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Talk overview

 Polygon triangulation
– Monotone polygon triangulation
– Monotonization of non-monotone polygon

 Delaunay triangulation (DT) of points
– Input: set of 2D points
– Properties
– Incremental Algorithm 
– Relation of DT in 2D and lower envelope (CH) in 3D 

and 
relation of VD in 2D to upper envelope in 3D
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Polygon triangulation problem

 Triangulation (in general)
= subdividing a spatial domain into simplices

 Application 
– decomposition of complex shapes into simpler shapes
– art gallery problem (how many cameras and where)

 We will discuss 
– a simple polygon triangulation
– without demand on triangle shapes

 Complexity of polygon triangulation
– O(n) alg. exists [Chazelle91], but it is too complicated
– practical algorithms run in O(n log n) 
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Terminology

Simple polygon
= region enclosed by a closed polygonal chain that 

does not intersect itself
Visible points 
= two points on the boundary are visible if the 

interior of the line segment joining them lies 
entirely in the interior of the polygon

Diagonal
= line segment joining any pair of visible vertices

!
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Terminology

 A polygonal chain C is strictly monotone with 
respect to line L, if any line orthogonal to L 
intersects C in at most one point

 A chain C is monotone with respect to line L, if any 
line orthogonal to L intersects C in at most one 
connected component (point, line segment,...)

 Polygon P is monotone with respect to line L, if its 
boundary (bnd(P), ∂P) can be split into two chains, 
each of which is monotone with respect to L
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Terminology

 Horizontally monotone polygon
= monotone with respect to x-axis

– Can be tested in O(n)
– Find leftmost and rightmost point in O(n)
– Split boundary to upper and lower chain
– Walk left to right, verifying that x-coord are non-

decreasing

[Mount]
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Terminology

 Every simple polygon can be triangulated
 Simple polygon with n vertices consists of

– exactly n-2 triangles
– exactly n-3 diagonals
– Each diagonal is added once 

=> O(n) sweep line algorithm exist

n = 3  => 0 diagonal n = 4  => 1 diagonal n := n+1 => n + 1 – 3  diagonals
n + 1 = 7 => 4 diagonals)

Proof by induction
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Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)
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2. Triangulation of the monotone polygon

 Sweep left to right
 Triangulate everything you can by adding 

diagonals between visible points
 Remove triangulated region from further 

consideration - DONE

[Mount]To stack
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Triangulation of the monotone polygon

[Mount]

from stack

To stack

from stack

from stack
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Main invariant

Main invariant
 Let vi be the vertex being just processed 
 The untriangulated region left of vi consists of 

two x-monotone chains (upper and lower)
 Each chain has at least one edge
 If it has more than one edge

– these edges form a reflex chain
= sequence of vertices 

with interior angle ≥ 180°
 Left vertex of the last added diagonal is u
 Vertices between u and vi are waiting in the stack

[Mount]
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Triangulation cases

[Mount]

 Case 1: vi lies on the opposite chain
– Add diagonals from next(u) to vi-1

– Set u = vi-1. Last diagonal (invariant) is vivi-1

 Case 2: v is on the same chain as vi-1
a) walk back, adding diagonals joining vi to prior vertices 

until the the angle becomes > 180° or u is reached)

– s

b) pushed to stack
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1. Polygon subdivision into monotone pieces

 X-monotonicity breaks the polygon in vertices with 
edges directed both left or both right

 The monotone polygons parts are separated by 
the splitting diagonals (joining vertex and helper)

[Mount]
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Data structures for subdivision

 Events
– Endpoints of edges, known from the beginning
– Can be stored in sorted list – no priority queue

 Sweep status
– List of edges intersecting sweep line (top to bottom)
– Stored in O(log n) time dictionary (like balanced tree)

 Event processing
– Six event types based on local structure of edges 

around vertex v



Helper – definition
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helper(ea)
= the rightmost vertically visible processed vertex 

below edge ea on polygonal chain between edges ea & eb

is visible to every point along the sweep line between ea & eb

= vertically visible   
processed vertex

v = current vertex
(sweep line stop)

all these vertices
see the helper u 



Helper
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helper(ea)
is defined only for edges intersected by the sweep line

Previous 
helper h(e)
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Six event types of vertex v

1. Split vertex
– Find edge e above v, 

connect e with helper(e) by diagonal
– Add 2 new edges incident to v into SL status
– Set new helper(e) = helper(lower edge of these two) = v

2. Merge vertex
– Find two edges incident with v in SL status
– Delete both from SL status
– Let e is edge immediately above v
– Make helper(e) = v
(Interior angle >180° for both – split & merge vertices)

[Mount]

Polygon 
interior is

white

Previous 
helper h(e)
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Six event types of vertex v

3. Start vertex
– Both incident edges lie right from v
– But interior angle <180°
– Insert both edges to SL status
– Set helper(upper edge) = v

4. End vertex 
– Both incident edges lie left from v
– But interior angle <180°
– Delete both edges from SL status
– No helper set – we are out of the polygon

[Mount]
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Six event types of vertex v

5. Upper chain-vertex
– one side is to the left, one side to the right, 

interior is below
– replace the left edge with the right edge 

in SL status
– Make v helper of the new (upper) edge

6. Lower chain-vertex
– one side is to the left, one side to the right, 

interior is above
– replace the left edge with the right edge 

in SL status
– Make v helper of the edge e above [Mount]
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Polygon subdivision complexity

 Simple polygon with n vertices can be partitioned 
into x-monotone polygons in 

– O(n log n) time and 
– O(n) storage
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Dual graph G for a Voronoi diagram
Graph G: Node for each Voronoi-diagram cell V(p) ~ VD site p
Arc connects neighboring cells
(arc for every voronoi edge)

[Berg]
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Delaunay graph DG(P)
= straight line embedding of G

(straight-line dual of Voronoi diagram)
 Node for cell V(p) is site p
 Arc (DT edge)

connecting cells
V(p) and V(q)
is the segment pq

[Борис Николаевич Делоне]

VD cell V(p)

site (point) p 
= DG node

VD vertex

DG arc

[Berg]
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Delaunay graph and Delaunay triangulation

 Delaunay graph DG(P) has convex polygonal faces
(with number of vertices ≥3, equal 
to the degree of Voronoi vertex)

 Delaunay triangulation DT(P)
= Delaunay graph for sites in 

general position
– No four sites on a circle
– Faces are triangles (Voronoi vertices have degree = 3)
– DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position
– Triangulate larger faces – such triangulation is not 

unique

[Berg]

vf
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Delaunay triangulation properties 1/2
Circumcircle property
 The circumcircle of any triangle in DT is empty (no sites)

Proof: It’s center is the Voronoi vertex 
 Three points a,b,c are vertices of the same face of DG(P) 

iff circle through a,b,c contains no point of P in its interior
Empty circle property and legal edge
 Two points a,b form an edge of DG(P) – it is a legal edge

iff  closed disc with a,b on its boundary that contains no 
other point of P in its interior … disc minimal diameter = dist(a,b)

Closest pair property
 The closest pair of points in P are neighbors in DT(P)
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Delaunay triangulation properties 2/2
 DT edges do not intersect
 Triangulation T is legal, iff T is a Delaunay triangulation

(i.e., if it does not contain illegal edges)
 Edge that was legal before 

may become illegal if one 
of the triangles incident to it 
changes

 In convex quadrilateral abcd
(abcd do not lie on common circle)
exactly one of ac, bd

is an illegal edge
= principle of edge flip operation

c

a

b

d

[Berg]
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Edge flip operation
Edge flip
= a local operation, that increases the angle vector
 Given two adjacent triangles △abc and △cda such that 

their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

c

a

b

d

[Berg]
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Delaunay triangulation
 Let T be a triangulation with m triangles (and 3m angles)
 Angle-vector

= non-decreasing ordered sequence (α1, α2, … , α3m) 
angles of triangles, αi ≤ αj, for i < j

 Delaunay triangulation has the lexicographically largest 
angle sequence

– It maximizes the minimal angle (the first angle in angle-vector)
– It maximizes the second minimal angle, …
– It maximizes all angles
– It is an angle optimal triangulation



Thales’s theorem  (624-546 BC)
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 Let 	= circle,
 =line intersecting in points a, 	
 , , , = points on the same 

side of 
p,q on 	, is in, is out

 Then for the angles holds:∢ > ∢ = ∢ > ∢
http://www.mathopenref.com/arccentralangletheorem.html

Respective Central Angle Theorem

[Berg]
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Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

θ1 > θ2 > θ3

bd < ac φab > θab φbc > θbc φcd > θcd φda > θda

flip(ac)

=> After limited number of edge flips 
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd
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Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)
– must be larger than the largest circle through 3 points
– will be discarded at the end

2. Insert the points in random order
– Find triangle with inserted point p
– Add edges to its vertices

(these new edges are correct) 
– Check correctness of the old edges (triangles) 

“around p” and legalize (flip) potentially illegal edges 

3. Discard the large triangle and incident edges



Input:
Output:
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Incremental algorithm in detail
DelaunayTriangulation(P)

Set P of n points in the plane 
A Delaunay triangulation T of P

1. Let p–2, p–1, p0 form a triangle large enough to contain P
2. Initialize T as the triangulation consisting a single triangle p–2p–1p0
3. Compute random permutation p1, p2 , … , pn of P \ {p0}
4. for r = 1 to n do
5. T = Insert( pr , T )
6. Discard p–1, p–2, p–3 with all incident edges from T
7. return T

[Berg]



Input:
Output:
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Insert( p, T )
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca )
4. LegalizeEdge( p, ab, T)
5. LegalizeEdge( p, bc, T)
6. LegalizeEdge( p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca )
9. LegalizeEdge( p, ab, T)
10. LegalizeEdge( p, bc, T)
11. LegalizeEdge( p, cd, T)
12. LegalizeEdge( p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

p

a

b

d

cp [Berg]

[Berg]
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Incremental algorithm – edge legalization
LegalizeEdge( p, ab, T )

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if( ab is edge on the exterior face ) return
2. let d be the vertex to the right of edge ab
3. if( inCircle( p, a, d, b ) )   // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge( p, ad, T )
6. LegalizeEdge( p, db, T )

a

b

b

p

d

[Berg]Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d )
After edge flip, the edge pd will be legal 
(the circumcircles of the resulting triangles 
pdb, and pad will bee empty) 
We must check and possibly flip edges ad, db

c
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Correctness of edge flip of illegal edge
 Assume point p is in C (it violates DT criteria for adb)
 adb was a triangle of DT => C was an empty circle
 Create circle C’ trough point p, C’ is inscribed to C, C’ C 

=> C’ is also an empty circle
=> new edge pd is a Delaunay edge

a

b

p

d

[Berg]

Inserted point p
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DT- point insert and mesh legalization

Every new edge created due to insertion of p will be incident to p

[Berg]
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later



Felkel: Computational geometry

(43 / 61)

Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Correctness of the algorithm

 Every new edge (created due to insertion of p)
– is incident to p
– must be legal

=> no need to test them

 Edge can only become illegal if one of its incident 
triangle changes

– Algorithm tests any edge that may become illegal
=> the algorithm is correct

 Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop
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Point location data structure

 For finding a triangle abc  T containing p
– Leaves for triangles
– Internal nodes for destroyed triangles
– Links to new triangles

 Search p: start in root (initial triangle)
– In each inner node of T:

• Check all children (max three)
• Descend to child containing p
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Point location data structure

Simplified 
- it should contain the root node

[Berg]
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Point location data structure

[Berg]
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Point location data structure

[Berg]

2 nodes (triangles )=> new 2 nodes
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Point location data structure

[Berg]



Felkel: Computational geometry

(51 / 61)

InCircle test

 a,b,c are counterclockwise in the plane
 Test, if d lies to the left of the oriented circle 

through a,b,c

c

a

b

d

> 0

[Mount]
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Creation of the initial triangle
 For given points set P
 Initial triangle p–2p–1p0

– Must contain all points of P
– Must not be (none of its points)

in any circle defined 
by non-collinear points of P

 l–2 = horizontal line above P
 l–1 = horizontal line below P
 p–2 = lies on l–2 as far left that p–2 lies outside every circle
 p–1 = lies on l–1 as far right that p–1 lies outside every circle

defined by 3 non-collinear points of P

 Symbolical tests with this triangle => p–1 and p–2 always 
out

[Mount]
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Complexity of incremental DT algorithm

 Delaunay triangulation of a set P in the plane can 
be computed in 

– O(n log n) expected time 
– using O(n) storage

 For details see [Berg, Section 9.4]
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Delaunay triangulations and Convex hulls

 Delaunay triangulation in Rd can be computed 
as part of the convex hull in Rd+1

 2D: Connection is the paraboloid: 22 yxz +=

[Mount]
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Vertical projection of points to paraboloid

 Vertical projection of 2D point to paraboloid in 3D

 Lower convex hull
= portion of CH visible from 

( ) ( )22,,, yxyxyx +→

−∞=z

[Rourke]
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Relation between CH and DT

 Delaunay condition (2D)
Points p,q,r  S form a Delaunay triangle iff the 
circumcircle of p,q,r is empty (contains no point)

 Convex hull condition (3D)
Points p’,q’,r’  S’ form a face of CH(S’) iff the 
plane passing through p’,q’,r’ is supporting S’

– all other points lie to one side of the plane
– plane passing through p’,q’,r’ is supporting hyperplane

of the convex hull CH(S’)
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Relation between CH and DT

 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be 
their respective projections onto the paraboloid, z = x2 + y2.

 The point s lies within the circumcircle of pqr iff s’ lies on 
the lower side of the plane passing through p’, q’, r’.

[Rourke]
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Tangent plane to paraboloid 

 Non-vertical tangent plane through


 Derivation at this point

 Evaluates to      and
 Plane:

[Mount]

 Tangent plane through point 

Paraboloid +
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Plane intersecting the paraboloid 

 Non-vertical tangent plane through

 Shift this plane     upwards –> secant plane
intersects the paraboloid in an ellipse in 3D

 Eliminate z (project to 2D)

 This is a circle projected to 2D with center (a, b): 

[Mount]

+

+ +
+

+



Tangent and secant planes
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r( ,b)

x,

z
’

p

p'

Tangent plane

Secant plane

Cross section of the paraboloid

Circle in xy plane
Note: the circle is moved a little down 
– points p and q should lie in the xy plane
– the circle too



Secant plane defined by three points
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[Mount]
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Test inCircle – meaning in 3D

[Mount]

 Points p,q,r are counterclockwise in the plane
 Test, if s lies in the circumcircle of pqr is equal to

= test, weather s’ lies within a lower half space of the 
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’ is positively oriented (3D)
= test, if s lies to the left of the oriented circle through abc

(2D)



An the Voronoi diagram?

 VD and DT are dual structures
 Points and lines in the plane 

are dual to 
points and planes in 3D space

 VD of points in the plane
can be transformed to 
intersection of halfspaces in 3D space
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Voronoi diagram as upper envelope in Rd+1

 For each point  p = (a, b) a tangent plane to the 
paraboloid is

 H+(p) is the set of points above this plane 

[Mount]

+

 VD of points in the plane can be 
computed as intersection of 
halfspaces H+(pi) 

 This intersection of halfspaces
= unbounded convex polyhedron  
= upper envelope of halfspaces

H+(pi) 

+
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Voronoi diagram as upper envelope in 3D

[Fukuda]
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Derivation of projected Voronoi edge

 2 points: and in the plane

 Intersect the planes, project onto xy (eliminate z)

 This line passes through midpoint between p and q

 It is perpendicular bisector with slope
[Mount]

Tangent planes
to paraboloid

+

+
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