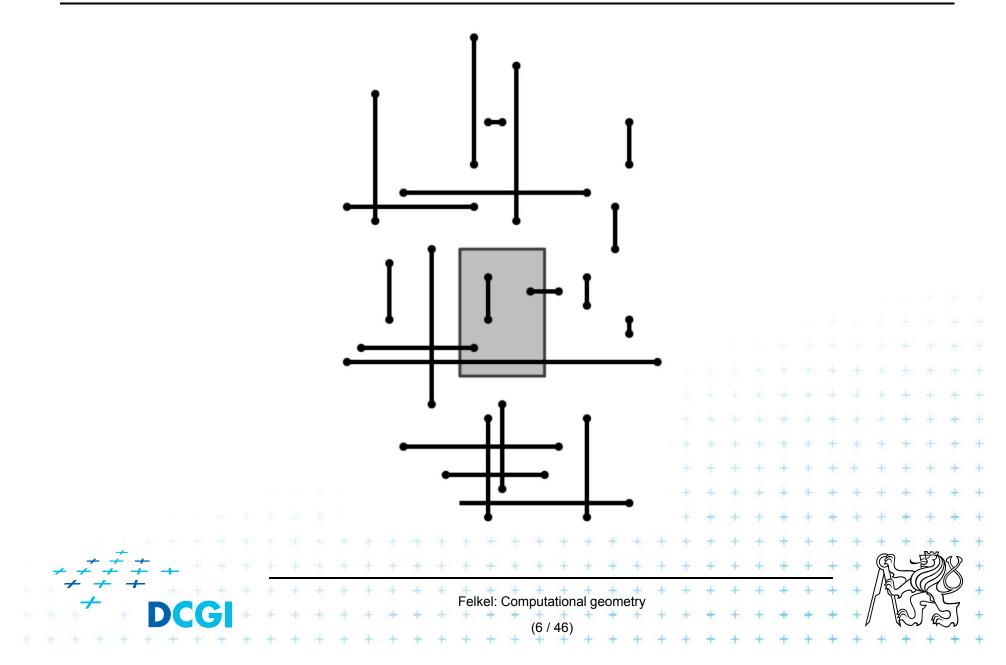
Windowing queries on line segments



Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - a) Line stabbing (*IT* with *sorted lists*)
 - b) Line segment stabbing (IT with range trees)
 - c) Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position

1. Windowing of axis parallel line segments



1. Windowing of axis parallel line segments

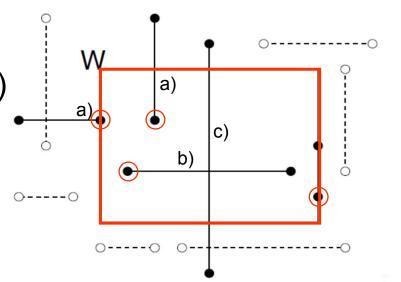
Window query

- Given
 - a set of orthogonal line segments S (preprocessed),
 - and orthogonal query rectangle $W = [x : x'] \circ [y : y']$
- Count or report all the line segments of S that intersect W
- Such segments have

 a) 1 endpoint in
 b) 2 end points in Included
 c) no end point in Cross over

Line segments with 1 or 2 points inside

- a) 1 point inside
 - Use a range tree (Lesson 3)
 - $O(n \log n)$ storage
 - $O(\log^2 n + k)$ query time or
 - O(log n + k) with fractional cascading



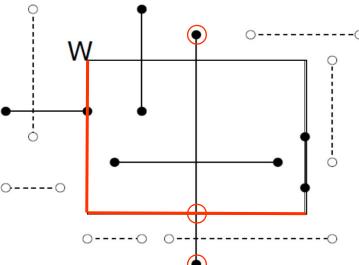
- b) 2 points inside as a) 1 point inside
 - Avoid reporting twice
 - 1. Mark segment when reported (clear after the query)
 - 2. When end point found, check the other end-point. Report only the leftmost or bottom endpoint

Line segments that cross over the window

- c) No points inside
 - not detected using a range tree
 - Cross the boundary twice or contain one boundary edge
 - It is enough to
 detect segments intersected by the left and bottom boundary edges (not having end point inside)
 - For left boundary: Report the segments intersecting vertical query *line segment* (B)

Felkel: Computational geometry

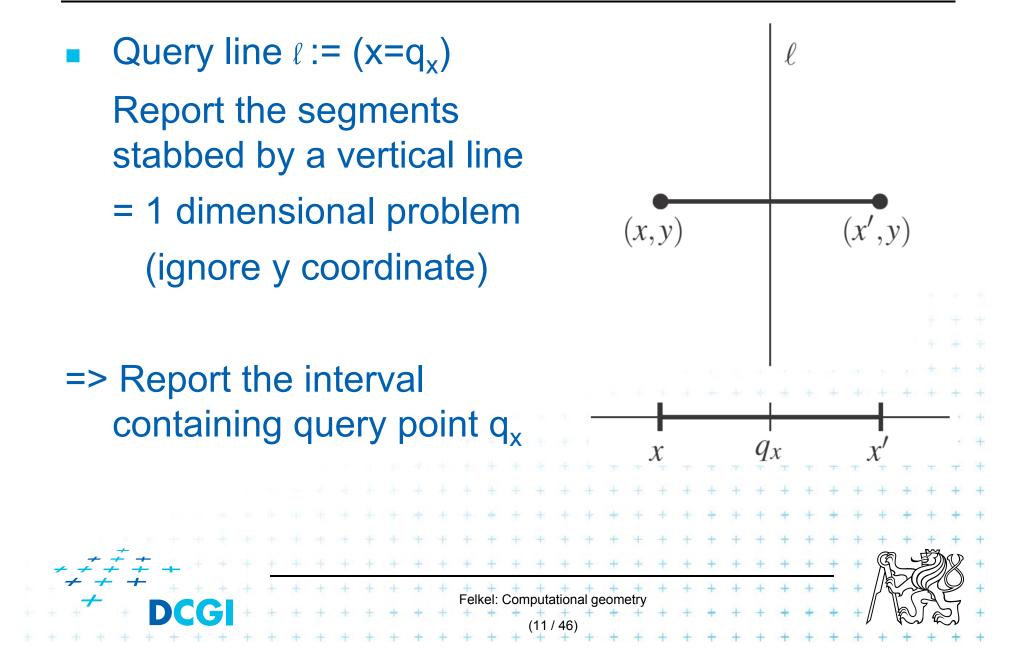
- Let's discuss vertical query line first (A
 - Bottom boundary is rotated 90°



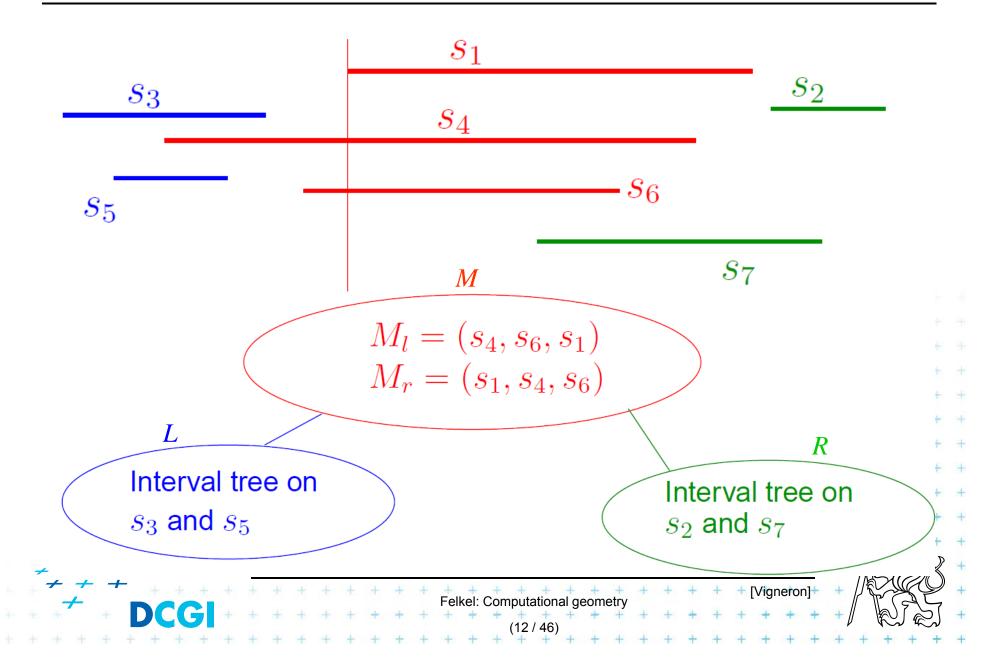
Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - a) Line stabbing (*IT* with sorted lists)
 - b) Line segment stabbing (IT with range trees)
 - c) Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position

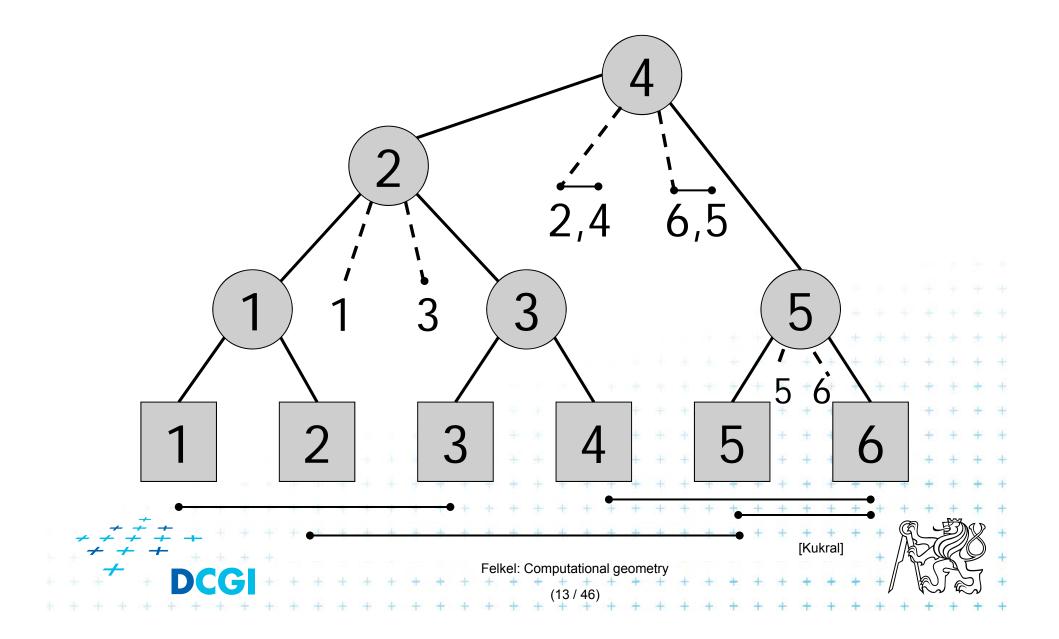
a) Segment intersected by vertical line->1D



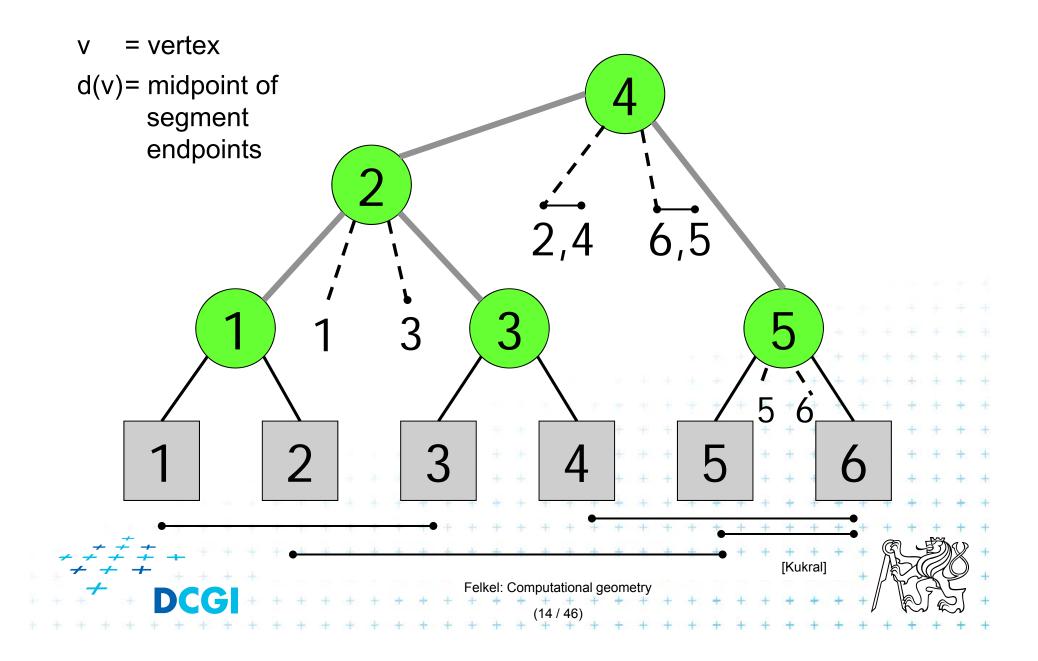
Interval tree principle



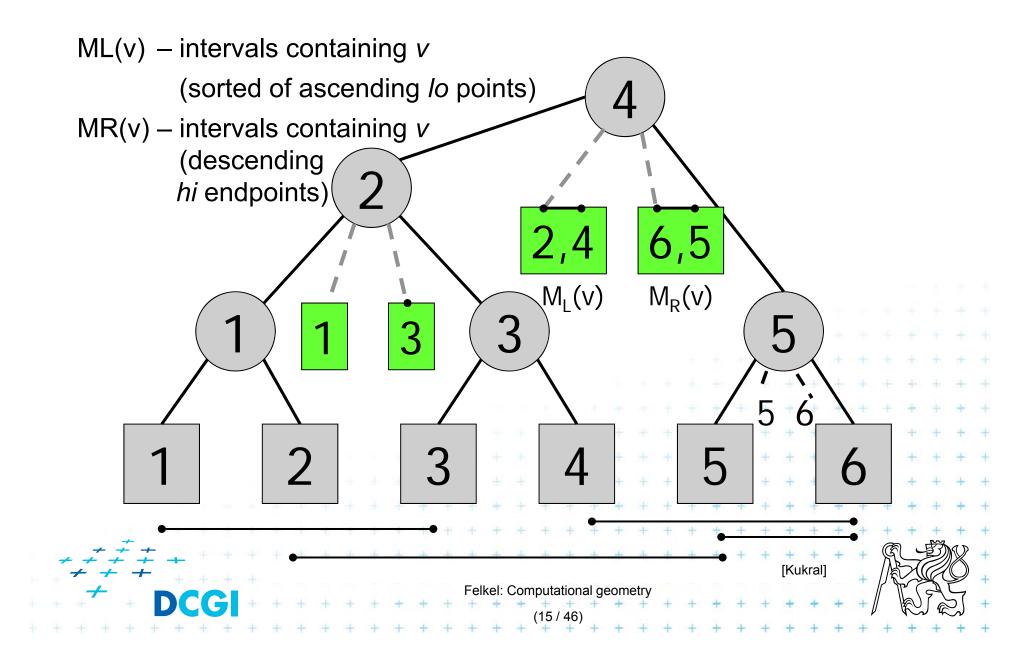
Static interval tree [Edelsbrunner80]



Primary structure – static tree for endpoints



Secondary lists – sorted segments in M



Interval tree construction (all intervals at once)

ConstructIntervalTree(S)// Intervals all active – no active listsInput:Set S of intervals on the real line – on x-axisOutput:The root of an interval tree for S	
1. if $(S == 0)$ return null 2. else	// no more
 3. xMed = median endpoint of intervals in S 4. L = { [xlo, xhi] in S xhi < xMed } 5. R = { [xlo, xhi] in S xlo > xMed } 	// median endpoint // left of median // right of median
 6. M = { [xlo, xhi] in S xlo <= xMed <= xhi } 7. ML = sort M in increasing order of xlo 	// contains median // sort M
 8. MR = sort M in decreasing order of xhi 9. t = new IntTreeNode(xMed, ML, MR) 10. t.left = ConstructIntervalTree(L) 	// this node // left subtree
 11. t.right = ConstructIntervalTree(R) 12. return t 	<pre>+ // right subtree + + + + + + + + + + + + + + + + + +</pre>
$\begin{array}{c} + + + + + \\ + + + + \\ + \end{array}$ Felkel: Computational geometry $(16 / 46)$	+ + + [Mount] + +

Line stabbing query for an interval tree

```
Stab(t, xq)
Input: IntTreeNode t, Scalar xq
Output: prints the intersected intervals
1. if (t == null) return
                                                  // fell out of tree
   if (xq < t.xMed)
2.
                                                  // left of median?
3.
       for (i = 0; i < t.ML.length; i++)
                                                 // traverse ML
              if (t.ML[i].lo \le xq) print(t.ML[i])
4.
                                                 // ..report if in range
5.
              else break
                                                  // ..else done
6.
       stab(t.left, xq)
                                                  // recurse on left
    else // (xq – t.xMed)
                                                  // right of or equal to
7.
    median
       for (i = 0; i < t.MR.length; i++) {
8.
                                          // traverse MR
              if (t.MR[i].hi – xq) print(t.MR[i]) // ..report if in range
9.
10.
              else break
                               // ..else done
                                          + + + + // recurse on right
       stab(t.right, xq)
11.
    Note: Small inefficiency for xq == t.xMed – recurse on right
                                   Felkel: Computational geometry
```

Complexity of line stabbing via interval tree

- Construction O(n log n) time
 - Each step divides at maximum into two halves or less (minus elements of M) => tree height O(log n)
 - If presorted the endpoints in three lists L,R,M
 then median in O(1) and copy to new L,R,M in O(n)]
- Vertical line stabbing query $O(k + \log n)$ time
 - One node processed in O(1 + k'), k'=reported intervals
 - v visited nodes in O(v + k), k=total reported intervals
 - -v = tree height = O(log n)
- Storage O(n)
 Tree has O(n) nodes, each segment stored twice
 + + + + (two endpoints)
 Felkel: Computational geometry

Talk overview

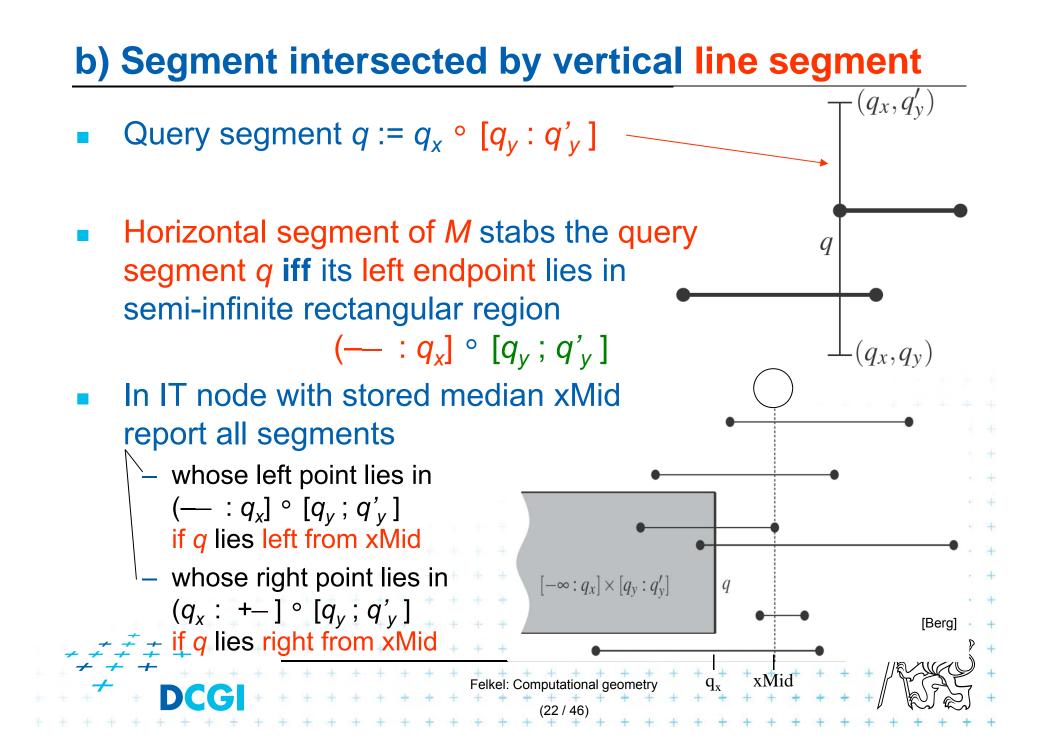
- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - a) Line stabbing (IT with sorted lists)

b) Line segment stabbing (*IT* with *range trees*)

- c) Line segment stabbing (IT with priority search trees)
- 2. Windowing of line segments in general position
- segment tree

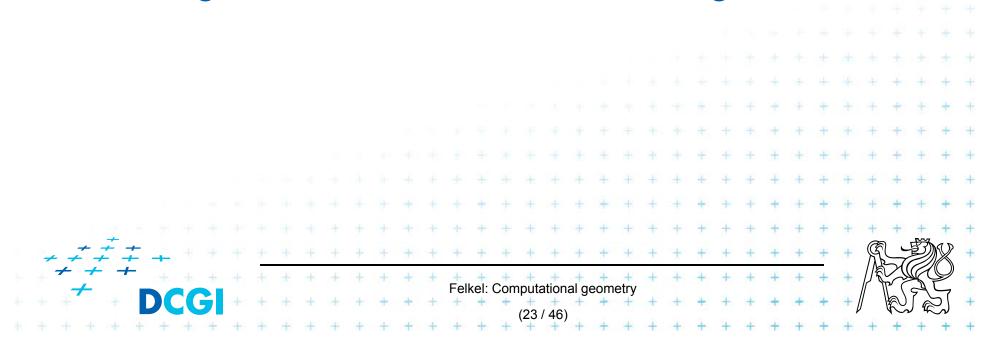
a) Segment intersected by vertical line - 1D Query line $l := (x = q_x)$ l **Report the segments** stabbed by a vertical line = 1 dimensional problem (x',y)(x,y)(ignore y coordinate) => Report the interval containing query point q_x DS: Interval tree Felkel: Computational geometry

a) Segment intersected by vertical line - 2D Query line $\ell := q_x \circ [-- :-]$ Horizontal segment of *M* stabs the query line *l* iff its left endpoint lies in halph-space $(--:q_x] \circ [--:-]$ In IT node with stored median xMid report all segments from M - whose left point lies in $(--:q_x]$ if ℓ lies left from xMid whose right point lies in $(q_x : +-]$ Inspired by [Berg] if ℓ lies right from xMid Felkel: Computational geometry

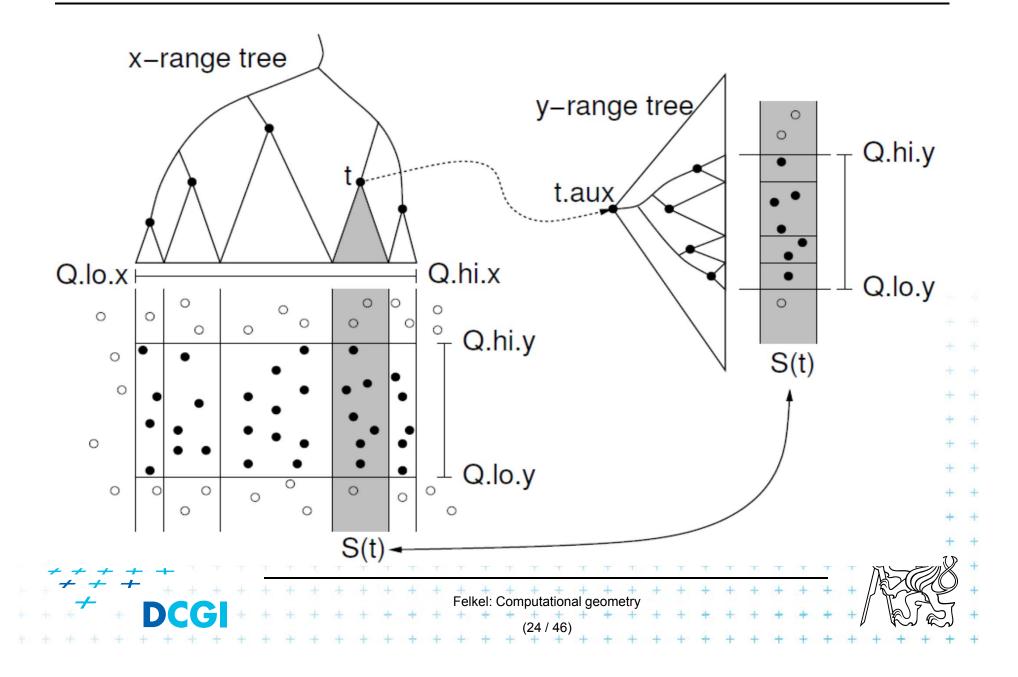


Data structure for endpoints

- Storage of ML and MR
 - Sorted lists not enough for line segments
 - Use two range trees
- Instead O(n) sequential search in ML and MR perform O(log n) search in range tree with fractional cascading



2D range tree (without fractional casc. - see more in Lecture 3)



Complexity of line segment stabbing

- Construction O(n log n) time
 - Each step divides at maximum into two halves L,R
 or less (minus elements of M) => tree height O(log n)
 - If the range trees are efficiently build in O(n)
- Vertical line segment stab. q. $O(k + \log^2 n)$ time
 - One node processed in O(log n + k'), k'=reported inter.
 - v visited nodes in O($v \log n + k$), k=total reported inter.
 - $-v = \text{tree height} = O(\log n)$
 - $-O(k + \log^2 n)$ time range tree with fractional cascading

Felkel: Computational geometry

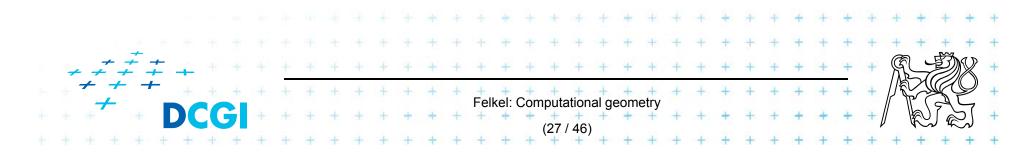
- $-O(k + \log^3 n)$ time range tree without fractional casc.
- Storage O(*n* log *n*)
 - $\neq \pm \frac{1}{2}$ Dominated by the range trees

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - a) Line stabbing (*IT* with *sorted lists*)
 - b) Line segment stabbing (*IT* with *range trees*)
 - c) Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position

- Priority search trees in case c) on slide 8
 - Exploit the fact that query rectangle in range queries is unbounded
 - Can be used as secondary data structures for both left and right endpoints (ML and MR) of segments (intervals) in nodes of interval tree
 - Improve the storage to O(n) for horizontal segment intersection with window edge (Range tree has O(n log n))
- For cases a) and b) O(n log n) remains

we need range trees for windowing segment endpoints



Rectangular range queries variants

- Let $P = \{ p_1, p_2, \dots, p_n \}$ is set of points in plane
- Goal: rectangular range queries of the form
 (--: q_x] ° [q_y; q'_y]
- In 1D: search for nodes v with $v_x \mu$ (— : q_x]
 - range tree $O(\log n + k)$ time
 - ordered listO(1 + k) time
(start in the leftmost, stop on v with $v_x > q_x$)- use heapO(1 + k) time

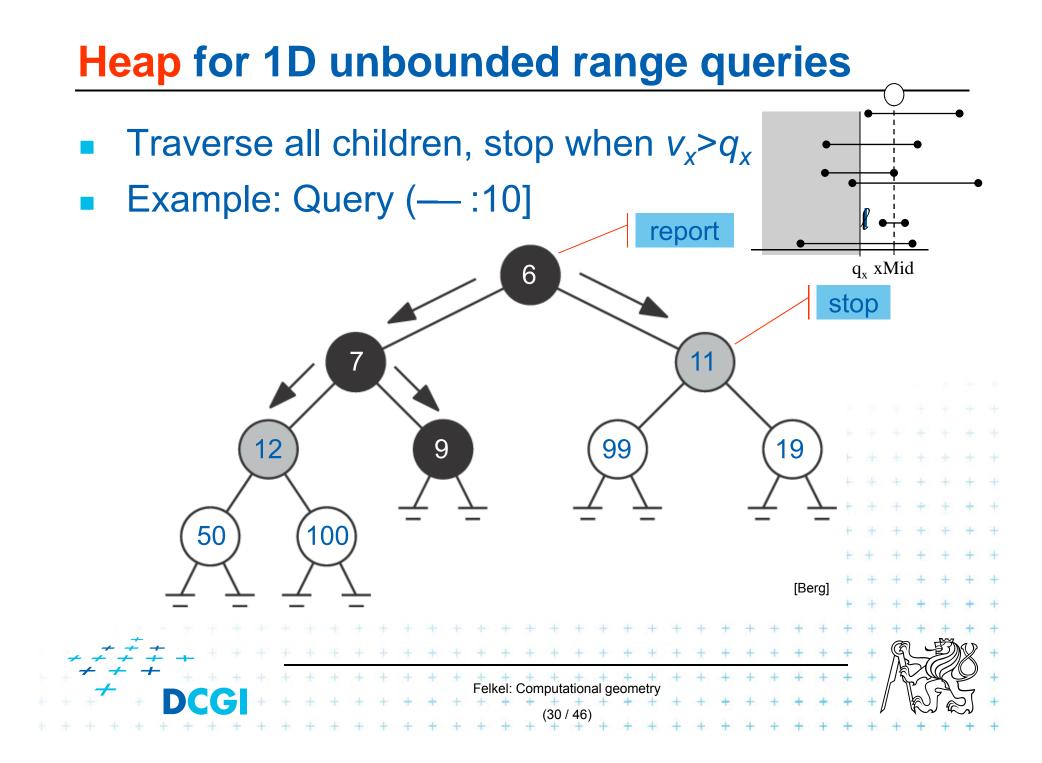
(traverse all children, stop when $v_x > q_x$)

In 2D – use heap for points with x μ (--- : q_x]
 + integrate information about y-coordinate

Felkel: Computational geometry

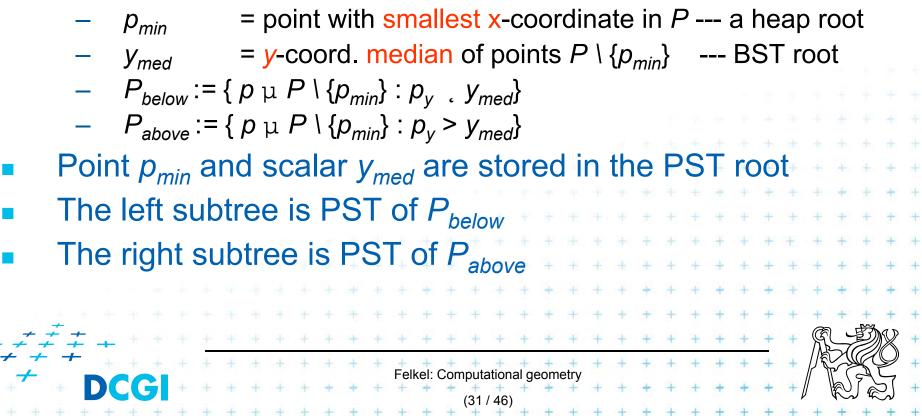
Heap for 1D unbounded range queries

- Traverse all children, stop when $v_x > q_x$
- Example: Query (---:10] report 6 stop 11 99 19 9 12 100 50 [Berg Felkel: Computational geometry

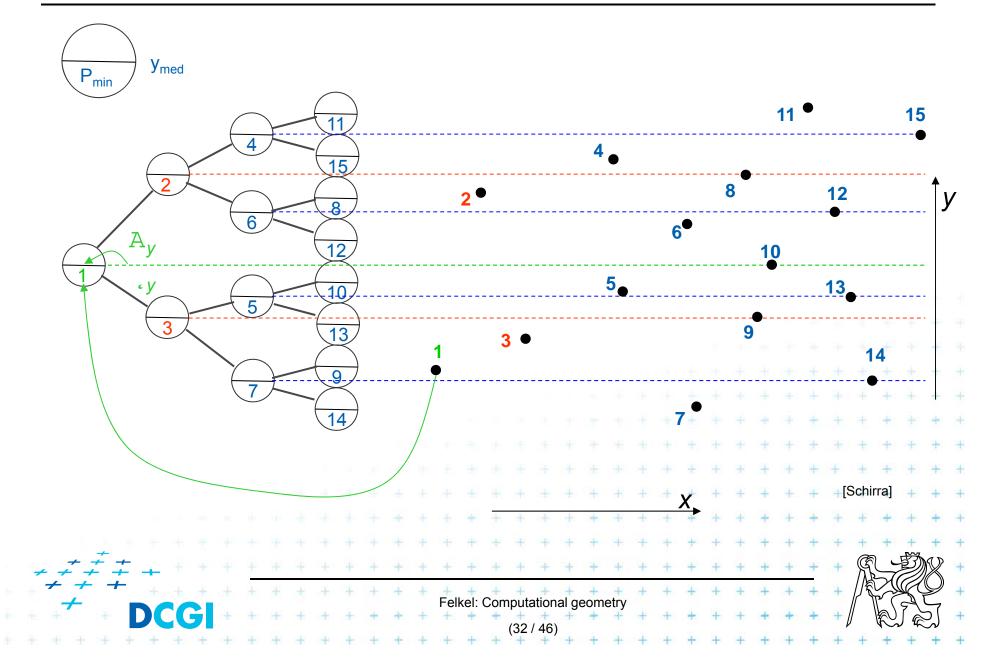


Priority search tree (PST)

- Heap in 2D can incorporate info about both x, y
 - BST on y-coordinate (horizontal slabs) ~ range tree
 - Heap on x-coordinate (minimum x from slab along x)
- If P is empty, PST is empty leaf
- else



Priority search tree construction example



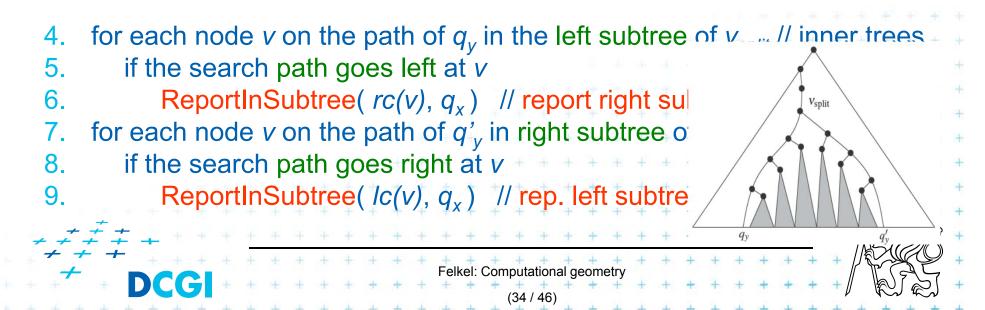
Priority search tree definition

```
PrioritySearchTree(P)
Input:
       set P of points in plane
Output: priority search tree T
   if P=b then PST is an empty leaf
2.
    else
3.
               = point with smallest x-coordinate in P
                                                            // heap on x root
       p<sub>min</sub>
               = y-coord. median of points P \setminus \{p_{min}\}
                                                             // BST on y root
4.
       Y<sub>med</sub>
       Split points P \setminus \{p_{min}\} into two subsets – according to y_{med}
5.
6.
               P_{below} := \{ p \mid P \setminus \{p_{min}\} : p_v , y_{med} \}
               P_{above} := \{ p \mid P \setminus \{p_{min}\} : p_v > y_{med} \}
7.
                                                              Notation in alg:
       T = \text{newTreeNode}()
8.
       T.p = p_{min} // point [ x, y ]
9.
                                                             ... p(v)
10.
     T.y = y_{mid} // skalar
                                   11. T.left = PrioritySearchTree(P_{below}) + + + + + ...+lc(v)
       T.rigft = PrioritySearchTree(P_{above}) ... rc(v
12.
13. O( n log n ), but O( n ) if presorted on y-coordinate and bottom up
                                 Felkel: Computational geometry
```

Query Priority Search Tree

QueryPrioritySearchTree(*T***, (**— : q_x **]** – [q_y ; q'_y **]**) *Input:* A priority search tree and a range, unbounded to the left *Output:* All points lying in the range

- 1. Search with q_y and q'_y in T // BST on *y*-coordinate select *y* range Let v_{split} be the node where the two search paths split (split node)
- 2. for each node v on the search path of q_v or q'_v // points along the paths
- 3. if $p(v) \perp (--: q_x] \circ [q_y; q'_y]$ then report p(v) // starting in tree root



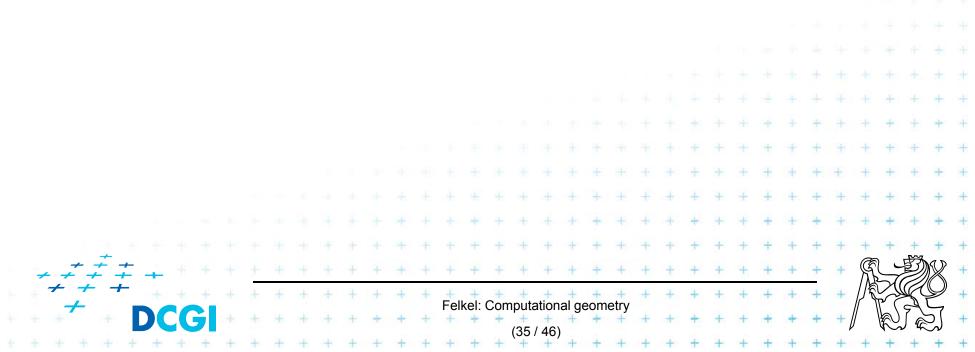
Reporting of subtrees between the paths

ReportInSubtree(v, q_x)

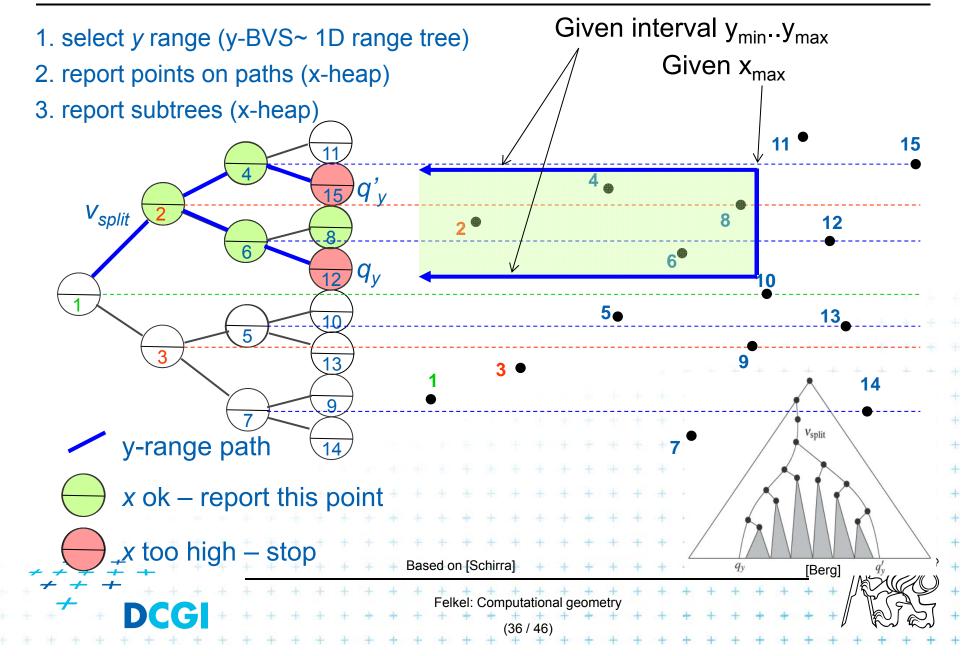
Input: The root *v* of a subtree of a priority search tree and a value q_x . *Output:* All points in the subtree with *x*-coordinate at most q_x .

 $// x \mu$ (---- : q_x] --- heap condition

- 1. if v is not a leaf and x(p(v)), q_x
- 2. Report p(v).
- 3. ReportInSubtree($lc(v), q_x$)
- 4. ReportInSubtree($rc(v), q_x$)



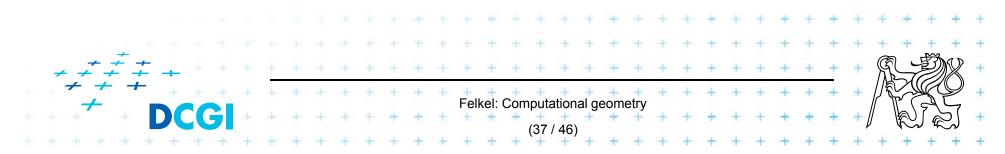
Priority search tree query



Priority search tree complexity

For set of *n* points in the plane

- Build O(n log n)
- Storage O(n)
- Query $O(k + \log n)$
 - points in query range (-- : q_x] ° [q_y ; q'_y])
 - k is number of reported points
- Use PST as associated data structure for interval trees for storage of M



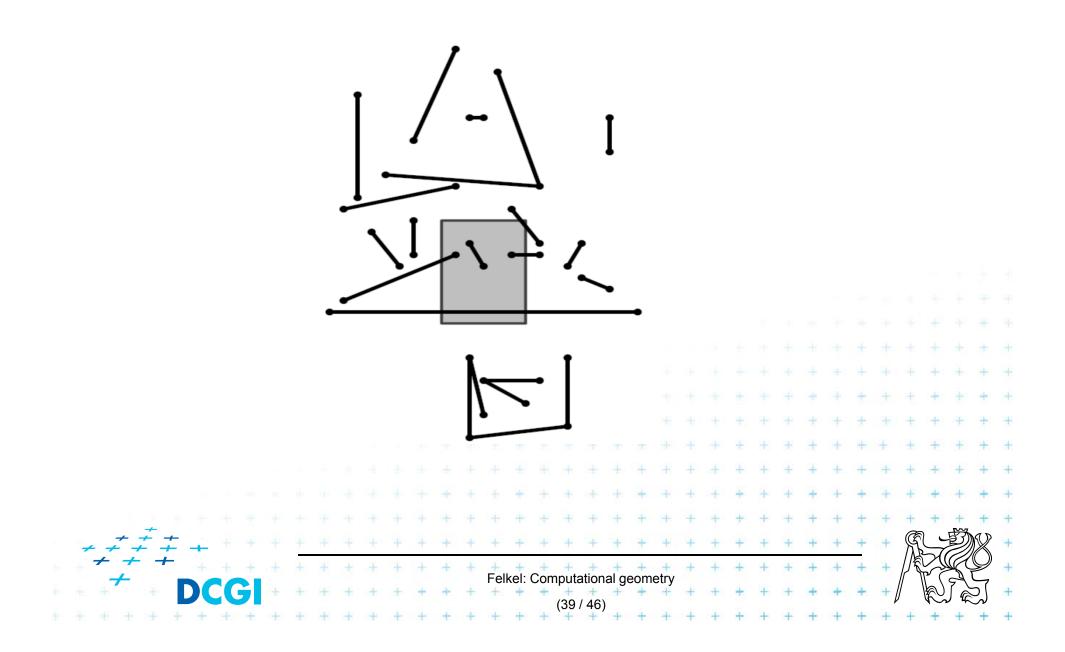
Talk overview

1. Windowing of axis parallel line segments in 2D (variants of *interval tree - IT*)

- a) Line stabbing (*IT* with *sorted lists*)
- b) Line segment stabbing (IT with range trees)
- c) Line segment stabbing (IT with priority search trees)

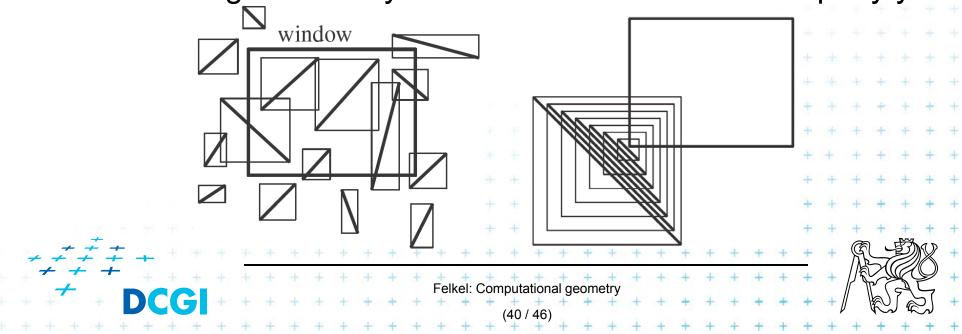
								2 - L																												
			Se	eg	m	<i>le</i>	nt	t t	re	е																										
				Ŭ																															+	+
																													÷	+		÷	+	+-	+	+
																												Ť	ł	÷	+	+	+	+	+	+
																									÷	+	÷	+	Ŧ	+	+	+	+	+	+	+
																					+			+	$\frac{1}{2}$	+	+	÷	+	+	+	+	+	+	÷	+
																		t	+	+	+	\pm	+	+	+	+	+	+	+	+	+	+	+	+	+	+
														÷		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	6									+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ 7	- + +	+	÷							+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R		Ŋ	X	+
+ +	<u>+</u> -	+			+	+	+	÷	+	+	+	+	+	+	+ Fal	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1/		K.	\mathcal{P}	+
+ +	- +				31	+	+	+	+	+	÷	+	+	+	геі +	kel:		nputa	-	1	+	eury	+	+	+	+	+	+	+	+	+	<u>ا</u> (R		5	+
+ +	÷ .+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	(38	/ 46)) +	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+

2. Windowing of line segments in general position



Windowing of arbitrary oriented line segments

- Two cases of intersection
 - a,b) Endpoint inside the query window => range tree
 - c) Segment intersects side of query window => ???
- Intersection with BBOX (segment bounding box)?
 - Intersection with 4n sides
 - But segments may not intersect the window -> query y



Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - a) Line stabbing (*IT* with *sorted lists*)
 - b) Line segment stabbing (*IT* with *range trees*)
 - c) Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position

- segment tree

Exploits locus approach

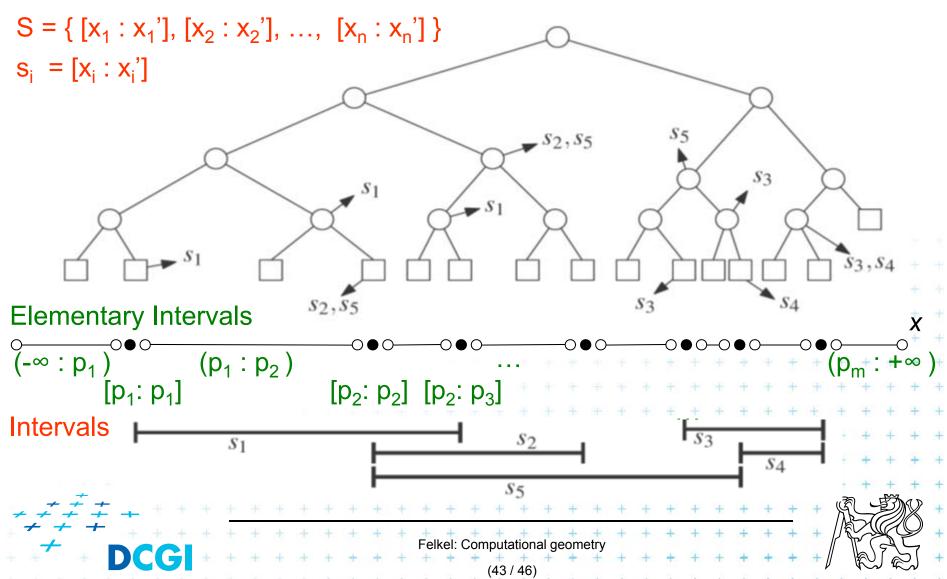
- Partition parameter space into regions of same answer
- Localization of such region = knowing the answer
- For given set S of *n* intervals (segments) on real line
 - Finds *m* elementary intervals (induced by interval end-points)

Felkel: Computational geometry

- Stores intervals s_i with the elementary intervals
- Reports the intervals s_i containing query point q_x .

Segment tree example

Intervals



Segment tree definition

Segment tree

- Skeleton is a balanced binary tree T
- Leaves ~ elementary intervals Int(v)
- Internal nodes v
 - ~ union of elementary intervals of its children
 - Store: 1. interval Int(v) = union of elementary intervals
 - of its children segments s_i

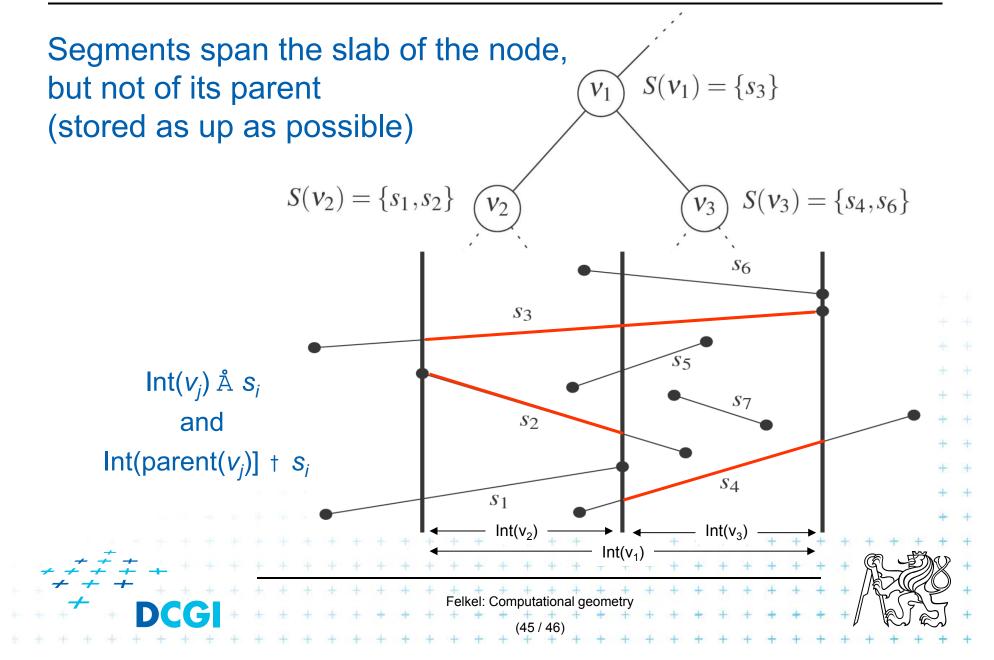
2. canonical set S(v) of intervals $[x : x'] \mu S$

- Holds Int(v) Å [x : x'] and Int(parent(v)] + [x : x'] (node interval is not larger than a segment)
- Intervals [x : x'] are stored as high as possible, such that

Felkel: Computational geometry

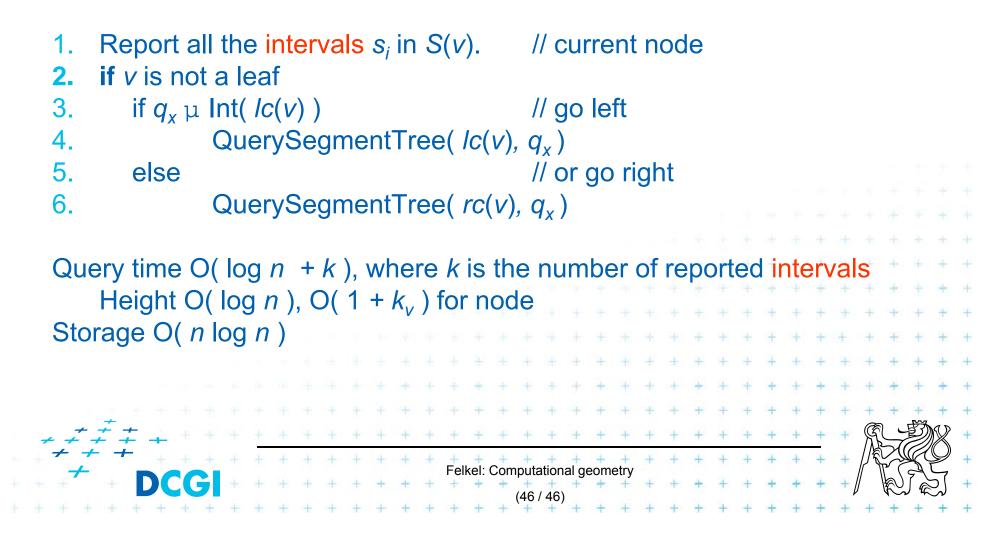
Int(v) is completely contained in the segment

Segments span the slab



Query segment tree

QuerySegmentTree(v, q_x) Input: The root of a (subtree of a) segment tree and a query point q_x Output: All intervals in the tree containing q_x .



Segment tree construction

ConstructSegmentTree(*S*) Input: Set of intervals *S* - segments Output: segment tree

- Sort endpoints of segments in S -> get elemetary intervals ...O(n log n)
- 2. Construct a binary search tree *T* on elementary intervals $\dots O(n)$ (bottom up) and determine the interval Int(v) it represents
- 3. Compute the canonical subsets for the nodes (lists of their segments):
- 4. v = root(T)5. for all segments $s_i = [x : x] \mu S$ 6. InsertSegmentTree(v, [x : x]) for all segmentTree(v, [x : x])

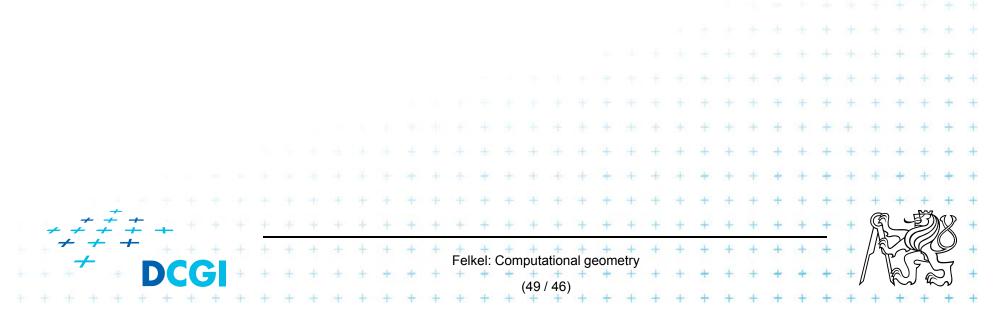
Segment tree construction – interval insertion

```
InsertSegmentTree(v, [x : x'])
Input:
         The root of (a subtree of) a segment tree and an interval.
Output: The interval will be stored in the subtree.
    if Int(v) Å [ x : x' ]
                                             // Int(v) contains s_i = [x : x']
       store [ x : x' ] at v
2
    else if Int(lc(v)) \cap [x : x'] û þ
3.
            InsertSegmentTree(lc(v), [x : x'])
4.
5.
          if Int( rc(v) ) ∩ [ x : x' ] û þ
            InsertSegmentTree(rc(v), [x : x'])
6.
One interval is stored at most twice in one level =>
Single interval insert O( \log n )
Construction total O(n \log n)
                                     Felkel: Computational geometry
```

Segment tree complexity

A segment tree for set *S* of *n* intervals in the plane,

- Build O(n log n)
- Storage O(n log n)
- Query $O(k + \log n)$
 - Report all intervals that contain a query point
 - k is number of reported intervals



Segment tree versus Interval tree

Segment tree

- $O(n \log n)$ storage x O(n) of Interval tree
- But returns exactly the intersected segments s_i, interval tree must search the lists ML and/or MR

Good for

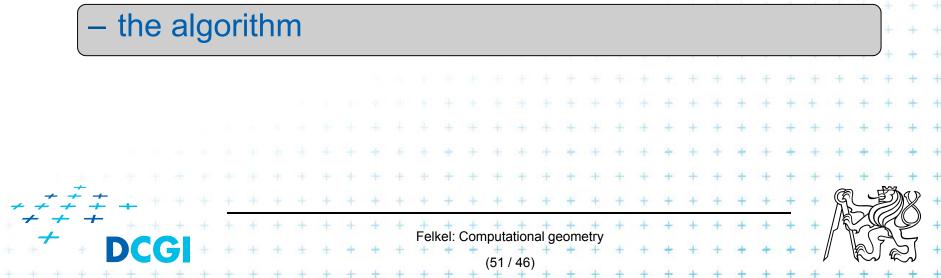
- 1. extensions (allows different structuring of intervals)
- 2. stabbing counting queries
 - store number of intersected intervals in nodes
 - -O(n) storage and $O(\log n)$ query time = optimal
- 3. higher dimensions multilevel segment trees

(Interval and priority search trees do not exist in ^dims)

Felkel: Computational geometry

Talk overview

- 1. Windowing of axis parallel line segments in 2D (variants of *interval tree IT*)
 - a) Line stabbing (*IT* with sorted lists)
 - b) Line segment stabbing (IT with range trees)
 - c) Line segment stabbing (*IT* with *priority search trees*)
- 2. Windowing of line segments in general position
 - segment tree



Windowing of arbitrary oriented line segments

- Let S be a set of arbitrarily oriented line segments in the plane.
- Report the segments intersecting a vertical query segment q := q_x ° [q_y : q'_y]
- Segment tree T on x intervals of segments in S
 - node v of T corresponds to vertical slab $Int(v) \circ (-- :-)$

Felkel: Computational geometry

 S_1

*S*2

53

 S_4

S5

- segments span the slab of the node, but not of its parent
- segments do not intersect
 - => segments in the slab (node) can be vertically ordered BST

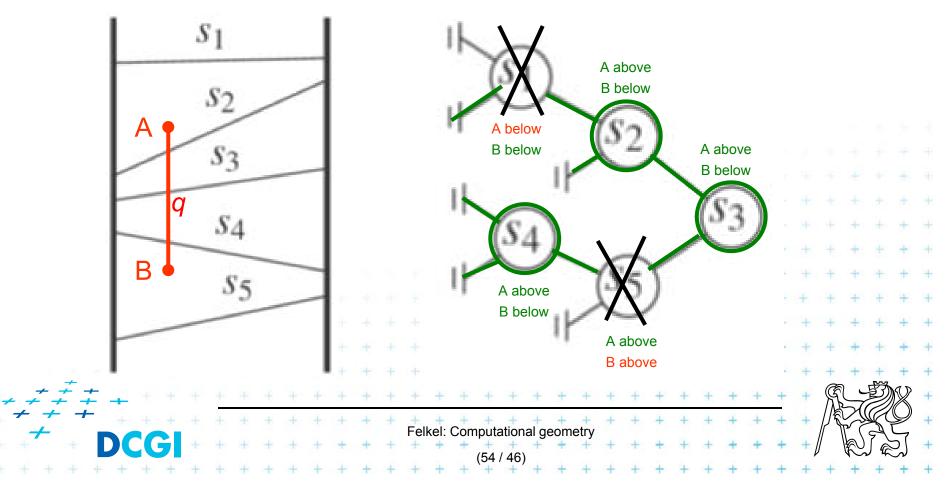
Segments between vertical segment endpoints

- Segments (in the slab) do not mutually intersect
 - => segments can be vertically ordered and stored in BST
 - Each node v of the x segment tree has an associated y BST
 - BST T(v) of node v stores the canonical subset S(v) according to the vertical order
 - Intersected segments can be found by searching T(v) in O(k_v + log n), k_v is the number of intersected segments

Felkel: Computational geometry

Segments between vertical segment endpoints

- Segment s is intersected by vert.query segment q iff
 - The lower endpoint (B) of q is below s and
 - The upper endpoint (A) of q is above s



Windowing complexity

Structure associated to node (BST) uses storage linear in the size of S(v)

- Build $O(n \log n)$
- Storage $O(n \log n)$
- Query $O(k + \log^2 n)$
 - Report all segments that contain a query point
 - k is number of reported segments

References

[Berg]	Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars										
	Computational Geometry: Algorithms and Applications, Springer-										
	Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-										
	77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/										

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.

http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 <u>http://maven.smith.edu/~orourke/books/compgeom.html</u>

- [Vigneron] Segment trees and interval trees, presentation, INRA, France, http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html
- [Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester 2009 <u>http://wwwisg.cs.uni-</u> magdeburg.de/ag/lehre/SS2009/GDS/slides/S10.pdf

