CGl

DEPARTMENT OF COMPUTER GRAPHICS AND INTERACTION

TRIANGULATIONS

PETR FELKEL

FEL CTU PRAGUE
felkel@fel.cvut.cz
https://cw.felk.cvut.cz/doku.php/courses/adm39vqg/start

Based on [Berg] and [Mount]

Version from 13.11.2014

Talk overview

= Polygon triangulation
— Monotone polygon triangulation
— Monotonization of non-monotone polygon

= Delaunay triangulation (DT) of points
— Input: set of 2D points
— Properties
— Incremental Algorithm

— Relation of DT in 2D and lower envelope (CH) in 3D
and
relation of VD in 2D to upper envelope in 3D

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(2/67)

Polygon triangulation problem

= Triangulation (in general)
= subdividing a spatial domain into simplices

= Application
— decomposition of complex shapes into simpler shapes
— art gallery problem (how many cameras and where)

= We will discuss %
— a simple polygon triangulation \
— without demand on triangle shapes

= Complexity of polygon triangulation

— O(n) alg. exists [Chazelle91], but it is too complicated

. = practical algorithms run in O(n log n) %
o o Felkel: Computational geometry
DCGI .o -

Terminology

Simple polygon y \:i

= region enclosed by a closed polygonal chain that
does not intersect itself

Visible points

= two points on the boundary are visible if the
interior of the line segment joining them lies
entirely in the interior of the polygon

Diagonal

= line segment joining any pair of visible vertices

- o —f—
e A A == =
> -~ -+ 4
—~ DCGI Felkel: Computational geometry
(4/67) :

Terminology

= A polygonal chain C is strictly monotone with

respect to line L, if any line orthogonal to L Jy
intersects C in at most one point

= A chain C is monotone with respect to line L, if any
line orthogonal to L intersects C in at most one)Y\
connected component (point, line segment,...)

= Polygon P is monotone with respect to line L, if its
boundary (bnd(P), dP) can be split into two chains,
each of which is monotone with respect to L

- S~ =
+++++ t
—~ DCGI Felkel: Computational geometry
(5/67) a0

Terminology

= Horizontally monotone polygon
= monotone with respect to x-axis
— Can be tested in O(n)
— Find leftmost and rightmost point in O(n)
— Split boundary to upper and lower chain

— Walk left to right, verlfylng that x-coord are non-
decreasing

e X—monotone polygon Mount]
+++ +DCGI Felkel: Computational geometry _
(6/67) _ U O I

Terminology

= Every simple polygon can be triangulated

= Simple polygon with n vertices consists of
— exactly n-2 triangles
— exactly n-3 diagonals

— Each diagonal is added once
=> 0O(n) sweep line algorithm exist

Proof by induction

ANNVAN

n =3 => 0 diagonal n =4 =>1 diagonal n:=n+1 =>n+1-3 diagonals
n+ 1 =7 =>4 diagonals)

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(7167)

Simple polygon triangulation

= Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(8/67)

2. Triangulation of the monotone polygon

= Sweep left to right

= [riangulate everything you can by adding
diagonals between visible points

= Remove triangulated region from further
consideration — mark as DONE

o : : To stack [Mount]

- o —f—
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(9767) L X

Triangulation of the monotone polygon

from stack

1

from stack

1

to stack

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(10/67)

Main invariant of the untriangulated region

Main invariant

= Let v, be the vertex being just processed

= The untrlangulated region left of v; consists of |
two x-monotone chains (upper and lower ’

= Each chain has at least one edge

= Ifit has more than one edge U
— these edges form a reflex chain V. :

= sequence of vertices =1 o
with interior angle > 180° Initial invariant

= Left vertex of the last added diagonal is u
= Vertices between u and v, are waiting in the stack

= —:_ -
+++++
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(11/67) L X

Triangulation cases

= Case 1: v, lies on the opposite chain
— Add diagonals from next(u) to v,
— Set u = v,,. Last diagonal (invariant) is v,v,

= Case 2: vis on the same chain as v,

a) walk back, adding diagonals joining v, to prior vertices
until the angle becomes > 180° or u is reached - pop)

b) push to stack

Viii | \ |

\ .

i ! o '
Case 1 Case 2a Case 2b

)
-z e [Mount] v J
—~ DCGI Felkel: Computational geometry /
(12/67)

1. Polygon subdivision into monotone pieces

= X-monotonicity breaks the polygon in vertices with
edges directed both left or both right

S

= [he monotone polygons parts are separated by
the splitting diagonals (joining vertex and helper)

o T
=Y

[Mount]

- Splitting diagonals Monotone decomposition %
-+~ - = 3
-~ Felkel: Computational geometry _
DCGI ooy e

Data structures for subdivision

s Events
— Endpoints of edges, known from the beginning
— Can be stored in sorted list — no priority queue

= Sweep status
— List of edges intersecting sweep line (top to bottom)
— Stored in O(log n) time dictionary (like balanced tree)

= Event processing

— Six event types based on local structure of edges
around vertex v

= : -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(14 /67)

Helper — definition

helper(e,)
= the rightmost vertically visible processed vertex u
below edge e, on polygonal chain between edges e, & e,

IS visible to every point along the sweep line between e, & e,

o = vertically visible
processed vertex

u |° all these vertices
< see u = helper(e,) o

v = current vertex

- (sweep line stop)
- o

- sweep line
s A =~ ==
e i 4
DCGI Felkel: Computational geometry .
(15/67) a

Helper

helper(e,)
Is defined only for edges intersected by the sweep line

Previous .. ht—3-|per(e1)

helper h(e) \

. — helper(e-g_)

helper(e5)

= —:_ -
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
(16 /67) _

Six event types of vertex v

Polygon out

1 . Spllt VerteX interior is —_

F. d d b white K e
— FInd edge e above Vv, :
g Previous } \g

connect e with helper(e) by diagonal
— Add 2 new edges incident to v into SL status
— Set new helper(e) = helper(lower edge of these two) = v

2. Merge vertex
— Find two edges incident with v in SL status e)
— Delete both from SL status >V
— Let e is edge immediately above v
— Make helper(e) = v Mount
(Interior angle >180° for both — split & merge vertices)

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(17 167)

n

Six event types of vertex v

3. Start vertex

— Both incident edges lie right from v —
— But interior angle <180° V<

— Insert both edges to SL status
— Set helper(upper edge) = v

4. End vertex

— Both incident edges lie left from v

— But interior angle <180° v
— Delete both edges from SL status

— No helper set — we are out of the polygon

= : -
+++++
> -~ -+
—/= DCGI Felkel: Computational geometry
(18/67)

[Mount]

Six event types of vertex v

5. Upper chain-vertex

— one side is to the left, one side to the right,
Interior is below

— replace the left edge with the right edge
in SL status

— Make v helper of the new (upper) edge

6. Lower chain-vertex

— one side is to the left, one side to the right,
Interior is above

— replace the left edge with the right edge
in SL status

_ .— Make v helper of the edge e above

< A o~ =~

—/= DCGI Felkel: Computational geometry
(19/67)

Polygon subdivision complexity

= Simple polygon with n vertices can be partitioned
iInto x-monotone polygons in
— O(nlog n)time (n steps of SL, log n search each)
— O(n) storage

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(20/67)

Dual graph G for a Voronoi diagram

Graph G: Node for each Voronoi-diagram cell V(p) ~ VD site p

Arc connects neighboring cells
(arc for every voronoi edge)

- o —f— \)
+++++ ‘\ [Berg]
- -+ -+ ' A
—~ DCGI Felkel: Computational geometry /
(2117867)

Delaun ay grap h DG (P) [Gopuc Hukonaesuy [emnoHe]

= straight line embedding of G VD cell V(p)
(straight-line dual of Voronoi diagram) site (point) p

= Node for cell V(p) is site p = DG node

= Arc (DT edge)
connecting cells

V(p) and V(q)
Is the segment pq

= —:_ -
+++++ [Berg]
> -~ -+ 4
—~ DCGI Felkel: Computational geometry _
(22/67) L X

Delaunay graph and Delaunay triangulation

= Delaunay graph DG(P) has convex polygonal faces
(with number of vertices =23, equal
to the degree of Voronoi vertex)

= Delaunay triangulation DT(P)
= Delaunay graph for sites in
general position
— No four sites on a circle
— Faces are triangles (Voronoi vertices have degree = 3)
— DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position
— Triangulate larger faces — such triangulation is not

= + -
e S =~
7 4 unique
-~ C G Felkel: Computational geometry
D I (23/67) A

[Berg]

Delaunay triangulation properties 1/2

Circumcircle property

= The circumcircle of any triangle in DT is empty (no sites)
Proof: It's center is the Voronoi vertex

= Three points a,b,c are vertices of the same face of DG(P)
Iff circle through a,b,c contains no point of P in its interior

Empty circle property and legal edge

= [wo points a,b form an edge of DG(P) — it is a legal edge
Iff I closed disc with a,b on its boundary that contains
no other point of P in its interior ... disc minimal diameter = dist(a,b)

Closest pair property
= The closest pair of points in P are neighbors in DT(P)

e o o~ ==
—~ DCGI Felkel: Computational geometry
(24 167) a

Delaunay triangulation properties 2/2

= DT edges do not intersect

= [riangulation Tis legal, iff T is a Delaunay triangulation
(i.e., if it does not contain illegal edges)

= Edge that was legal before
may become illegal if one
of the triangles incident to it
changes

= |n convex quadrilateral abcd
(abcd do not lie on common circle)
exactly one of ac, bd
IS an illegal edge
= principle of edge flip operation

- —:_ —
+++++ [Berg] '
-~ DCGI Felkel: Computational geometry _ .
(251 67) a

Edge flip operation

Edge flip
= a local operation, that increases the angle vector

= Given two adjacent triangles Aabc and Acda such that
their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

- —:_ —
e o o~ == [Berg]
—~ DCGI Felkel: Computational geometry
(26 /67) a

Delaunay triangulation

= Let T be a triangulation with m triangles (and 3m angles)
= Angle-vector

= non-decreasing ordered sequence (o, o, ... , 03,,)
inner angles of triangles, a; < a;, fori <]
= Delaunay triangulation has the lexicographically largest
angle sequence
— It maximizes the minimal angle (the first angle in angle-vector)
— It maximizes the second minimal angle, ...

— It maximizes all angles
— It is an angle optimal triangulation

- —:_ —
S~ A o~ ——
DC GI Felkel: Computational geometry
(27 1 67) .

Thales’'s theorem e

Respective Central Angle Theorem
5o

~
[]
-~
L} -
1
-~
L}

= Let C =circle,

[=line intersecting C in points
a,b

p,q,7,s = points on the same

side of [
p,gon C, risin, sis out

Then for the angles holds:
Xarb > Xapb = Xaqgb > Xasb

http: //mwww.mathopenr ef.convarccentr alangl etheorem.html

= —:_ -
e S =~ == ——
> -~ -+
DC GI Felkel: Computational geometry
(281767) _

Edge flip of illegal edge and angle vector

= The minimum angle increases after the edge flip

of illegal edge ac > bd

Pab > eab Pbc > ‘gbc Ped > ‘gcd
=> After limited number of edge flips
— Terminate with lexicographically maximum triangulation

. ~— It satisfies the empty circle condition => Delauney%

S A o~ == =

—~ DCGI Felkel: Computational geometry
(29/67)

Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)
— must be larger than the largest circle through 3 points
— will be discarded at the end

2. Insert the points in random order
— Find triangle with inserted point p

— Add edges to its vertices
(these new edges are correct)

— Check correctness of the old edges (triangles)
“around p” and legalize (flip) potentially illegal edges

3. Discard the large triangle and incident edges

- o —f—
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(30/67)

Incremental algorithm in detail

p-2

DelaunayTriangulation(P)
Input: Set P of n points in the plane
Output: A Delaunay triangulation T of P

[Berg]

Let p_,, p_4, P, form a triangle large enough to contain P
Initialize T as the triangulation consisting a single triangle p_p_;pp p_,
Compute random permutation p,, p,, ..., p, of P\ {p,}
forr=1tondo

T'=Insert(p,, T)
Discard p_4, p_p, p_3 with all incident edges from T
return T

NOoOObhWh =

» . . .
- o~ -
S o o~ == =

Incremental algorithm — insertion of a point

Insert(p, T)

Input: Point p being inserted into triangulation T
Output: Correct Delaunay triangulation after insertion of p
1. Find a triangle abc T containing p

2. 1If plies in the interior of abc then

3. Insert edges pa, pb, pc into triangulation T /

C

(splitting abc into 3 triangles pab, pbc, pca)
LegalizeEdge(p, ab, T)
LegalizeEdge(p, bc, T) a
LegalizeEdge(p, ca, T) o=y e
else // p lies on the edge of abc, say ab, point d is right from edge ab
Remove ab and insert edges pa, pb, pc, pd into triangulation T
(splitting abc and abd into 4 triangles pad, pdb, pbc, pca)
9. LegalizeEdge(p, ab, T)

10. LegalizeEdge(p, bc, T) \

11. LegalizeEdge(p, cd, T) g P
12. LegalizeEdge(p, da, T) g %
13. return T IS o ':

©NOOA

Incremental algorithm — edge legalization

LegalizeEdge(p, ab, T)
Input: Edge ab being checked after insertion of point p to triangulation T
Output: Delaunay triangulation of p UT

1. if(abis edge on the exterior face) return

2. let d be the vertex to the right of edge ab

3. if(inCircle(p, a, d, b)) //disinthe circle around pab => dis illegal
4, Flip edge ab for pd

) LegalizeEdge(p, ad, T)
6 LegalizeEdge(p, db, T) b

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d)

After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles
pdb, and pad will bee empty)

We must check and possibly flip edges ad, db /
C

- Inserted point p

-4 ——
> A A =
-~ -

DCGI

Correctness of edge flip of illegal edge

= Assume point pis in C (it violates DT criteria for adb)
= adb was a triangle of DT => C was an empty circle

= Create circle C’ trough point p, C'is inscribed to C, C'c C
=> C’is also an empty circle
=> new edge pd Is a Delaunay edge

DCGI Felkel: Computational geometry %
(34 /67) o

DT- point insert and mesh legalization

Delaunay triangulation — other point insert

insert p
check pab

=== | egalize NnOW

— Legalize later

Legal edge

Sy -~ -
- [Mount]
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(36/67)

Delaunay triangulation — other point insert

=== | egalize NnOW

— Legalize later

Legal edge

[Mount]
—~ DCGI Felkel: Computational geometry
(371767)

Delaunay triangulation — other point insert

- -
- = -

=== | egalize NnOW

— Legalize later

Legal edge

[Mount]
—~ DCGI Felkel: Computational geometry _
(38/67)

Delaunay triangulation — other point insert

=== | egalize Nnow

— Legalize later

Legal edge

- [Mount]
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(39/67)

Delaunay triangulation — other point insert

=== | egalize Nnow

— Legalize later

Legal edge

- [Mount]
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(40/67)

Delaunay triangulation — other point insert

=== | egalize NnOwW

— Legalize later

Legal edge

- [Mount]
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(41/67)

Delaunay triangulation — other point insert

flip(bc)

=== | egalize NnOW

— Legalize later

Legal edge

- [Mount]
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(42/67)

Delaunay triangulation — other point insert

=== | egalize NnOW

— Legalize later

Legal edge

[Mount]
—~ DCGI Felkel: Computational geometry
(43/67)

Delaunay triangulation — other point insert

check pca

................ -

=== | egalize NnOwW

— Legalize later

Legal edge

\
\
.

- - [Mount]
+++++
> -~ -+

—/— DCGI Felkel: Computational geometry

(44 /1 67)

Correctness of the algorithm

= Every new edge (created due to insertion of p)
— Is incident to p
— must be legal
=> no need to test them

= Edge can only become illegal if one of its incident
triangle changes
— Algorithm tests any edge that may become illegal
=> the algorithm is correct

= Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop

- o —f—
+++++
-+ -+ -+
-~ DCGI Felkel: Computational geometry
(45/67)

Point location data structure

= Forfinding a triangle abc € T containing p
— Leaves for active (current) triangles
— Internal nodes for destroyed triangles
— Links to new triangles

= Search p: start in root (initial triangle)
— In each inner node of T:
* Check all children (max three)
* Descend to child containing p

o A o~ ==

—~ DCGI Felkel: Computational geometry
(46 /67)

Point location data structure

Simplified
- it should contain the root node

— B [Berg]
> S o~ 4~ 4+
> -~ -+
—~ DCGI Felkel: Computational geometry
(47 1867) _

Point location data structure

(X

M flip pip;
— [Berg]

DC GI Felkel: Computational geometry
(481767)

- f

Point location data structure

U/ flip pip;

-
e A o = =

Point location data structure

I ORORO

INnCircle test

= a,b,c are counterclockwise in the plane

s Jest, if dlies to the left of the oriented circle
through a,b,c

/ 4y @, a3+ a;
b by bi - bf/
&y Gy €€

\ d. d, d&+d

inCircle(a, b, ¢, d) = det

Felkel: Computational geometry

(51/67)

"

Creation of the initial triangle

o o

-~ Out
-+ = =
> -~ -+
DCGI Felkel: Computational geometry _
(52/67) _

For given points set P
Initial triangle p_,p_.p,

— Must contain all points of P

— Must not be (none of its pomts) |
in any circle defined
by non-collinear points of P

|_, = horizontal line above P
[_, = horizontal line below P
p_, = lies on |_, as far left that p_, lies outside every circle

p_, = lies on [_, as far right that p_, lies outside every circle
defined by 3 non-collinear points of P

Symbolical tests with this triangle => p_, and p_, always

Complexity of incremental DT algorithm

= Delaunay triangulation of a set P in the plane can
be computed in

— O(n log n) expected time
— using O(n) storage

= For details see [Berg, Section 9.4]

- o —f—
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
(53/67) s ns

Delaunay triangulations and Convex hulls

= Delaunay triangulation in R? can be computed
as part of the convex hull in R*7

= 2D: Connection is the paraboloid: zZ= X + y2

Compute convex hull. Project hull faces back to plane

= —:_ -
+++++
> -~ -+
—~ DCGI Felkel: Computational geometry
(54 /1 67) T

Vertical projection of points to paraboloid

= Vertical projection of 2D point to paraboloid in 3D
(% y) = (% y, X" +y?)

s Lower convex hull
= portion of CH visible from Z = —o

Fo+ 4 [Rourke] - i
i | L | 4 'l L e + +
-~ D C GI Felkel: Computational geometry
4 - - | 'l 4 i 4 4 4 b 4 -t - —— -+ _|_
(55/67)
4 1 1 " } | i i a= i 4 | =i -+ 'R -+ 4 - -4 -+ -+ = -+ _|_

Relation between CH and DT

= Delaunay condition (2D)
Points p,q,r € S form a Delaunay triangle iff the
(contains no point)

= Convex hull condition (3D)
Points p’,q’,r’ € S’ form a face of CH(S’) iff the
passing through p’,q’,r'is
— all other points lie to one side of the plane

J J J 3

— plane passing through p’,q’,r’ is supporting hyperplane
of the convex hull CH(S’)

= —:_ -
e S =~ == ——
> -~ -+
—~ DCGI Felkel: Computational geometry
(56 /67) _

Relation between CH and DT

[Rourke]

= 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be
their respective projections onto the paraboloid, z = x? + y~.

= The point s lies within the circumcircle of pgr iff s’ lies on
the lower side of the plane passing through p’, q’, r.

- =
o o

—_—
- =

—f
-+ —

—+
Felkel: Computational geometry

(57 1 67)

Tangent plane to paraboloid

= Non-vertical tangent plane through (a, b, a® + b?)

= Paraboloid z = x2+y?
z=x2+y s /N

= Derivation at this point 2x — =2y

T 2
= Evaluatesto2a and 2b*

/
. Plane: z = 2dx + 2by + ¥ - y = —(a® + b?)

/
a’+b?=2a.a+2b.b+y

= Tangent plane through point{a, b, a’ + bQ)
z = 2ax + 2by — (a? + b?)

= ++: —l_'—_ - [Mount]
> -~ -+
—~ DCGI Felkel: Computational geometry
(581767)

Plane intersecting the paraboloid

= Non-vertical tangent plane through (a, b, a* + b*%)
z = 2ax + 2by — (a? + b?)

= Shift this plane 7% upwards —> secant plane
intersects the paraboloid in an ellipse in 3D

z = 2ax + 2by — (a? + b?)+r?
= Eliminate z (project to 2D) z = x*+y?
x%+y% = 2ax + 2by — (a? + b?)+1r?
= This is a circle projected to 2D with center (@, b):

(x —a®)+(y —b?) =1°

Dol sl Mount]
> -~ -+
—~ DCGI Felkel: Computational geometry
(59/67)

Tangent and secant planes

Cross section of the paraboloid

Secant plane

Tangent plane

! Circle in xy plane
P ' 1 Note: the circle is moved a little down
a,b) — points p and q should lie in the xy plane

g — the circle too
DCGI Felkel: Computational geometry |
(60/67) | el

Secant plane defined by three points

DA s tMount]
> -~ -+
—~ DCGI Felkel: Computational geometry
(61/67)

Test InCircle — meaning in 3D

= Points p,q,r are counterclockwise in the plane

= Test, if slies in the circumcircle of ApQr isequaito

= test, weather s’ lies within a lower half space of the
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’ is positively oriented (3D)

= test, if s lies to the left of the oriented circle through abc

(2D) . .
[px Py DrtD, 1)
2 . 2 -
. L qu’t’ ny Q;}g B qQ
in(p,q,r,s) = det e Ty 124 7”@2, R 0.
\ Sz Sy S;+s, 1)

-~ ++—:_ —:_'—_ — [Mount]
> -~ -+ 4
- DCGI Felkel: Computational geometry _
(62/67) :

An the Voronol diagram?

= VD and DT are dual structures

= Points and lines in the plane
are dual to
points and planes in 3D space

= VD of points in the plane
can be transformed to
Intersection of halfspaces in 3D space

S o o~ == =

—~ DCGI Felkel: Computational geometry

(63/67)

Voronoi diagram as upper envelope in R4+

= For each point p= (a, b) a tangent plane to the
paraboloid is z = 2ax + 2by — (a? + b?)+1r?

= H*(p) is the set of points above this plane
Ht(p) ={(x,y,2) | z = 2ax + 2by — (a® + b?)+7r*

a = VD of points in the plane can be
— computed as intersection of
halfspaces H*(p)

= [his intersection of halfspaces
= unbounded convex polyhedron
= upper envelope of halfspaces -

H*(p)

(P;

Felkel: Computational geometry
(64 /67) _

Voronoi diagram as upper envelope in 3D

/

S A o~ == =

L]
u L
4 .
—~ DC I Felkel: Computational geometry . : A % -;
(; (65/67) |

Derivation of projected Voronoi edge

= 2 points: p = (a,b) and q = (c,d) in the plane

z = 2ax + 2by — (a® + b*) Tangent planes
z=2cx +2dy — (c? +d?) toparaboloid

= Intersect the planes, project onto xy (eliminate z)
x(2a — 2¢) + y(2b — 2d) = (a? — ¢*)+(b* — d?)

= This line passes through midpoint between p and g

L (2a - 20) + 22 (2b — 2d) = (a? — c?)+(b? — d?)
-

= |tis perpendicular bisector with slope
- 2 - —(Cl 3 C)/(b w d) [Mount]

S A o~ == =

—~ DCGI Felkel: Computational geometry
(66 /67)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lectures 7,22, 13,14,
and 30.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Rourke] Joseph O’Rourke: .. Computational Geometry in C, Cambridge
University Press, 1993, ISBN 0-521- 44592-2
http://maven.smith.edu/~orourke/books/compgeom.html|

[Fukuda] Komei Fukuda: Frequently Asked Questions in Polyhedral
Computation. Version June 18, 2004
http://www.ifor.math.ethz.ch/~fukuda/polyfag/polyfag:htmi

- —:— - : !
> S o~ =~ t
+ + 4 il b Il . - _!_
D C GI Felkel: Computational geometry
4 i { - 4 4 } .] L - o - _:, _!_
(67167) _ o RO _

