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Talk overview

= Polygon triangulation
— Monotone polygon triangulation
— Monotonization of non-monotone polygon

= Delaunay triangulation (DT) of points
— Input: set of 2D points
— Properties
— Incremental Algorithm

— Relation of DT in 2D and lower envelope (CH) in 3D
and
relation of VD in 2D to upper envelope in 3D
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Polygon triangulation problem

= Triangulation (in general)
= subdividing a spatial domain into simplices

= Application
— decomposition of complex shapes into simpler shapes
— art gallery problem (how many cameras and where)

= We will discuss %
— a simple polygon triangulation \
— without demand on triangle shapes

= Complexity of polygon triangulation

— O(n) alg. exists [Chazelle91], but it is too complicated

. = practical algorithms run in O(n log n) %
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Terminology

Simple polygon y \:i

= region enclosed by a closed polygonal chain that
does not intersect itself

Visible points

= two points on the boundary are visible if the
interior of the line segment joining them lies
entirely in the interior of the polygon

Diagonal

= line segment joining any pair of visible vertices
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Terminology

= A polygonal chain C is strictly monotone with

respect to line L, if any line orthogonal to L Jy
intersects C in at most one point

= A chain C is monotone with respect to line L, if any
line orthogonal to L intersects C in at most one )Y\
connected component (point, line segment,...)

= Polygon P is monotone with respect to line L, if its
boundary (bnd(P), dP) can be split into two chains,
each of which is monotone with respect to L
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Terminology

= Horizontally monotone polygon
= monotone with respect to x-axis
— Can be tested in O(n)
— Find leftmost and rightmost point in O(n)
— Split boundary to upper and lower chain

— Walk left to right, verlfylng that x-coord are non-
decreasing

e X—monotone polygon Mount]
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Terminology

= Every simple polygon can be triangulated

= Simple polygon with n vertices consists of
— exactly n-2 triangles
— exactly n-3 diagonals

— Each diagonal is added once
=> 0O(n) sweep line algorithm exist

Proof by induction

ANNVAN

n =3 => 0 diagonal n =4 =>1 diagonal n:=n+1 =>n+1-3 diagonals
n+ 1 =7 =>4 diagonals)
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Simple polygon triangulation

= Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)
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2. Triangulation of the monotone polygon

= Sweep left to right

= [riangulate everything you can by adding
diagonals between visible points

= Remove triangulated region from further
consideration — mark as DONE

o : : To stack [Mount]
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Triangulation of the monotone polygon

from stack

1

from stack

1

to stack
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Main invariant of the untriangulated region

Main invariant

= Let v, be the vertex being just processed

= The untrlangulated region left of v; consists of |
two x-monotone chains (upper and lower ’

= Each chain has at least one edge

= Ifit has more than one edge U
— these edges form a reflex chain V. :

= sequence of vertices =1 o
with interior angle > 180° Initial invariant

= Left vertex of the last added diagonal is u
= Vertices between u and v, are waiting in the stack
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Triangulation cases

= Case 1: v, lies on the opposite chain
— Add diagonals from next(u) to v,
— Set u = v,,. Last diagonal (invariant) is v,v,

= Case 2: vis on the same chain as v,

a) walk back, adding diagonals joining v, to prior vertices
until the angle becomes > 180° or u is reached - pop)

b) push to stack

Viii | \ |

\ .

i ! o '
Case 1 Case 2a Case 2b

)
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1. Polygon subdivision into monotone pieces

= X-monotonicity breaks the polygon in vertices with
edges directed both left or both right

S

= [he monotone polygons parts are separated by
the splitting diagonals (joining vertex and helper)

o T
=Y

[Mount]

- Splitting diagonals Monotone decomposition %
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Data structures for subdivision

s Events
— Endpoints of edges, known from the beginning
— Can be stored in sorted list — no priority queue

= Sweep status
— List of edges intersecting sweep line (top to bottom)
— Stored in O(log n) time dictionary (like balanced tree)

= Event processing

— Six event types based on local structure of edges
around vertex v
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Helper — definition

helper(e,)
= the rightmost vertically visible processed vertex u
below edge e, on polygonal chain between edges e, & e,

IS visible to every point along the sweep line between e, & e,

o = vertically visible
processed vertex

u |° all these vertices
< see u = helper(e,) o

v = current vertex

- (sweep line stop)
- o

- sweep line
s A =~ ==
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Helper

helper(e,)
Is defined only for edges intersected by the sweep line

Previous .. ht—3-|per(e1 )

helper h(e) \

. — helper(e-g_)

helper(e5)
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Six event types of vertex v

Polygon out

1 . Spllt VerteX interior is —_

F. d d b white K e
— FInd edge e above Vv, :
g Previous } \g

connect e with helper(e) by diagonal ... .
— Add 2 new edges incident to v into SL status
— Set new helper(e) = helper(lower edge of these two) = v

2. Merge vertex
— Find two edges incident with v in SL status e)
— Delete both from SL status >V
— Let e is edge immediately above v
— Make helper(e) = v Mount
(Interior angle >180° for both — split & merge vertices)
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Six event types of vertex v

3. Start vertex

— Both incident edges lie right from v —
— But interior angle <180° V<

— Insert both edges to SL status
— Set helper(upper edge) = v

4. End vertex

— Both incident edges lie left from v

— But interior angle <180° v
— Delete both edges from SL status

— No helper set — we are out of the polygon
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Six event types of vertex v

5. Upper chain-vertex

— one side is to the left, one side to the right,
Interior is below

— replace the left edge with the right edge
in SL status

— Make v helper of the new (upper) edge

6. Lower chain-vertex

— one side is to the left, one side to the right,
Interior is above

— replace the left edge with the right edge
in SL status

_ .— Make v helper of the edge e above
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Polygon subdivision complexity

= Simple polygon with n vertices can be partitioned
iInto x-monotone polygons in
— O(nlog n)time  (n steps of SL, log n search each)
— O(n) storage
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Dual graph G for a Voronoi diagram

Graph G: Node for each Voronoi-diagram cell V(p) ~ VD site p

Arc connects neighboring cells
(arc for every voronoi edge)
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Delaun ay grap h DG (P) [Gopuc Hukonaesuy [emnoHe]

= straight line embedding of G VD cell V(p)
(straight-line dual of Voronoi diagram) site (point) p

= Node for cell V(p) is site p = DG node

= Arc (DT edge)
connecting cells

V(p) and V(q)
Is the segment pq

_____
__________
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Delaunay graph and Delaunay triangulation

= Delaunay graph DG(P) has convex polygonal faces
(with number of vertices =23, equal
to the degree of Voronoi vertex)

= Delaunay triangulation DT(P)
= Delaunay graph for sites in
general position
— No four sites on a circle
— Faces are triangles (Voronoi vertices have degree = 3)
— DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position
— Triangulate larger faces — such triangulation is not

= + -
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Delaunay triangulation properties 1/2

Circumcircle property

= The circumcircle of any triangle in DT is empty (no sites)
Proof: It's center is the Voronoi vertex

= Three points a,b,c are vertices of the same face of DG(P)
Iff circle through a,b,c contains no point of P in its interior

Empty circle property and legal edge

= [wo points a,b form an edge of DG(P) — it is a legal edge
Iff I closed disc with a,b on its boundary that contains
no other point of P in its interior ... disc minimal diameter = dist(a,b)

Closest pair property
= The closest pair of points in P are neighbors in DT(P)
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Delaunay triangulation properties 2/2

= DT edges do not intersect

= [riangulation Tis legal, iff T is a Delaunay triangulation
(i.e., if it does not contain illegal edges)

= Edge that was legal before
may become illegal if one
of the triangles incident to it
changes

= |n convex quadrilateral abcd
(abcd do not lie on common circle)
exactly one of ac, bd
IS an illegal edge
= principle of edge flip operation
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Edge flip operation

Edge flip
= a local operation, that increases the angle vector

= Given two adjacent triangles Aabc and Acda such that
their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.
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Delaunay triangulation

= Let T be a triangulation with m triangles (and 3m angles)
=  Angle-vector

= non-decreasing ordered sequence (o, o, ... , 03,,)
inner angles of triangles, a; < a;, fori <]
= Delaunay triangulation has the lexicographically largest
angle sequence
— It maximizes the minimal angle (the first angle in angle-vector)
— It maximizes the second minimal angle, ...

— It maximizes all angles
— It is an angle optimal triangulation

- —:_ —
S~ A o~ ——
DC GI Felkel: Computational geometry
(27 1 67) .




Thales’'s theorem e

Respective Central Angle Theorem
5o

~
[]
-~
L} -
1
-~
L}

= Let C =circle,

[ =line intersecting C in points
a,b

p,q,7,s = points on the same

side of [
p,gon C, risin, sis out

Then for the angles holds:
Xarb > Xapb = Xaqgb > Xasb

http: //mwww.mathopenr ef.convarccentr alangl etheorem.html
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Edge flip of illegal edge and angle vector

= The minimum angle increases after the edge flip

of illegal edge ac > bd

Pab > eab Pbc > ‘gbc Ped > ‘gcd
=> After limited number of edge flips
— Terminate with lexicographically maximum triangulation

. ~— It satisfies the empty circle condition => Delauney%
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Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)
— must be larger than the largest circle through 3 points
— will be discarded at the end

2. Insert the points in random order
— Find triangle with inserted point p

— Add edges to its vertices
(these new edges are correct)

— Check correctness of the old edges (triangles)
“around p” and legalize (flip) potentially illegal edges

3. Discard the large triangle and incident edges
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Incremental algorithm in detail

p-2

DelaunayTriangulation(P)
Input:  Set P of n points in the plane
Output: A Delaunay triangulation T of P

[Berg]

Let p_,, p_4, P, form a triangle large enough to contain P
Initialize T as the triangulation consisting a single triangle p_p_;pp p_,
Compute random permutation p,, p,, ..., p, of P\ {p,}
forr=1tondo

T'=Insert(p,, T)
Discard p_4, p_p, p_3 with all incident edges from T
return T

NOoOObhWh =
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Incremental algorithm — insertion of a point

Insert(p, T)

Input:  Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p
1. Find a triangle abc T containing p

2. 1If plies in the interior of abc then

3. Insert edges pa, pb, pc into triangulation T /

C

(splitting abc into 3 triangles pab, pbc, pca )
LegalizeEdge( p, ab, T)
LegalizeEdge( p, bc, T) a
LegalizeEdge( p, ca, T) o=y e
else // p lies on the edge of abc, say ab, point d is right from edge ab
Remove ab and insert edges pa, pb, pc, pd into triangulation T
(splitting abc and abd into 4 triangles pad, pdb, pbc, pca )
9. LegalizeEdge( p, ab, T)

10.  LegalizeEdge( p, bc, T) \

11.  LegalizeEdge( p, cd, T) g P
12.  LegalizeEdge( p, da, T) g %
13. return T IS o ':
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Incremental algorithm — edge legalization

LegalizeEdge( p, ab, T)
Input:  Edge ab being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of p UT

1. if( abis edge on the exterior face ) return

2. let d be the vertex to the right of edge ab

3. if(inCircle( p, a, d, b)) //disinthe circle around pab => dis illegal
4, Flip edge ab for pd

) LegalizeEdge( p, ad, T)
6 LegalizeEdge( p, db, T) b

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d )

After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)

We must check and possibly flip edges ad, db /
C

- Inserted point p
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Correctness of edge flip of illegal edge

= Assume point pis in C (it violates DT criteria for adb)
= adb was a triangle of DT => C was an empty circle

= Create circle C’ trough point p, C'is inscribed to C, C'c C
=> C’is also an empty circle
=> new edge pd Is a Delaunay edge

DCGI Felkel: Computational geometry %
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DT- point insert and mesh legalization




Delaunay triangulation — other point insert

insert p
check pab

=== | egalize NnOW

— Legalize later

Legal edge

Sy -~ -
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Delaunay triangulation — other point insert

=== | egalize NnOW

— Legalize later

Legal edge

[Mount]
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Delaunay triangulation — other point insert

- -
- = -

=== | egalize NnOW

— Legalize later

Legal edge

[Mount]
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Delaunay triangulation — other point insert

=== | egalize Nnow

— Legalize later

Legal edge

- [Mount]
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Delaunay triangulation — other point insert

=== | egalize Nnow

— Legalize later

Legal edge

- [Mount]
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Delaunay triangulation — other point insert

=== | egalize NnOwW

— Legalize later

Legal edge

- [Mount]
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Delaunay triangulation — other point insert

flip(bc)

=== | egalize NnOW

— Legalize later

Legal edge

- [Mount]
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Delaunay triangulation — other point insert

=== | egalize NnOW

— Legalize later

Legal edge

[Mount]
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Delaunay triangulation — other point insert

check pca

................ -

=== | egalize NnOwW

— Legalize later

Legal edge

\
\
.

- - [Mount]
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Correctness of the algorithm

= Every new edge (created due to insertion of p)
— Is incident to p
— must be legal
=> no need to test them

= Edge can only become illegal if one of its incident
triangle changes
— Algorithm tests any edge that may become illegal
=> the algorithm is correct

= Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop
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Point location data structure

= Forfinding a triangle abc € T containing p
— Leaves for active (current) triangles
— Internal nodes for destroyed triangles
— Links to new triangles

= Search p: start in root (initial triangle)
— In each inner node of T:
* Check all children (max three)
* Descend to child containing p

o A o~ ==
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Point location data structure

Simplified
- it should contain the root node

— B [Berg]
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Point location data structure

(X

M flip pip;
— [Berg]
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Point location data structure

U/ flip pip;

-
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Point location data structure
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INnCircle test

= a,b,c are counterclockwise in the plane

s Jest, if dlies to the left of the oriented circle
through a,b,c

/ 4y @, a3+ a;
b by bi - bf/
&y Gy €€

\ d. d, d&+d

inCircle(a, b, ¢, d) = det

Felkel: Computational geometry
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Creation of the initial triangle

o o
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For given points set P
Initial triangle p_,p_.p,

— Must contain all points of P

— Must not be (none of its pomts) |
in any circle defined
by non-collinear points of P

|_, = horizontal line above P
[_, = horizontal line below P
p_, = lies on |_, as far left that p_, lies outside every circle

p_, = lies on [_, as far right that p_, lies outside every circle
defined by 3 non-collinear points of P

Symbolical tests with this triangle => p_, and p_, always




Complexity of incremental DT algorithm

= Delaunay triangulation of a set P in the plane can
be computed in

— O(n log n) expected time
— using O(n) storage

= For details see [Berg, Section 9.4]
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Delaunay triangulations and Convex hulls

= Delaunay triangulation in R? can be computed
as part of the convex hull in R*7

= 2D: Connection is the paraboloid: zZ= X + y2

Compute convex hull. Project hull faces back to plane
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Vertical projection of points to paraboloid

= Vertical projection of 2D point to paraboloid in 3D
(% y) = (% y, X" +y?)

s Lower convex hull
= portion of CH visible from Z = —o

Fo+ 4 [Rourke] - i
i | L | 4 'l L e + +
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Relation between CH and DT

= Delaunay condition (2D)
Points p,q,r € S form a Delaunay triangle iff the
(contains no point)

= Convex hull condition (3D)
Points p’,q’,r’ € S’ form a face of CH(S’) iff the
passing through p’,q’,r'is
— all other points lie to one side of the plane

J J J 3

— plane passing through p’,q’,r’ is supporting hyperplane
of the convex hull CH(S’)
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Relation between CH and DT

[Rourke]

= 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be
their respective projections onto the paraboloid, z = x? + y~.

= The point s lies within the circumcircle of pgr iff s’ lies on
the lower side of the plane passing through p’, q’, r.

- =
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Tangent plane to paraboloid

= Non-vertical tangent plane through (a, b, a® + b?)

= Paraboloid z = x2+y?
z=x2+y s /N

= Derivation at this point 2x — =2y

T 2
= Evaluatesto2a and 2b*

/
. Plane: z = 2dx + 2by + ¥ - y = —(a® + b?)

/
a’+b?=2a.a+2b.b+y

= Tangent plane through point{a, b, a’ + bQ)
z = 2ax + 2by — (a? + b?)

= ++: —l_'—_ - [Mount]
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Plane intersecting the paraboloid

= Non-vertical tangent plane through (a, b, a* + b*%)
z = 2ax + 2by — (a? + b?)

= Shift this plane 7% upwards —> secant plane
intersects the paraboloid in an ellipse in 3D

z = 2ax + 2by — (a? + b?)+r?
= Eliminate z (project to 2D) z = x*+y?
x%+y% = 2ax + 2by — (a? + b?)+1r?
= This is a circle projected to 2D with center (@, b):

(x —a®)+(y —b?) =1°

Dol sl Mount]
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Tangent and secant planes

Cross section of the paraboloid

Secant plane

Tangent plane

! Circle in xy plane
P ' 1 Note: the circle is moved a little down
a,b) — points p and q should lie in the xy plane

g — the circle too
DCGI Felkel: Computational geometry |
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Secant plane defined by three points

DA s tMount]
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Test InCircle — meaning in 3D

= Points p,q,r are counterclockwise in the plane

= Test, if slies in the circumcircle of ApQr isequaito

= test, weather s’ lies within a lower half space of the
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’ is positively oriented (3D)

= test, if s lies to the left of the oriented circle through abc

(2D) . .
[ px Py DrtD, 1)
2 . 2 -
. L qu’t’ ny Q;}g B qQ
in(p,q,r,s) = det e Ty 124 7”@2, R 0.
\ Sz Sy S;+s, 1 )

-~ ++—:_ —:_'—_ — [Mount]
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An the Voronol diagram?

= VD and DT are dual structures

= Points and lines in the plane
are dual to
points and planes in 3D space

= VD of points in the plane
can be transformed to
Intersection of halfspaces in 3D space
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Voronoi diagram as upper envelope in R4+

= For each point p= (a, b) a tangent plane to the
paraboloid is  z = 2ax + 2by — (a? + b?)+1r?

= H*(p) is the set of points above this plane
Ht(p) ={(x,y,2) | z = 2ax + 2by — (a® + b?)+7r*

a = VD of points in the plane can be
— computed as intersection of
halfspaces H*(p)

= [his intersection of halfspaces
= unbounded convex polyhedron
= upper envelope of halfspaces -

H*(p)

(P;

Felkel: Computational geometry
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Voronoi diagram as upper envelope in 3D

/
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Derivation of projected Voronoi edge

= 2 points: p = (a,b) and q = (c,d) in the plane

z = 2ax + 2by — (a® + b*) Tangent planes
z=2cx +2dy — (c? +d?) toparaboloid

= Intersect the planes, project onto xy (eliminate z)
x(2a — 2¢) + y(2b — 2d) = (a? — ¢*)+(b* — d?)

= This line passes through midpoint between p and g

L (2a - 20) + 22 (2b — 2d) = (a? — c?)+(b? — d?)
-

= |tis perpendicular bisector with slope
- 2 - —(Cl 3 C)/(b w d) [Mount]
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