

TRIANGULATIONS

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

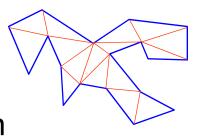
Version from 13.11.2014

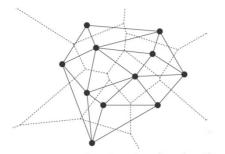
Talk overview

Polygon triangulation

- Monotone polygon triangulation
- Monotonization of non-monotone polygon

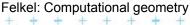
- Input: set of 2D points
- Properties
- Incremental Algorithm
- Relation of DT in 2D and lower envelope (CH) in 3D and
 - relation of VD in 2D to upper envelope in 3D



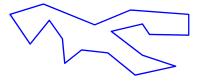


Polygon triangulation problem

- Triangulation (in general)
 - = subdividing a spatial domain into simplices
- Application
 - decomposition of complex shapes into simpler shapes
 - art gallery problem (how many cameras and where)
- We will discuss
 - a simple polygon triangulation
 - without demand on triangle shapes
- Complexity of polygon triangulation
 - O(n) alg. exists [Chazelle91], but it is too complicated
 - practical algorithms run in O(n log n)

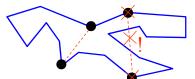


Simple polygon



= region enclosed by a closed polygonal chain that does not intersect itself

Visible points



= two points on the boundary are visible if the interior of the line segment joining them lies entirely in the interior of the polygon

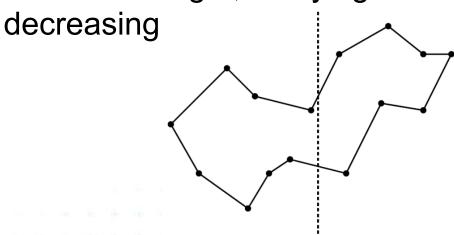
Diagonal

= line segment joining any pair of visible vertices

 A polygonal chain C is strictly monotone with respect to line L, if any line orthogonal to L intersects C in at most one point

- A chain C is monotone with respect to line L, if any line orthogonal to L intersects C in at most one connected component (point, line segment,...)
- Polygon P is monotone with respect to line L, if its boundary (bnd(P), ∂P) can be split into two chains, each of which is monotone with respect to L

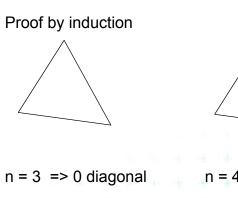
- Horizontally monotone polygon
 - = monotone with respect to *x*-axis
 - Can be tested in O(n)
 - Find leftmost and rightmost point in O(n)
 - Split boundary to upper and lower chain
 - Walk left to right, verifying that x-coord are non-



x-monotone polygon

[Mount]

- Every simple polygon can be triangulated
- Simple polygon with n vertices consists of
 - exactly n-2 triangles
 - exactly n-3 diagonals
 - Each diagonal is added onceO(n) sweep line algorithm exist



n := n+1 => n+1-3 diagonals

n + 1 = 7 => 4 diagonals)

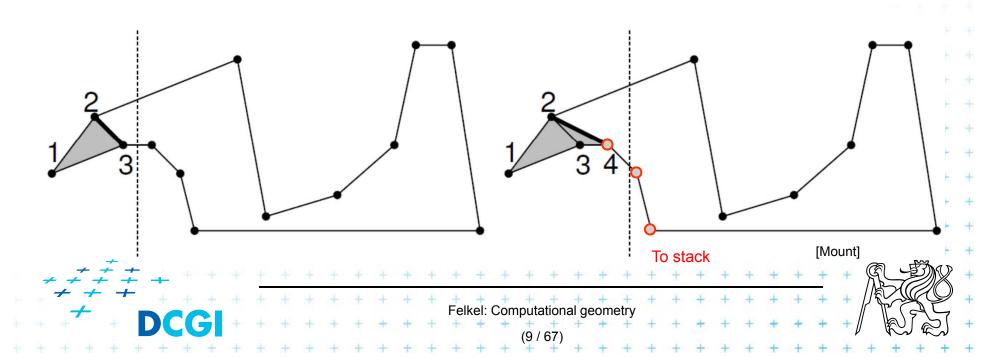
Simple polygon triangulation

- Simple polygon can be triangulated in 2 steps:
 - 1. Partition the polygon into x-monotone pieces
 - 2. Triangulate all monotone pieces

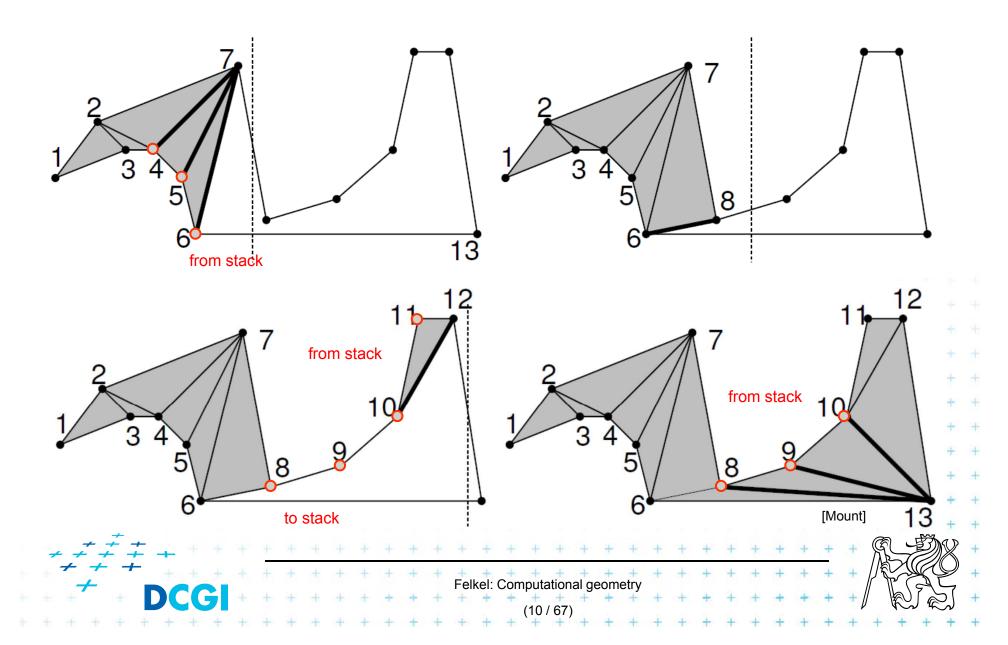
(we will discuss the steps in the reversed order)

2. Triangulation of the monotone polygon

- Sweep left to right
- Triangulate everything you can by adding diagonals between visible points
- Remove triangulated region from further consideration mark as DONE



Triangulation of the monotone polygon



Main invariant of the untriangulated region

Main invariant

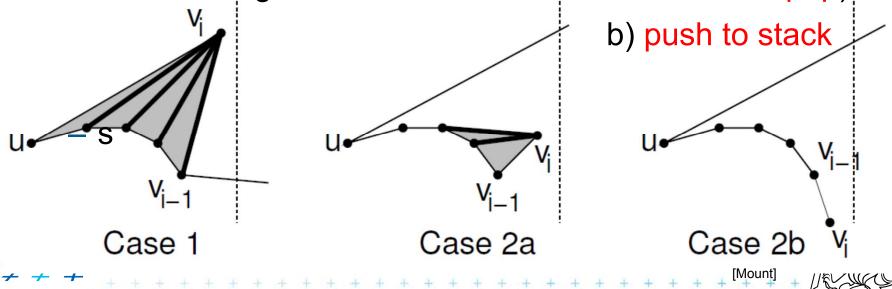
- Let v_i be the vertex being just processed
- The untriangulated region left of v_i consists of two x-monotone chains (upper and lower)
- Each chain has at least one edge
- If it has more than one edge
 - these edges form a reflex chain
 - = sequence of vertices with interior angle ≥ 180°

Initial invariant

- Left vertex of the last added diagonal is u
- Vertices between u and v_i are waiting in the stack

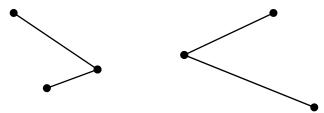
Triangulation cases

- Case 1: v_i lies on the opposite chain
 - Add diagonals from next(u) to v_{i-1}
 - Set $u = v_{i-1}$. Last diagonal (invariant) is $v_i v_{i-1}$
- Case 2: v is on the same chain as v_{i-1}
 - a) walk back, adding diagonals joining v_i to prior vertices until the angle becomes > 180° or u is reached pop)

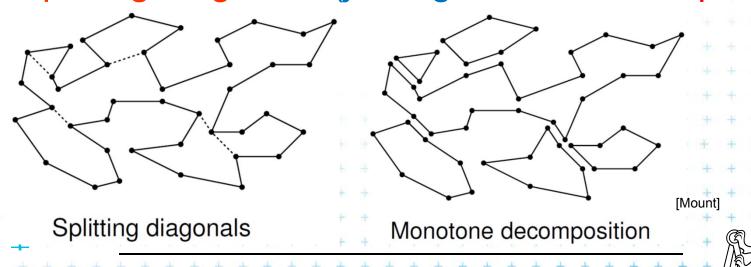


1. Polygon subdivision into monotone pieces

 X-monotonicity breaks the polygon in vertices with edges directed both left or both right



 The monotone polygons parts are separated by the splitting diagonals (joining vertex and helper)



Felkel: Computational geometry

Data structures for subdivision

Events

- Endpoints of edges, known from the beginning
- Can be stored in sorted list no priority queue

Sweep status

- List of edges intersecting sweep line (top to bottom)
- Stored in O(log n) time dictionary (like balanced tree)

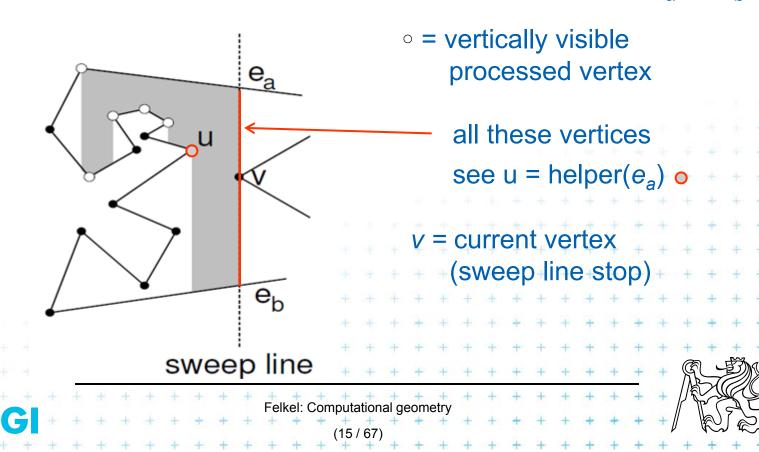
Event processing

 Six event types based on local structure of edges around vertex v

Helper – definition

$helper(e_a)$

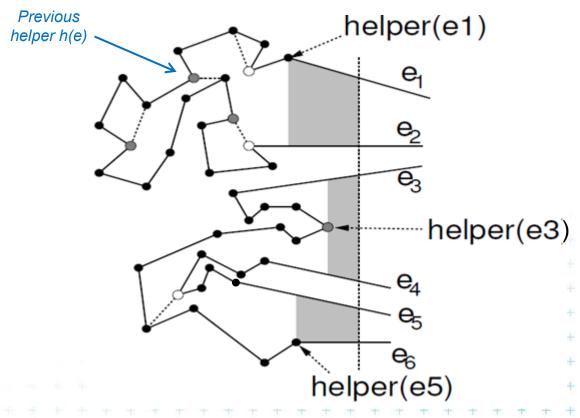
= the rightmost vertically visible processed vertex u below edge e_a on polygonal chain between edges e_a & e_b is visible to every point along the sweep line between e_a & e_b



Helper

$helper(e_a)$

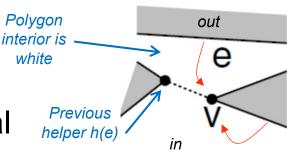
is defined only for edges intersected by the sweep line



Six event types of vertex v

1. Split vertex

Find edge e above v,
 connect e with helper(e) by diagonal

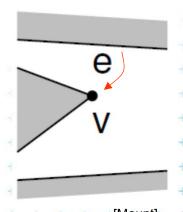


- Add 2 new edges incident to v into SL status
- Set new helper(e) = helper(lower edge of these two) = v

2. Merge vertex

- Find two edges incident with v in SL status
- Delete both from SL status
- Let e is edge immediately above v
- Make helper(e) = v

(Interior angle >180° for both – split & merge vertices)



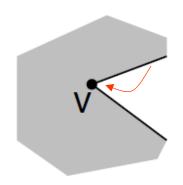
Six event types of vertex v

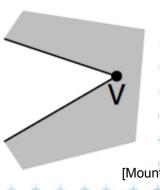
3. Start vertex

- Both incident edges lie right from v
- But interior angle <180°
- Insert both edges to SL status
- Set helper(upper edge) = v

4. End vertex

- Both incident edges lie left from v
- But interior angle <180°
- Delete both edges from SL status
- No helper set we are out of the polygon





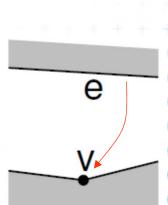
Six event types of vertex v

5. Upper chain-vertex

- one side is to the left, one side to the right, interior is below
- replace the left edge with the right edge in SL status
- Make v helper of the new (upper) edge

6. Lower chain-vertex

- one side is to the left, one side to the right, interior is above
- replace the left edge with the right edge in SL status
- Make v helper of the edge e above

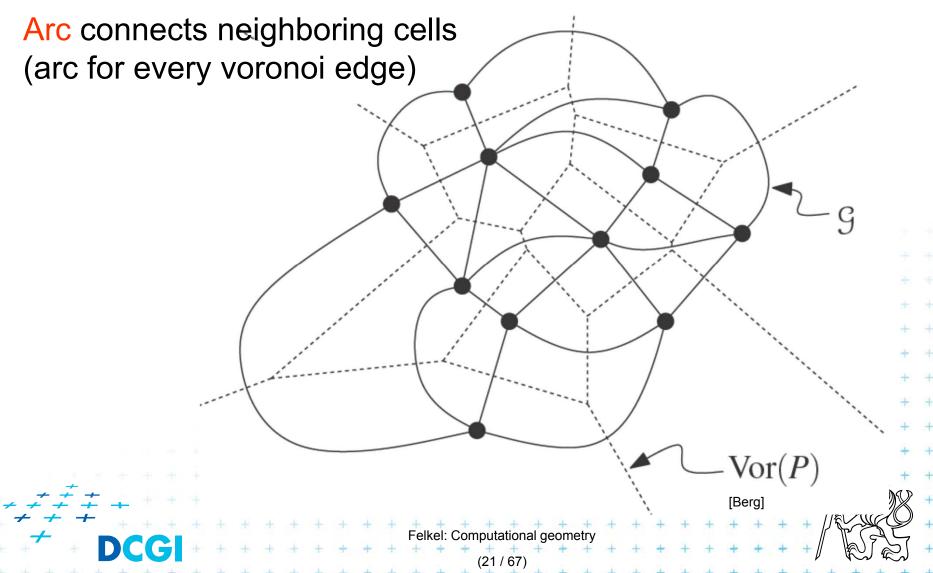


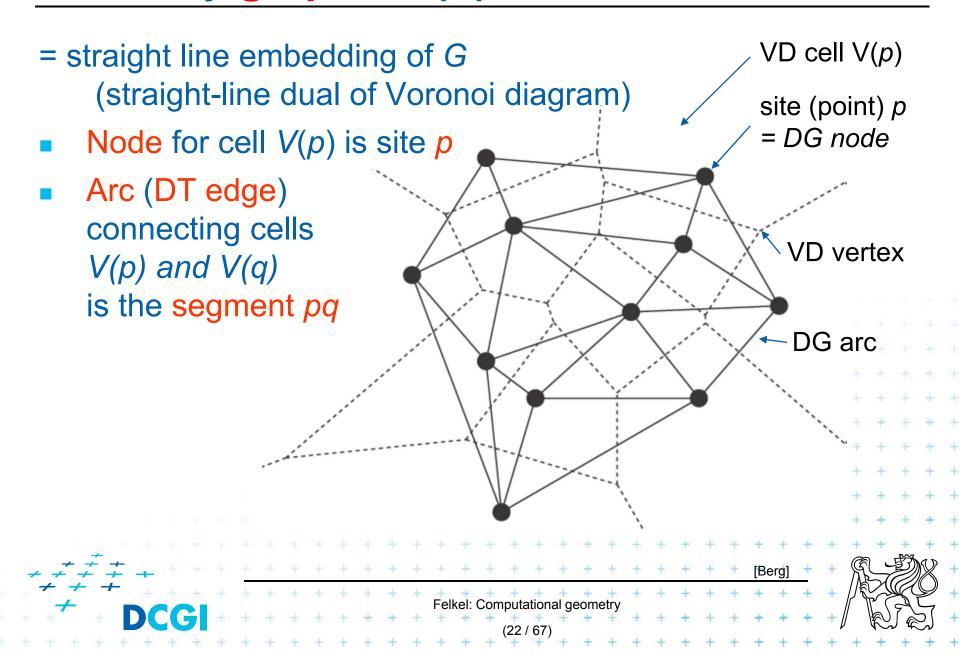
Polygon subdivision complexity

- Simple polygon with n vertices can be partitioned into x-monotone polygons in
 - $O(n \log n)$ time (n steps of SL, log n search each)
 - O(n) storage

Dual graph G for a Voronoi diagram

Graph G: Node for each Voronoi-diagram cell $V(p) \sim VD$ site p





Delaunay graph and Delaunay triangulation

Delaunay graph DG(P) has convex polygonal faces

(with number of vertices ≥3, equal to the degree of Voronoi vertex)

Delaunay triangulation DT(P)

= Delaunay graph for sites in general position

- No four sites on a circle
- Faces are triangles (Voronoi vertices have degree = 3)
- DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position

Triangulate larger faces – such triangulation is not

Felkel: Computational geometr

[Berg]

Circumcircle property

- The circumcircle of any triangle in DT is empty (no sites)
 Proof: It's center is the Voronoi vertex
- Three points a,b,c are vertices of the same face of DG(P) iff circle through a,b,c contains no point of P in its interior

Empty circle property and legal edge

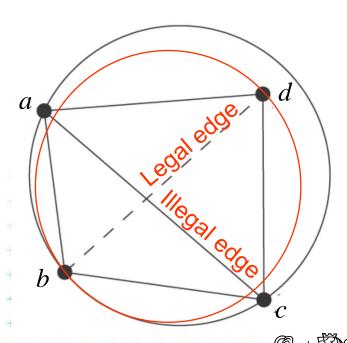
Two points a,b form an edge of DG(P) – it is a legal edge iff \exists closed disc with a,b on its boundary that contains no other point of P in its interior ... disc minimal diameter = dist(a,b)

Closest pair property

The closest pair of points in P are neighbors in DT(P)

Delaunay triangulation properties

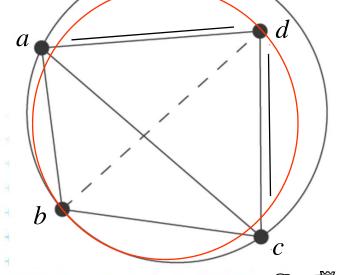
- DT edges do not intersect
- Triangulation T is legal, iff T is a Delaunay triangulation (i.e., if it does not contain illegal edges)
- Edge that was legal before may become illegal if one of the triangles incident to it changes
- In convex quadrilateral abcd (abcd do not lie on common circle) exactly one of ac, bd is an illegal edge
 - = principle of edge flip operation



Edge flip operation

Edge flip

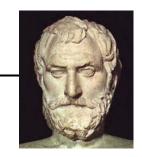
- = a local operation, that increases the angle vector
- Given two adjacent triangles △abc and △cda such that their union forms a convex quadrilateral, the edge flip operation replaces the diagonal ac with bd.



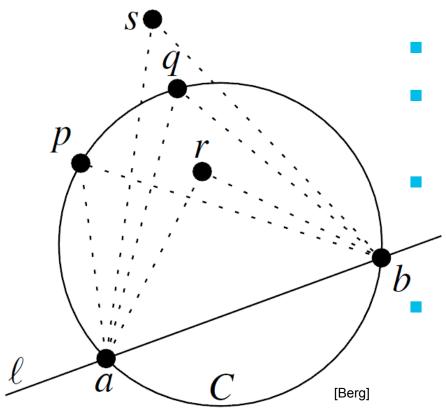
Delaunay triangulation

- Let T be a triangulation with m triangles (and 3m angles)
- Angle-vector
 - = non-decreasing ordered sequence ($\alpha_1, \alpha_2, \ldots, \alpha_{3m}$) inner angles of triangles, $\alpha_i \leq \alpha_j$, for i < j
- Delaunay triangulation has the lexicographically largest angle sequence
 - It maximizes the minimal angle (the first angle in angle-vector)
 - It maximizes the second minimal angle, ...
 - It maximizes all angles
 - It is an angle optimal triangulation

Thales's theorem (624-546 BC)



Respective Central Angle Theorem



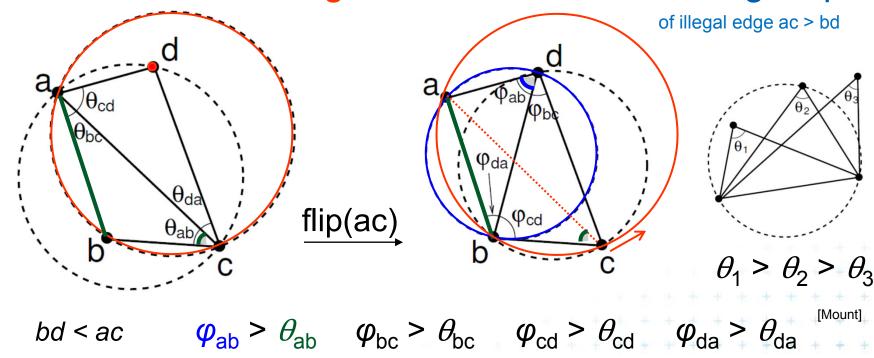
- Let C = circle,
 - l =line intersecting C in points a, b
 - p,q,r,s = points on the same side of l
 - p,q on C, r is in, s is out
 - Then for the angles holds:

$$\triangleleft arb > \triangleleft apb = \triangleleft aqb > \triangleleft asb$$

http://www.mathopenref.com/arccentralangletheorem.html

Edge flip of illegal edge and angle vector

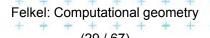
The minimum angle increases after the edge flip



=> After limited number of edge flips

Terminate with lexicographically maximum triangulation

It satisfies the empty circle condition => Delauney T



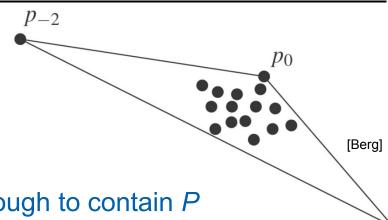
Incremental algorithm principle

- 1. Create a large triangle containing all points (to avoid problems with unbounded cells)
 - must be larger than the largest circle through 3 points
 - will be discarded at the end
- 2. Insert the points in random order
 - Find triangle with inserted point p
 - Add edges to its vertices (these new edges are correct)
 - Check correctness of the old edges (triangles)
 "around p" and legalize (flip) potentially illegal edges
- 3. Discard the large triangle and incident edges

Incremental algorithm in detail

DelaunayTriangulation(P)

Input: Set *P* of *n* points in the plane *Output:* A Delaunay triangulation *T* of *P*



- 1. Let p_{-2} , p_{-1} , p_0 form a triangle large enough to contain P
- 2. Initialize T as the triangulation consisting a single triangle $p_{-2}p_{-1}p_0$ p_0
- 3. Compute random permutation p_1, p_2, \ldots, p_n of $P \setminus \{p_0\}$
- **4.** for r = 1 to n do
- 5. $T = Insert(p_r, T)$
- 6. Discard p_{-1} , p_{-2} , p_{-3} with all incident edges from T
- 7. return T

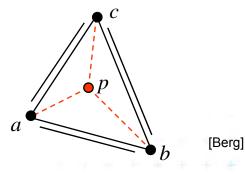
Incremental algorithm – insertion of a point

Insert(p, T)

Input: Point *p* being inserted into triangulation *T*

Output: Correct Delaunay triangulation after insertion of p

- 1. Find a triangle $abc \in T$ containing p
- 2. if p lies in the interior of abc then
- 3. Insert edges *pa, pb, pc* into triangulation *T* (splitting *abc* into 3 triangles *pab, pbc, pca*)
- 4. LegalizeEdge(p, ab, T)
- 5. LegalizeEdge(p, bc, T)
- 6. LegalizeEdge(p, ca, T)
- 7. else // p lies on the edge of abc, say ab, point d is right from edge ab
- 8. Remove ab and insert edges pa, pb, pc, pd into triangulation T (splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
- 9. LegalizeEdge(p, ab, T)
- 10. LegalizeEdge(p, bc, T)
- 11. LegalizeEdge(p, cd, T)
- 12. LegalizeEdge(p, da, T)
- 13. return T



Incremental algorithm - edge legalization

LegalizeEdge(p, ab, T)

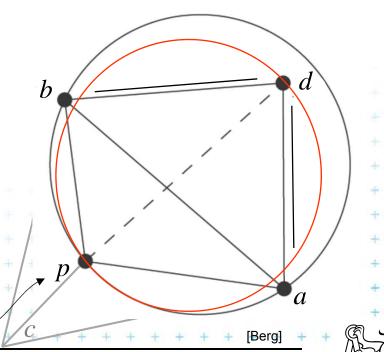
Input: Edge *ab* being checked after insertion of point *p* to triangulation *T Output:* Delaunay triangulation of $p \cup T$

- 1. if(ab is edge on the exterior face) return
- 2. let *d* be the vertex to the right of edge *ab*
- 3. if (inCircle(p, a, d, b)) // d is in the circle around $pab \Rightarrow d$ is illegal
- 4. Flip edge *ab* for *pd*
- 5. LegalizeEdge(p, ad, T)
- 6. LegalizeEdge(p, db, T)

Insertion of *p* may make edges *ab*, *bc* & *ca* illegal (circle around *pab* will contain point *d*)

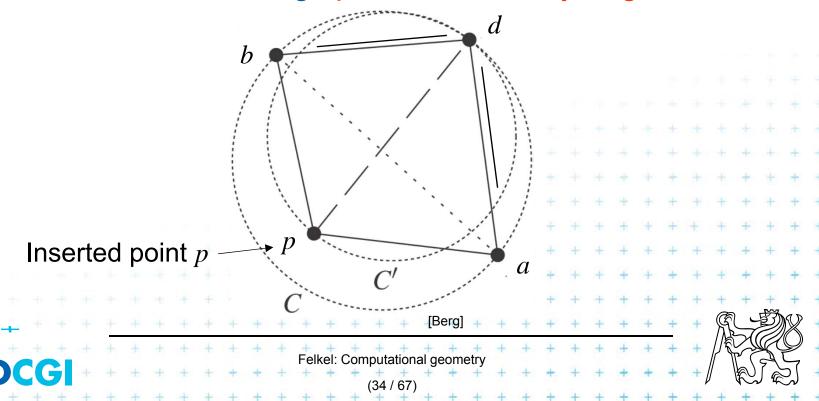
After edge flip, the edge *pd* will be legal (the circumcircles of the resulting triangles *pdb*, and *pad* will bee empty)

We must check and possibly flip edges ad, db

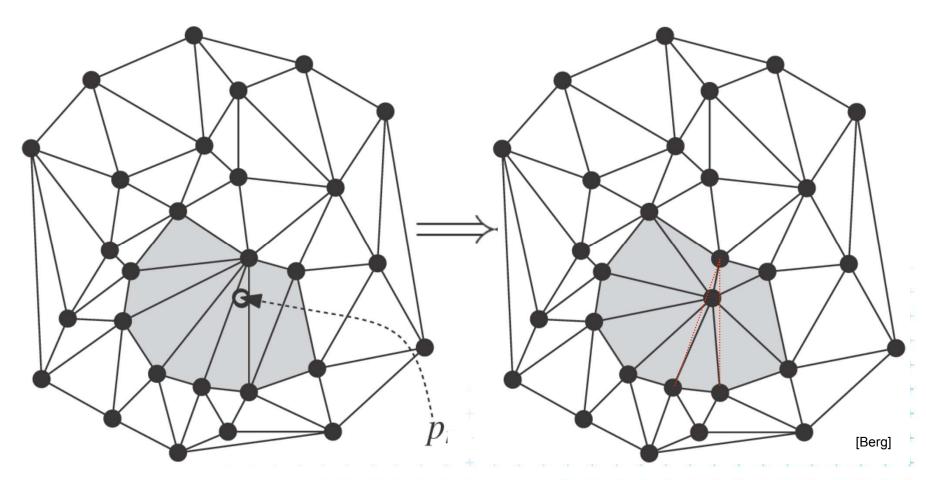


Correctness of edge flip of illegal edge

- Assume point p is in C (it violates DT criteria for adb)
- adb was a triangle of DT => C was an empty circle
- Create circle C' trough point p, C' is inscribed to C, C'⊂ C
 - => C' is also an empty circle
 - => new edge pd is a Delaunay edge

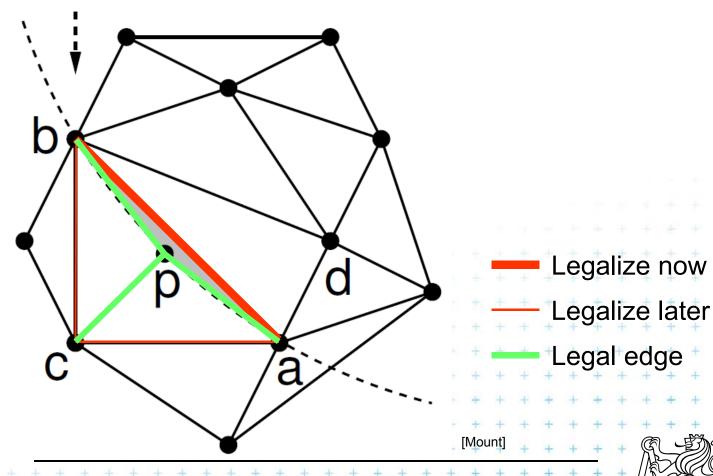


DT- point insert and mesh legalization

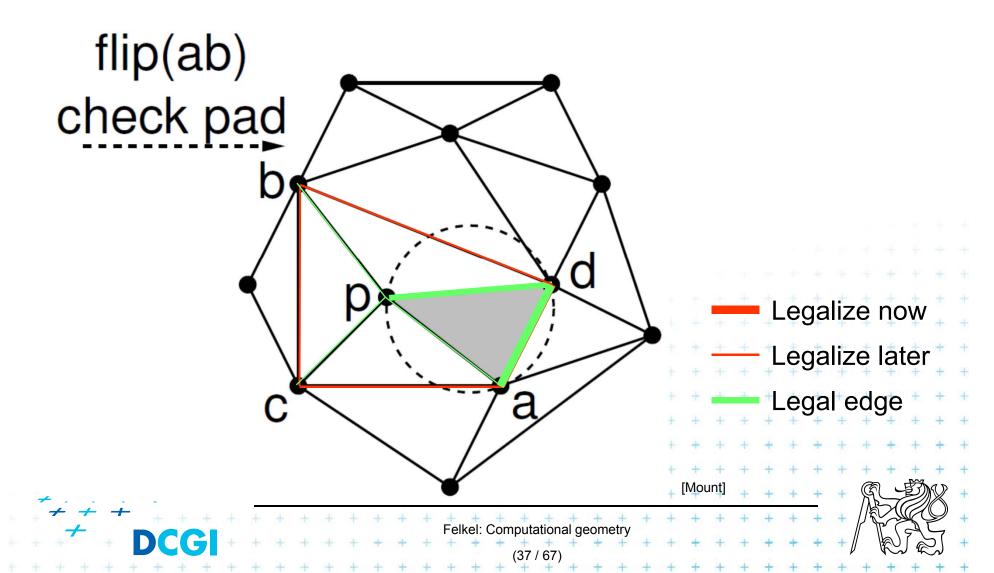


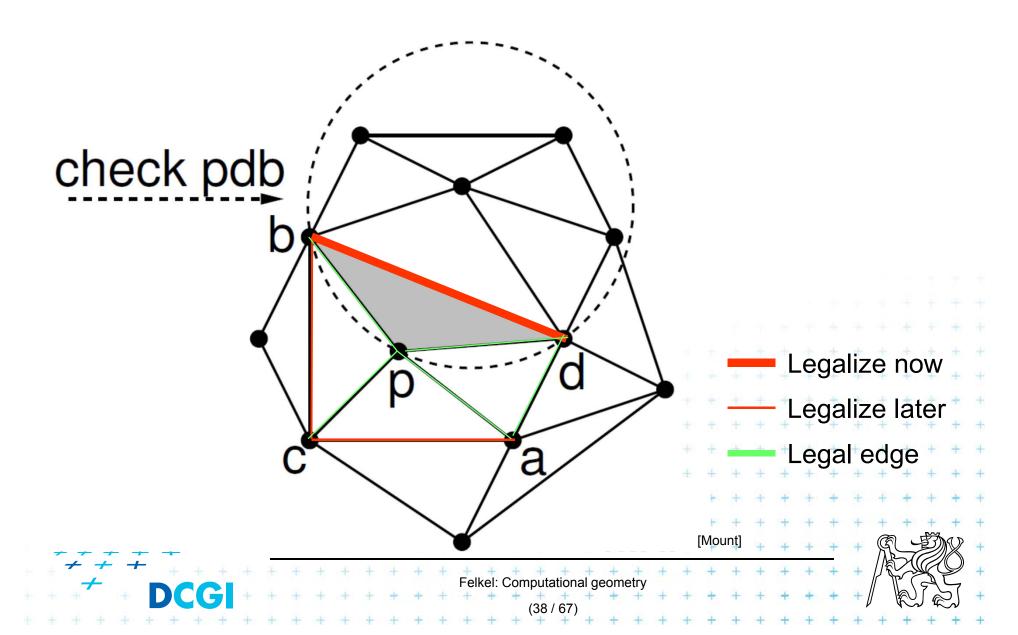
Every new edge created due to insertion of p will be incident to p

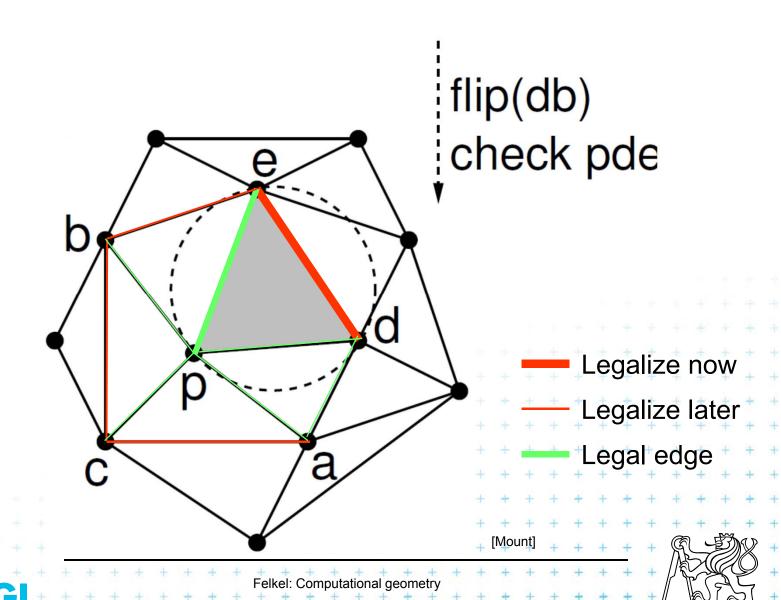
Delaunay triangulation – other point insert

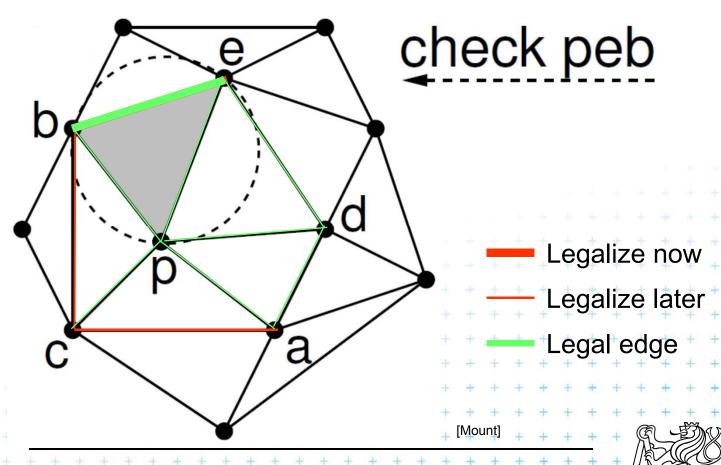


Felkel: Computational geometry

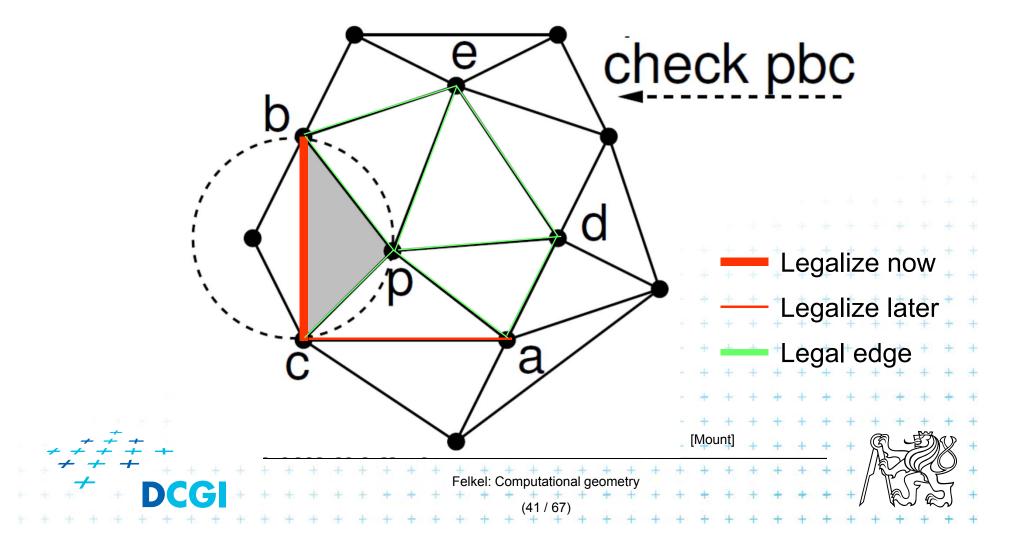


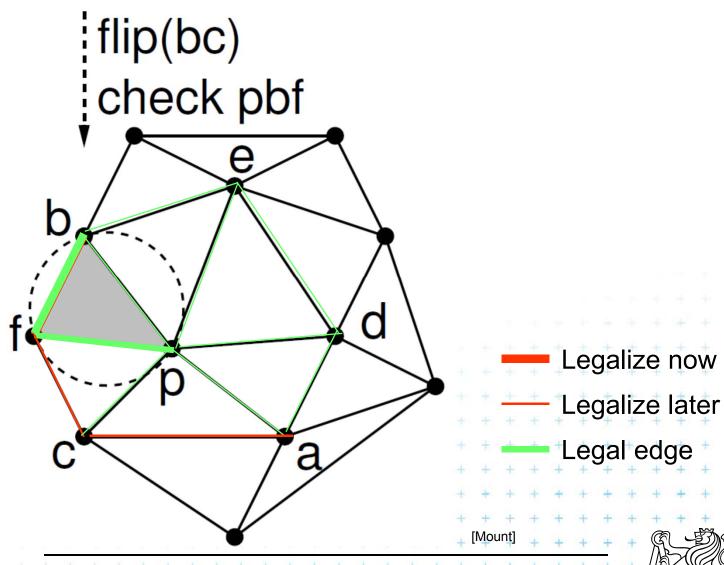






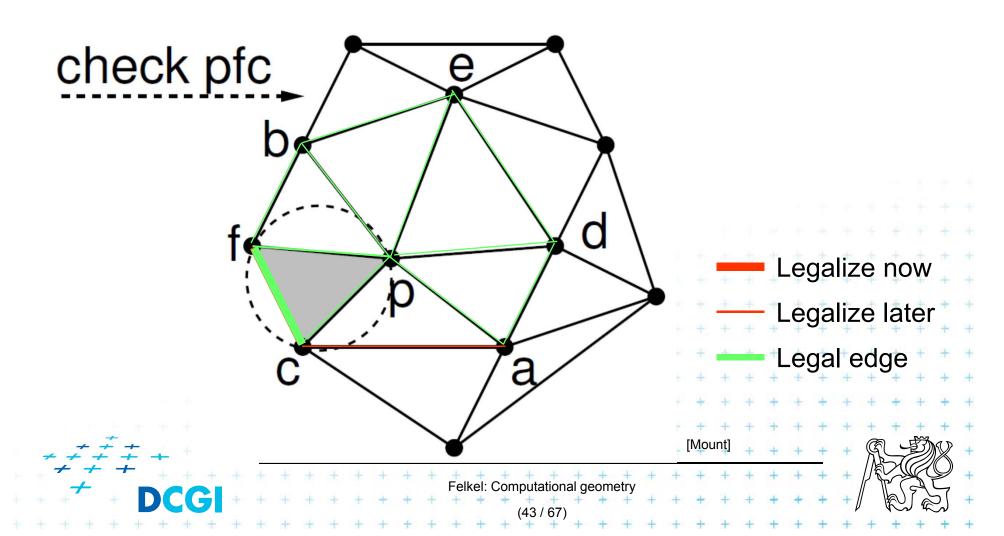
Felkel: Computational geometry

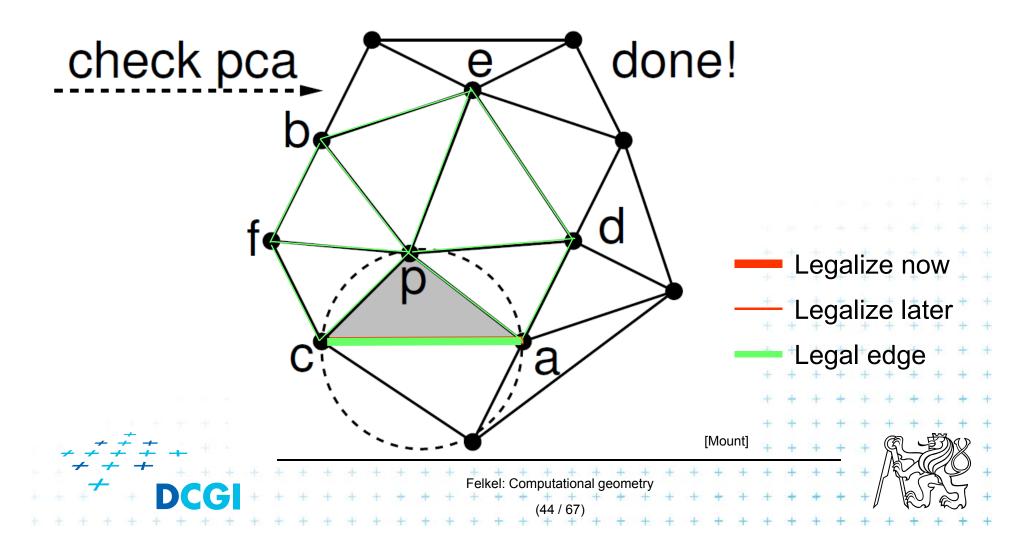




≠≠≠± → DCGI

Felkel: Computational geometry





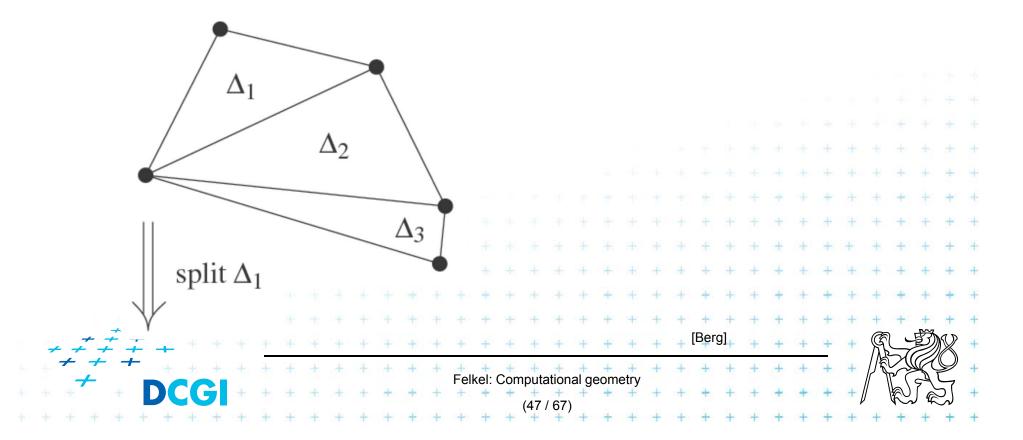
Correctness of the algorithm

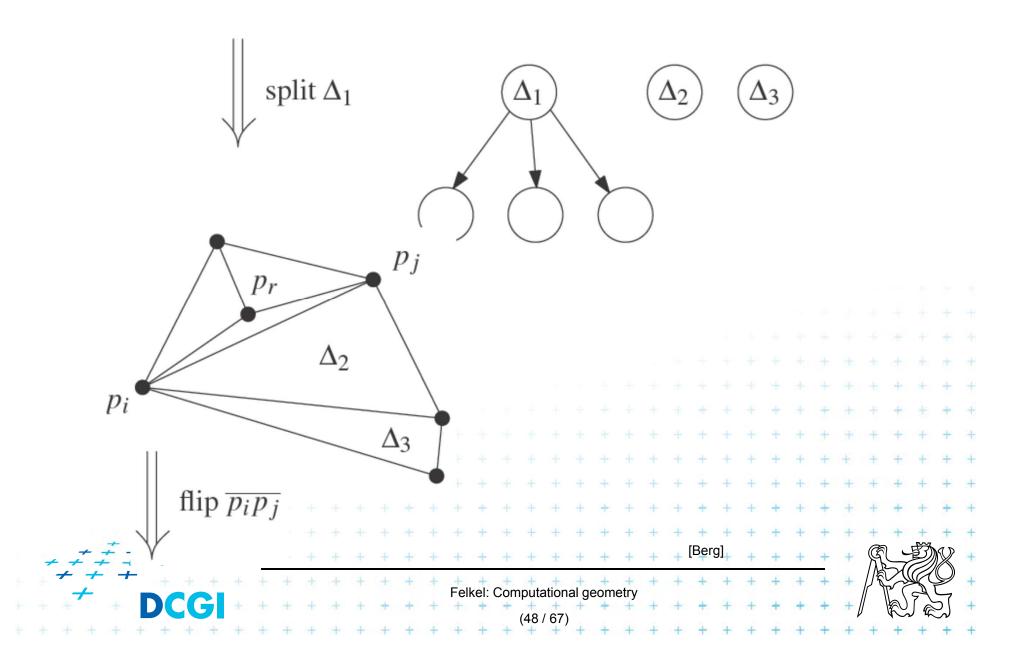
- Every new edge (created due to insertion of p)
 - is incident to p
 - must be legal=> no need to test them
- Edge can only become illegal if one of its incident triangle changes
 - Algorithm tests any edge that may become illegalthe algorithm is correct
- Every edge flip makes the angle-vector larger=> algorithm can never get into infinite loop

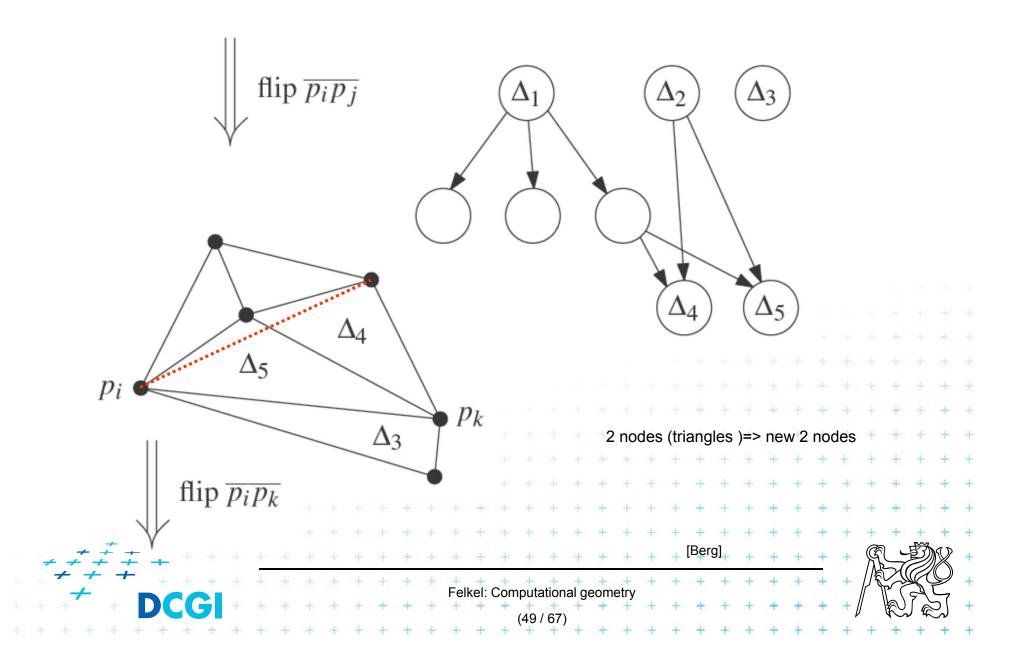
- For finding a triangle abc ∈ T containing p
 - Leaves for active (current) triangles
 - Internal nodes for destroyed triangles
 - Links to new triangles
- Search p: start in root (initial triangle)
 - In each inner node of T:
 - Check all children (max three)
 - Descend to child containing p

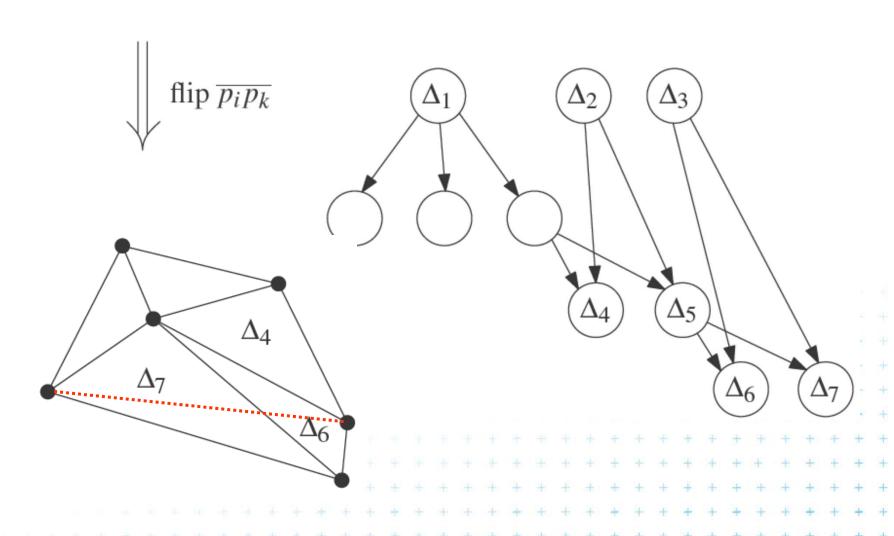
Simplified

- it should contain the root node





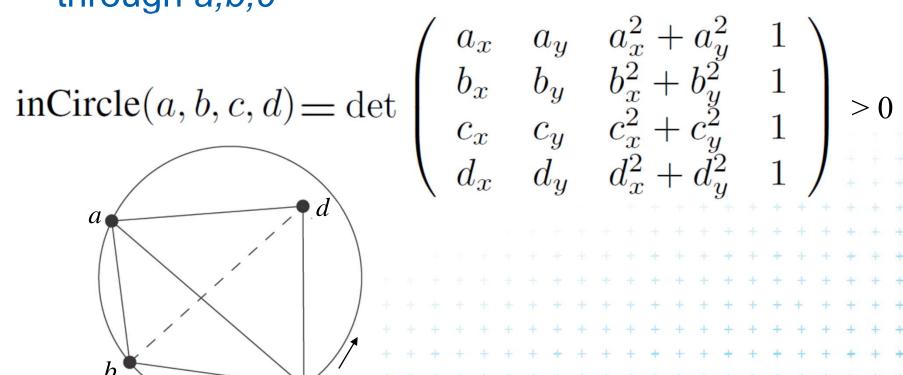




[Berg]

InCircle test

- a,b,c are counterclockwise in the plane
- Test, if d lies to the left of the oriented circle through a,b,c



Felkel: Computational g

Creation of the initial triangle

- For given points set P
- Initial triangle $p_{-2}p_{-1}p_0$
 - Must contain all points of P
 - Must not be (none of its points) in any circle defined by non-collinear points of P

- p_{-2} = lies on I_{-2} as far left that p_{-2} lies outside every circle
- p_{-1} = lies on I_{-1} as far right that p_{-1} lies outside every circle defined by 3 non-collinear points of P
- Symbolical tests with this triangle => p_{-1} and p_{-2} always

 p_{-1}

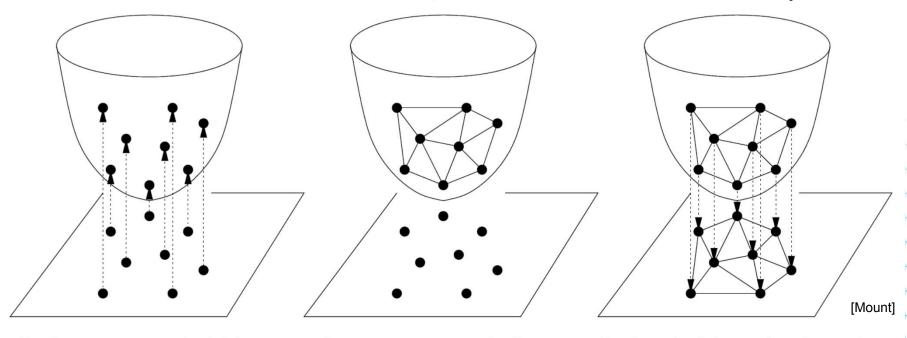
[Mount]

Complexity of incremental DT algorithm

- Delaunay triangulation of a set P in the plane can be computed in
 - O(n log n) expected time
 - using O(n) storage
- For details see [Berg, Section 9.4]

Delaunay triangulations and Convex hulls

- Delaunay triangulation in R^d can be computed as part of the convex hull in R^{d+1}
- 2D: Connection is the paraboloid: $z = x^2 + y^2$



Project onto paraboloid.

Compute convex hull.

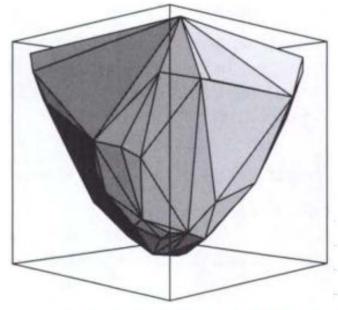
Project hull faces back to plane.

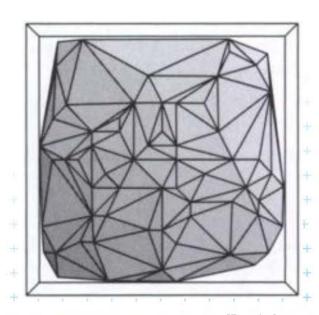
Vertical projection of points to paraboloid

Vertical projection of 2D point to paraboloid in 3D

$$(x, y) \rightarrow (x, y, x^2 + y^2)$$

- Lower convex hull
 - = portion of CH visible from $z = -\infty$

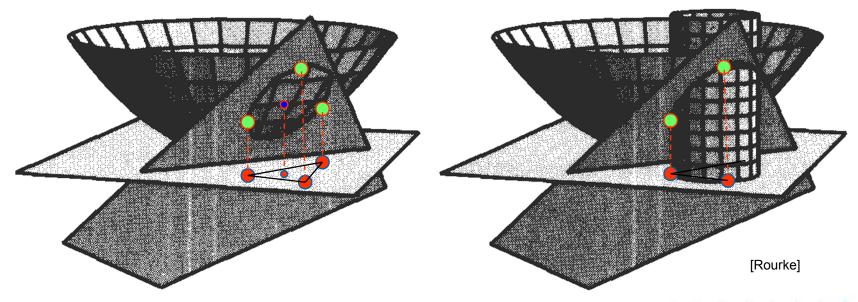




Relation between CH and DT

- Delaunay condition (2D) Points $p,q,r \in S$ form a Delaunay triangle **iff** the circumcircle of p,q,r is empty (contains no point)
- Convex hull condition (3D) Points $p',q',r' \in S'$ form a face of CH(S') iff the plane passing through p',q',r' is supporting S'
 - all other points lie to one side of the plane
 - plane passing through p',q',r' is supporting hyperplane of the convex hull CH(S')

Relation between CH and DT



- 4 distinct points p,q,r,s in the plane, and let p', q', r', s' be their respective projections onto the paraboloid, $z = x^2 + y^2$.
- The point s lies within the circumcircle of pqr iff s' lies on the lower side of the plane passing through p', q', r'.

Tangent plane to paraboloid

- Non-vertical tangent plane through $(a, b, a^2 + b^2)$
- Paraboloid $z = x^2 + y^2$
- Derivation at this point

$$\frac{\partial z}{\partial x} = 2x \qquad \frac{\partial z}{\partial y} = 2y$$

- Evaluates to 2a and 2b
- Plane: $z = 2ax + 2by + \gamma$ $a^2 + b^2 = 2aa + 2bb + \gamma$

 $\gamma = -(a^2 + b^2)$

- Tangent plane through point (a,b,a^2+b^2)

$$z = 2ax + 2by - (a^2 + b^2)$$

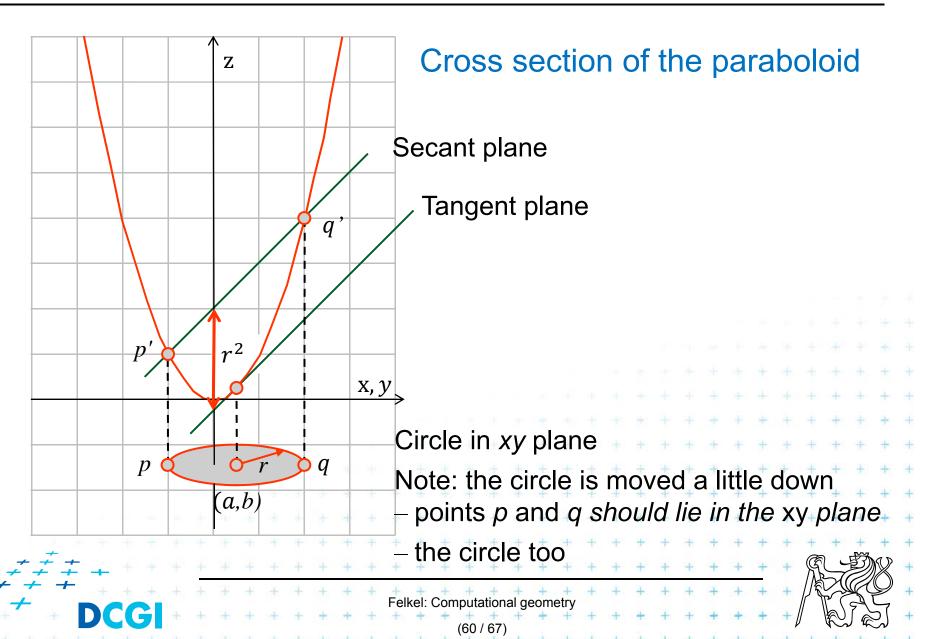
[Mount]

Plane intersecting the paraboloid

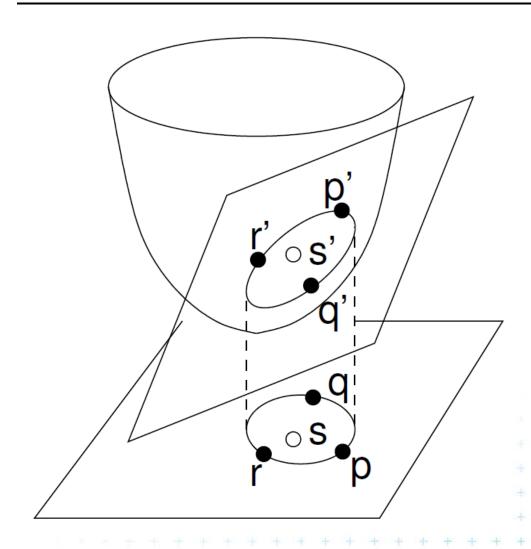
- Non-vertical tangent plane through $(a, b, a^2 + b^2)$ $z = 2ax + 2by - (a^2 + b^2)$
- Shift this plane r^2 upwards -> secant plane intersects the paraboloid in an ellipse in 3D $z = 2ax + 2by (a^2 + b^2) + r^2$
- Eliminate z (project to 2D) $z = x^2 + y^2$ $x^2 + y^2 = 2ax + 2by - (a^2 + b^2) + r^2$
- This is a circle projected to 2D with center (a, b):

$$(x - a^2) + (y - b^2) = r^2$$

Tangent and secant planes



Secant plane defined by three points



Test inCircle – meaning in 3D

- Points p,q,r are counterclockwise in the plane
- Test, if s lies in the circumcircle of $\triangle pqr$ is equal to
 - = test, weather s' lies within a lower half space of the plane passing through p',q',r' (3D)
 - = test, if quadruple p',q',r',s' is positively oriented (3D)
 - = test, if *s lies* to the left of the oriented circle through *abc* (2D)

$$in(p,q,r,s) = \det \begin{pmatrix} p_x & p_y & p_x^2 + p_y^2 & 1\\ q_x & q_y & q_x^2 + q_y^2 & 1\\ r_x & r_y & r_x^2 + r_y^2 & 1\\ s_x & s_y & s_x^2 + s_y^2 & 1 \end{pmatrix} > 0.$$

[Mount]+

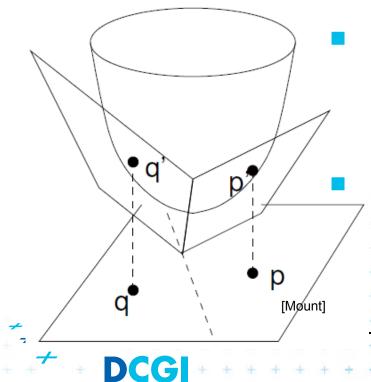
An the Voronoi diagram?

- VD and DT are dual structures
- Points and lines in the plane are dual to points and planes in 3D space
- VD of points in the plane can be transformed to intersection of halfspaces in 3D space

Voronoi diagram as upper envelope in Rd+1

- For each point p = (a, b) a tangent plane to the paraboloid is $z = 2ax + 2by (a^2 + b^2) + r^2$
- $H^+(p)$ is the set of points above this plane

$$H^+(p) = \{(x, y, z) \mid z \ge 2ax + 2by - (a^2 + b^2) + r^2\}$$



VD of points in the plane can be computed as intersection of halfspaces $H^+(p_i)$

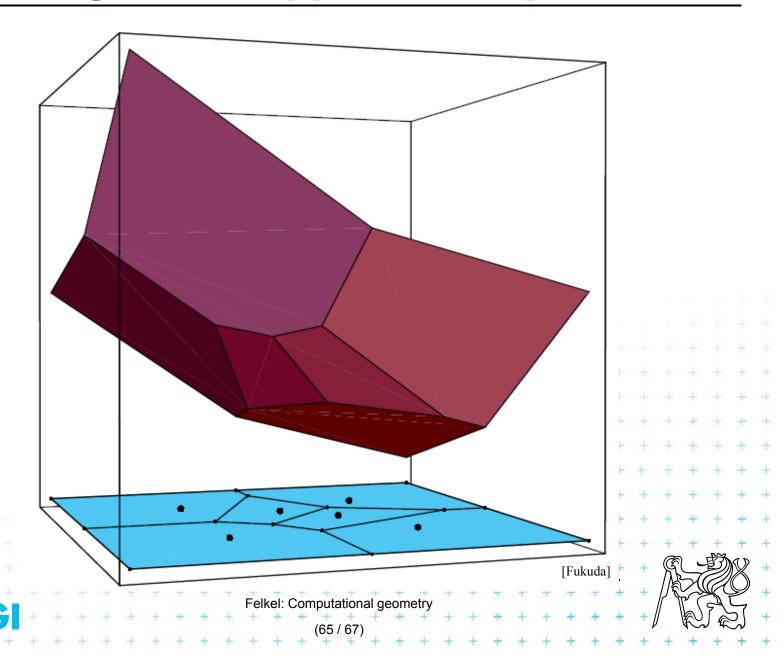
This intersection of halfspaces

- = unbounded convex polyhedron
- = upper envelope of halfspaces

 $H^+(p_i)$

Felkel: Computational geometry

Voronoi diagram as upper envelope in 3D



Derivation of projected Voronoi edge

2 points: p = (a, b) and q = (c, d) in the plane $z = 2ax + 2by - (a^2 + b^2)$ Tangent planes $z = 2cx + 2dy - (c^2 + d^2)$ to paraboloid

Intersect the planes, project onto xy (eliminate z)

$$x(2a-2c) + y(2b-2d) = (a^2 - c^2) + (b^2 - d^2)$$

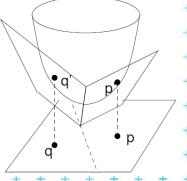
ullet This line passes through midpoint between p and q

$$\frac{a+c}{2}(2a-2c) + \frac{b+d}{2}(2b-2d) = (a^2-c^2) + (b^2-d^2)$$

It is perpendicular bisector with slope

$$-(a-c)/(b-d)$$

Felkel: Computational geometry



References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14, and 30.
 - http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
- [Rourke] Joseph O'Rourke: .: Computational Geometry in C, Cambridge University Press, 1993, ISBN 0-521- 44592-2 http://maven.smith.edu/~orourke/books/compgeom.html
- [Fukuda] Komei Fukuda: Frequently Asked Questions in Polyhedral Computation. Version June 18, 2004
 http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html

