CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

WINDOWING

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg], [Mount]

Version from 28.11.2013

Windowing queries - examples

= Interaction in GIS
— Select subset by outlining
— Zoom in and re-center

{; f A,.L,M P f,.\\/)?]
S S o)

S —+ . OO0 .
+++++ . ‘
-+ - —+
- D C GI Felkel: Computational geometry [Vakken]
(2/46)

Windowing versus range queries

O Range queries (see range trees in Lecture 03)
— Points
— Often in higher dimensions

= Windowing queries
— Line segments, curves, ...
— Usually in low dimension (2D, 3D)

= The goal for both:
Preprocess the data into a data structure

— so that the objects intersected by the query rectangle
can be reported efficiently

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(3/46)

Windowing queries on line segments

1 '/\

1. Axis parallel line segments 2. Arbitrary line segments
(non-crossing)

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(4/46)

[Vakken]

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists)
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
— segment tree

= —:_ -
+++++
> -~ -+ 4
-~ DCGI Felkel: Computational geometry _
(5/46) Y

1. Windowing of axis parallel line segments

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(6/46)

1. Windowing of axis parallel line segments

Window query

s Given
— a set of orthogonal line segments S (preprocessed),
— and orthogonal query rectangle W=[x:x']°[y:y]

= Count or report all the line segments of S that

intersect W 1 I o)
W .
= Such segments have i F) ;
a) 1 endpointin : ., c) { i
b) 2 end points in — Included . . 1 °
c) no end pointin — Cross over I)

- o —f— '
+++++ [Moun
> -~ -+
—~ DCGI Felkel: Computational geometry
(7 /46)

Line segments with 1 or 2 points inside

O

a) 1 point inside o I ¢ o

— Use arange tree (Lesson 3) ‘ l}a)

— O(n log n) storage i o | |

— O(log? n + k) query tmeor | ©® b) o |}

— O(log n + k) with fractional | Y
cascading Qe o—-; ________________ 5

b) 2 points inside — as a) 1 point inside
— Avoid reporting twice
1. Mark segment when reported (clear after the query)

2. When end point found, check the other end-point.
Report only the leftmost or bottom endpoint

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(8/46)

Line segments that cross over the window

c) No points inside
— not detected using , l
a range tree e o :
— Cross the boundary twice . N

or Or=mm=- O M
contain one boundary edge S I

— Itis enough to O
detect segments intersected by the left and bottom
boundary edges (not having end point inside)

— For left boundary: Report the segments intersecting
vertical query line segment (B)

— Let’s discuss vertical quer\y‘/ine first (A)
— Bottom boundary is rotated 90°

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(9/46)

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
[a) Line stabbing (IT with sorted lists) J
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
— segment tree

= —:_ -
+++++
> -~ -+ _
-~ DCGI Felkel: Computational geometry _
(107 46) .

a) Segment intersected by vertical line->1D

= Query line ¢:= (x=q,) £

Report the segments
stabbed by a vertical line

— . : e
= 1 dimensional problem

(x,¥) (")
(ignore y coordinate)

=> Report the interval
containing query point q, —+ I |

X dx x/

- o —f—
> A o~ == =
> -~ -+ 4
—~ DCGI Felkel: Computational geometry
(11/46) .

Interval tree principle

S1
53 - 52
S4
'.S -'
Ss O
M ST

Interval tree on Interval tree on
Sz and sx So and s~

-
- 3 [Vigneron] 4
—~ DCGI Felkel: Computational geometry _
(127 46) %

Static interval tree [Edelsbrunner80]

4 5

> A =~ =~

Primary structure — static tree for endpoints

vV =vertex

d(v)= midpoint of
segment
endpoints

I\
5 6

1 2 3 4 5 o

Secondary lists — sorted segments in M

ML(v) — intervals containing v

(sorted of ascending /o points)

24 65

M(V) Mg(V)

MR(v) — intervals containing v
(descending
hi endpoints)

5 6
1 |2 |3 |4 |5 |6

= —/_—I_ -
+++++ ® ®
>~ o = [Kukral]
-~ DCGI Felkel: Computational geometry
(15/406)

Interval tree construction (all intervals at once)

ConstructintervalTree(S) /l Intervals all active —no active lists
Input: Set S of intervals on the real line — on x-axis
Output: The root of an interval tree for S

1. if (JS| == 0) return null // no more

2. else

3. xMed = median endpoint of intervals in S // median endpoint
4. L = { [xlo, xhi] in S | xhi < xMed } /I left of median

d. R = {[xlo, xhi] in S | xlo > xMed } // right of median
6. M = { [xlo, xhi] in S | xlo <= xMed <= xhi } // contains median
/. G:ML = sort M in increasing order of xlo // sort M

8. MR = sort M in decreasing order of xhi

0. t = new IntTreeNode(xMed, ML, MR) // this node

10. tleft = ConstructintervalTree(L) /I left subtree

11. t.right = ConstructintervalTree(R) // right subtree

12. return t

—_

- S~ =
e S e —f— = [Mount]
DC GI Felkel: Computational geometry
(16 / 46) :

Line stabbing query for an interval tree

Stab(t, xq)

Input:

IntTreeNode t, Scalar xq

Output: prints the intersected intervals
1.

NOoO kWD

8.

9
1
1

0.
1.

- Nete; Small inefficiency for xq == t.xMed — recurse.on rigit.

if (t == null) return
if (xq < t.xMed)

for (i=0; i < t.ML.length; i++)
if (t.ML[i].lo <= xq) print(t.ML][i])

else break
stab(t.left, xq)
else // (xq - t.xMed)
median

for (i = 0; i <t.MR.length; i++) {
if (t.MR[i].hi - xq) print(t. MR[i])

else break
stab(t.right, xq)

e o =S
- o+ =+

+

// fell out of tree

// left of median?

/l traverse ML

// ..report if in range
/] ..else done

/] recurse on left

// right of or equal to

/[traverse MR

I ..report if in range
/I ..else done

// recurse on right

DCGI

Felkel: Computational geometry

(17/46)

- e

Complexity of line stabbing via interval tree

= Construction - O(n log n) time

— Each step divides at maximum into two halves or less
(minus elements of M) => tree height O(log n)

— If presorted the endpoints in three lists L,R,M
then median in O(1) and copy to new L,R,M in O(n)]
= Vertical line stabbing query - O(k + log n) time
— One node processed in O(1 + k'), k'=reported intervals
— v visited nodes in O(v + k), k=total reported intervals
— v = tree height = O(log n)
= Storage - O(n)

— Tree has O(n) nodes, each segment stored twice

. =~ = (two endpoints) %
Felkel: Computational geometry
DCGI (187 46) : . .

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists)
Lb) Line segment stabbing (/T with range trees)]
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
— segment tree

= —:_ -
+++++
> -~ -+ _
-~ DCGI Felkel: Computational geometry _
(197 46) .

a) Segment intersected by vertical

= Queryliner:=(x=q,)

Report the segments
stabbed by a vertical line

= 1 dimensional problem 7T .0

(ignore y coordinate)

o o o~ == =

—~ DCGI Felkel: Computational geometry
(207 46)

a) Segment intersected by vertical line - 2D

= Querylinef:=q,°[— :—] —_—

= Horizontal seément of M stabs the query

line [iff its left endpoint lies in
halph-space
(__ :QX]O ['_ :_]
= In IT node with stored median xMid

report all segments from M
— whose left point lies in

f

(__ . qx] [@
if lies left from xMid .
— whose right point lies in
(qx : +_] i
. . s . .' Inspired by-[Berg]
~_,_if £ lies right from xMid . |
+++ +DCGI Felkel: Computational geometry lellid

(211 46)

b) Segment intersected by vertical line segment

= Querysegmentq:=q,°[q,:q] —_—

= Horizontal segment of M stabs the query

segment q iff its left endpoint lies in
semi-infinite rectangular region
(__ ! qx] ° [qy; q’y]
= InIT node with stored median xMid
report all segments

q

- (qx,q5)

O

— whose left point lies in °

(_ :qx] © [qy’ q’y]

if g lies left from xMid * ,
— whose right point lies in [—o:] X [gy : /]
(qx D] [qy; q’y] “'_‘ [Berg]
_ -~ = if g lies right from xMid . —
e Felkel: Computational geometry I X|V||id__

g DCGI (22/46)

Data structure for endpoints

= Storage of ML and MR
— Sorted lists not enough for line segments
— Use two range trees

= Instead O(n) sequential search in ML and MR

perform O(log n) search
In range tree with fractional cascading

= —:_ -
e S =~ == ——
> -~ -+
- DCGI Felkel: Computational geometry _

(231 46)

2D range tree (without fractional casc. - see more in Lecture 3)

X—range tree

y—range tre 5

o .

_______________ - - Q.hiy
' L laux o ®
o oot)
L J
)
O o (O

- Q.lo.y

|

o o O O

L ole - B ° Q.hiy

o
© 0
o |® * o
- o0
ol e 9
L..‘
o o
0
o |®e ®
[]
°lee ®
°
Ole ey @
o
o |
@]
<<

e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry _
(24 / 46) .

Complexity of line segment stabbing

= Construction - O(n log n) time

— Each step divides at maximum into two halves L,R
or less (minus elements of M) => tree height O(log n)

— If the range trees are efficiently build in O(n)

= Vertical line segment stab. q. - O(k + log? n) time
— One node processed in O(log n + k'), k'=reported inter.
— v visited nodes in O(v log n + k), k=total reported inter.
— v = tree height = O(Icfg n)
— O(k +log? n) time - range tree with fractional cascading
— O(k + log? n) time - range tree without fractional casc.

= Storage - O(n log n)

_ - == Dominated by the range trees %
o o Felkel: Computational geometry
DCGI (25 / 46) | | |

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists)
b) Line segment stabbing (/T with range trees)
[c) Line segment stabbing (/T with priority search trees)]

2. Windowing of line segments in general position
— segment tree

= —:_ -
+++++
> -~ -+ 4
-~ DCGI Felkel: Computational geometry _
(267 46) .

c) Priority search trees [McCreight85]

= Priority search trees — in case c) on slide 8

— Exploit the fact that query rectangle in range queries is
unbounded

— Can be used as secondary data structures for both left
and right endpoints (ML and MR) of segments
(intervals) in nodes of interval tree

— Improve the storage to O(n) for horizontal segment
Intersection with window edge (Range tree has O(n log n))

= Forcases a)and b) - O(n log n) remains
— we need range trees for windowing segment endpoints

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(27 1 46)

Rectangular range gueries variants

= LetP={p, p,..., p,}Iis set of points in plane

= (Goal: rectangular range queries of the form
(__ : QX] ° [qy’ q’y]
= In 1D: search for nodes vwith v, u (— : q,]
— range tree O(log n + k) time
— ordered list O(1 + k) time
(start in the leftmost, stop on v with v,>q,)
— use heap O(1 + k) time
(traverse all children, stop when v,>q,)

= In 2D — use heap for points with x u (— : q,]
+ integrate information about y-coordinate

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(28 /1 46)

Heap for 1D unbounded range queries

= Traverse all children, stop when v,>q,
= Example: Query (— :10]

= —:_ -
+++++
> -~ -+ _
-~ DCGI Felkel: Computational geometry _
(291 46) .

Heap for 1D unbounded range queries

= Traverse all children, stop when v,>q, —

= Example: Query (— :10]

report

o A o~ == =

—~ DCGI Felkel: Computational geometry
(30/46)

Priority search tree (PST)

= Heap in 2D can incorporate info about both x,y
— BST on y-coordinate (horizontal slabs) ~ range tree
— Heap on x-coordinate (minimum x from slab along x)

= |If P isempty, PST is empty leaf

= else
- Pmin = point with smallest x-coordinate in P --- a heap root
Ymed = y-coord. median of points P\ {p,.,.} ---BST root

_ Pbelow:={pp-P\{pmin}:py c ymed}

= Paove :={P 11 P\{pyn} :py>ymed}
= Point p,,;, and scalar y, ., are stored in the PST root
= The left subtree is PST of P,

= The right subtree is PST of P

above

= —:_ -
e S =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(31746)

Priority search tree construction example

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(32/46) T

Priority search tree definition

PrioritySearchTree(P)

Input: set P of points in plane
Output: priority search tree T

1. if P=p then PST is an empty leaf

2. else

3. Pmin = point with smallest x-coordinate in P // heap on x root
4. Ymeg = y-coord. median of points P\ {p,.;.} // BST on y root
5. Split points P \ {p,,,;.} into two subsets — according to y,..4

6. Preiow = { P 1 P \{Ppmn} : Py . Ymed

/. Pavove :={ P12 P \{Ppin} :py>ymed}

8. T = newTreeNode() Notation in alg:
9. I.pb=p,, [lpoint[x,y] .. p(v)

10. T.y=y.., [l skalar o Y(V)

11. T.left = PrioritySearchTree(Py,) ... le(v)

12. T.rigft = PrioritySearchTree(P, e) ... rc(v)

13. O(nlogn), but O(n) if presorted on y-coordinate and bottomup - - -

- S~ =
e o o~ ——
-~ DCGI Felkel: Computational geometry .
(33/46) a

Query Priority Search Tree

QueryPrioritySearchTree(T, (— :q,] - [q,:; q’,])
Input: A priority search tree and a range, unbounded to the left
Output: All points lying in the range

1. Search withq,and q’,in T //BST on y-coordinate — select y range
Let v,,;; be the node where the two search paths split (split node)

2. for each node v on the search path of g, or g°, // points along the paths
3. if p(v) u (— :q, °[g,; g,]thenreport p(v) // starting in tree root

4. for each node v on the path of g, in the left subtree of v .. //inner freas
5. if the search path goes left at v

6. ReportinSubtree(re(v), q,) // report right sul
/. for each node v on the path of q’, in right subtree o
8 if the search path goes right at v

9 ReportinSubtree(Ic(v), q,) /I rep. left subtre

- =
- =~ —— —
-~ -

y 'y T
DCGI Felkel: Computational geometry . _ -.
(34 /46) :

Reporting of subtrees between the paths

ReportinSubtree(v, q,)
Input: The root v of a subtree of a priority search tree and a value q,.
Output: All points in the subtree with x-coordinate at most q,.

1. ifvisnotaleafand x(p(v)) . q, /X1 (— :q,] - heapcondition
2. Report p(v).

3. ReportinSubtree(/c(v),
4.

)
ReportinSubtree(re(v), q,,)

Q22

= —:_ -
> S~ -~ —+— —+
-+~ -+~ -4 4
DC GI Felkel: Computational geometry
(35/46) a

Priority search tree query

Given interval y,i1--Ymax
Given x

1. select y range (y-BVS~ 1D range tree)

2. report points on paths (x-heap) max
3. report subtrees (x-heap)
11 ¢ 15
""" B s e s T
\15/9 y |
- 2° ; J
__ _'____________.
6.
______________________________ A e——
_____ 5-
___ S S NCT P S (I S
1 3¢
________________ O e N e
\7/

~~ y-range path
@ x ok — report this point

_x too high — stop

- + —+

—~ DCGI Felkel: Computational geometry
(36 /46)

Based on [Schirra]

Priority search tree complexity

For set of n points in the plane
= Build O(n log n)

= Storage O(n)

= Query O(k + log n)

— points in query range (— :q,] ° [q,;q,])
— k is number of reported points

s Use PST as associated data structure for interval
trees for storage of M

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(37 /46) T

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists)
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

[2. Windowing of line segments in general position]
— segment tree

= —:_ -
+++++
> -~ -+ _
-~ DCGI Felkel: Computational geometry _
(38746) _

2. Windowing of line segments in general position

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(39/46)

Windowing of arbitrary oriented line segments

= [wo cases of intersection
a,b) Endpoint inside the query window => range tree
c) Segment intersects side of query window => 7?7

= Intersection with BBOX (segment bounding box)?

— Intersection with 4n sides
— But segments may not intersect the window —> query y

N window
/|]

Y
v i
+ / X

AN
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(40/ 46)

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists)
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position
L — segment tree]

= —:_ -
+++++
> -~ -+ _
-~ DCGI Felkel: Computational geometry _
(41/46) .

Segment tree [Bentley, 1977]

= EXxploits locus approach
— Partition parameter space into regions of same answer
— Localization of such region = knowing the answer

= For given set S of n intervals (segments) on real line
— Finds m elementary intervals (induced by interval end-points)
— Partitions 1D parameter space into these elementary

Intervals o 000- 000—000——000——000-000—080—0
-0 of P2 P3 Py F oo

(—oo:pl)’[pl :pl]v(pl :p2)a[p2 : p2]7'°°a
(pm—l . Pm), [pm . Pm], (pm : +°°)
— Stores intervals s; with the elementary intervals

— Reports the intervals s; containing query point q,.

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(421 46)

Segment tree example

DCGI Felkel: Computatlonal geometry . - _
(43 / 46) _

Intervals
S={[X XL X i %], s X i X1} O
S =[x :x
L2 ()
§2.855 55
® @ |
5 (. 33 ()
) @ ® el & © o=
. . LY | . $3.54
. i ;
Elementary Intervals ~ *>**3 o o
O : O00O0— : C0O0——000 0@ O0— OOO—OOO—0.0—_O
(-1 py) (P1:P2) (P
[P4: P4l [Po: Po] [P2: Pal
Intervals | | . -
- 59 53
b I — =
. I S5
LA E T

Segment tree definition

Segment tree
= Skeleton is a balanced binary tree T

= Leaves ~ elementary intervals Int(v)

= Internal nodes v
~ union of elementary intervals of its children

— Store: 1. interval Int(v) = union of elementary intervals
of its children segments s,
2. canonical set S(v) of intervals [x: x]Tu S
— Holds Int(v) A [x : x] and Int(parent(v)] t+ [x : x]
(node interval is not larger than a segment)

— Intervals [x : x’] are stored as high as possible, such that
. Int(v) is completely contained in the segment

- -~
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(447 46)

}

Segments span the slab

Segments span the slab of the node,
but not of its parent
(stored as up as possible)

S(vy) = {s1,52} @ @ S(v3) = {s4,56}

B —
-

= {53}

—
Int(v;) As, o
and 52 .\- "
\.
Int(parent(v))] t s;
S4

o | o

<+« Int(v,)) ——> ¥ «—— Int(vy)) ——»

. P Int(v,) > ' |
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(4517 46) .4

Query segment tree

QuerySegmentTree(v, q,)
Input: The root of a (subtree of a) segment tree and a query point q,
Output: All intervals in the tree containing q,.

1. Report all the intervals s; in S(v). // current node
2. 1f vis not a leaf

3 if g, 1 Int(/e(v)) I/ go left

4, QuerySegmentTree(Ic(v), q,)

3 else // or go right

6 QuerySegmentTree(rc(v), q,)

Query time O(log n + k), where k is the number of reported intervals

Height O(log n), O(1 + k,) for node
Storage O(nlogn)

- —:_ —
> A o~ == =
DC GI Felkel: Computational geometry
(46 / 46) a

Segment tree construction

ConstructSegmentTree(S)
Set of intervals S - segments
Output: segment tree

Input:

1.

2.

SRS

Sort endpoints of segments in S -> get elemetary intervals ...O(n log

n)

Construct a binary search tree T on elementary intervals
(bottom up) and determine the interval Int(v) it represents

...0(n)

Compute the canonical subsets for the nodes (lists of their segments):

v =root(T)

for all segments s;=[x: xTu S
InsertSegmentTree(v, [x : x])

Felkel: Computational geometry

(47 1 46) |

AR

Segment tree construction — interval insertion

InsertSegmentTree(v, [x: x7])
Input: The root of (a subtree of) a segment tree and an interval.
Output: The interval will be stored in the subtree.

1. ifInt(v)A[x:x'] // Int(v) contains s; =[x : X’]
2. store[x:x']atv

3. elseifiInt(le(v)) N[x:x' 10 P

4. InsertSegmentTree(Ic(v), [x: X'])

3) ifInt(re(v)) N[x:x’]G D

6 InsertSegmentTree(rc(v), [x: x'])

One interval is stored at most twice in one level =>
Single interval insert O(log n))
Construction total O(nlog n)

- —:_ —
> A o~ == =
DC GI Felkel: Computational geometry
(48 1 46) a

Segment tree complexity

A segment tree for set S of n intervals in the plane,
= Build O(n log n)

= Storage O(nlog n)

= Query O(k + log n)

— Report all intervals that contain a query point
— k is number of reported intervals

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(49/ 46)

Segment tree versus Interval tree

= Segment tree
— O(nlog n) storage x O(n) of Interval tree
— But returns exactly the intersected segments s, interval
tree must search the lists ML and/or MR
= Good for
1. extensions (allows different structuring of intervals)
2. stabbing counting queries
— store number of intersected intervals in nodes
— O(n) storage and O(log n) query time = optimal
3. higher dimensions — multilevel segment trees
(Interval and priority search trees do not exist in *dims)

= : -
+++++
> -~ -+
—/= DCGI Felkel: Computational geometry
(50 / 46)

Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)
a) Line stabbing (I'T with sorted lists)
b) Line segment stabbing (/T with range trees)
c) Line segment stabbing (/T with priority search trees)

2. Windowing of line segments in general position

— segment tree
[— the algorithm]

= —:_ -
+++++
> -~ -+ 4
-~ DCGI Felkel: Computational geometry _
(511746) .

Windowing of arbitrary oriented line segments

= Let S be a set of arbitrarily oriented line segments
In the plane.

= Report the segments intersecting a vertical query
segmentq:=q,°[q,:q),]
= Segment tree T on x intervals of segmentsin S

— node v of T corresponds to vertical slab Int(v) © (— : —)

— segments span the slab of the o |
node, but not of its parent 52 | D o)

— segments do not intersect = | ' 5)
=> segments in the slab (node) - T $5)
can be vertically ordered — BST }

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry _
(521 46) s

Segments between vertical segment endpoints

= Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST

— Each node v of the x segment tree
has an associated y BST

— BST T(v) of node v stores the canonical subset S(v)
according to the vertical order

— Intersected segments can be found by searching T(v) in
O(k, + log n), k,is the number of intersected segments

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(53/46)

Segments between vertical segment endpoints

= Segment s is intersected by vert.query segment q iff
— The lower endpoint (B) of g is below s and
— The upper endpoint (A) of g is above s

A above
B below

A below

B below A above

B below

A above
B below

A above
B above

Felkel: Computational geometry %

(54/46)

Windowing complexity

Structure associated to node (BST) uses storage
linear in the size of S(v)

= Build O(n log n)
= Storage O(nlog n)
= Query O(k +log? n)

— Report all segments that contain a query point
— k is number of reported segments

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(551 46)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754. Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14,
and 30.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Rourke] Joseph O'Rourke: .. Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html

[Vigneron] Segment trees and interval trees, presentation, INRA, France,
http://w3.jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html

[Schirra] Stefan Schirra. Geometrische Datenstrukturen. Sommersemester
2009 http://wwwisg.cs.uni-
magdeburg.de/ag/lenre/SS2009/GDS/slides/S10.pdf

- —:_ —_ . } 1
>~ S~ o~ =~
D C GI Felkel: Computational geometry
i - 4 4 { - { 4 { —— 1 - - - -— .:, _!.
(56 /46) : - _

+ + + +

