

GEOMETRIC SEARCHING PART 2: RANGE SEARCH

PETR FELKEL

FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg] and [Mount]

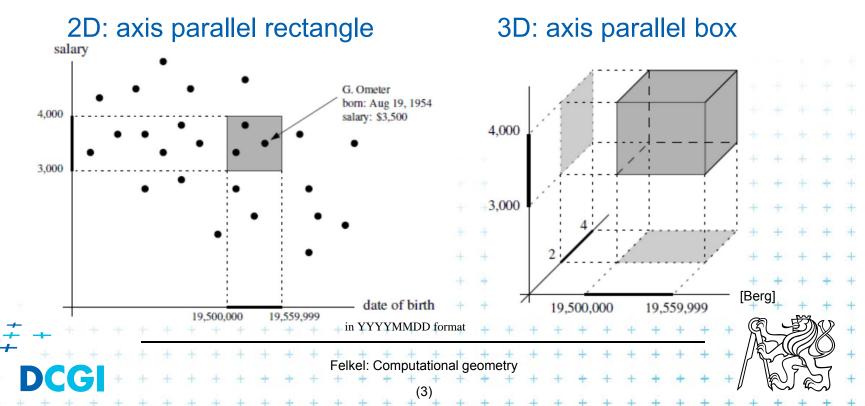
Version from 4.10.2012

Range search

- Orthogonal range searching
- Canonical subsets
- 1D range tree
- Kd-tree
- 2-nD Range tree
 - With fractional cascading (Layered tree)

Orthogonal range searching

- Given a set of points P, find the points in the region Q
 - Search space: a set of points P (somehow represented)
 - Query: intervals Q (axis parallel rectangle)
 - Answer: points contained in Q
- Example: Databases (records->points)
 - Find the people with given range of salary, date of birth, kids, ...



Orthogonal range searching

- Query region = axis parallel rectangle
 - nDimensional search can be decomposed into set of 1D searches

Other range searching variants

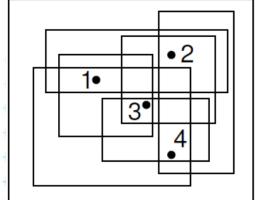
- Search space: set of
 - line segments,
 - rectangles, ...
- Query region: any other region
 - disc,
 - polygon,
 - halfspace, ...
- Answer: subset of P laying in Q
- We concentrate on points in orthogonal ranges

How to represent the search space?

- Not all possible combination can be in the output (not the whole power set)
- => Represent only the "selectable" things
 (a well selected subset -> one of the canonical subsets)

Subsets selectable by given range class

- The number of subsets that can be selected by simple ranges Q is limited
- It is usually much smaller than the power set of P
 - Power set of P where P = $\{1,2,3,4\}$ (potenční množina) is $\{\{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \dots, \{2,3,4\}, \{1,2,3,4\}\}$... $O(2^n)$ i.e. of all possible subsets
 - Simple rectangular queries are limited
 - Defined by max 4 points along 4 sides
 => O(n⁴) of O(2ⁿ) power set
 - Moreover not all sets can be formed by □ query



e.g. sets {1,4} and {1,2,4} cannot be formed

Canonical subsets S_i

- Search space S=(P,Q) represented as a collection of canonical subsets {S₁, S₂, ..., Sk}, each Si⊆S,
 - S_i may overlap each other
 - Any set can be represented as disjoint union disjunktní sjednocení of canonical subsets S_i (elements can be multiple times)
 - Elements of disjoint union are ordered pairs (x, i)
 (every element x with index i of the subset S_i)
- Can be selected in many ways
 - from n singletons $\{p_i\}$... O(n)
 - to power set of P ... O(2ⁿ)
 - Good DS balances between total number of canonical subsets and number of CS needed to answer the query

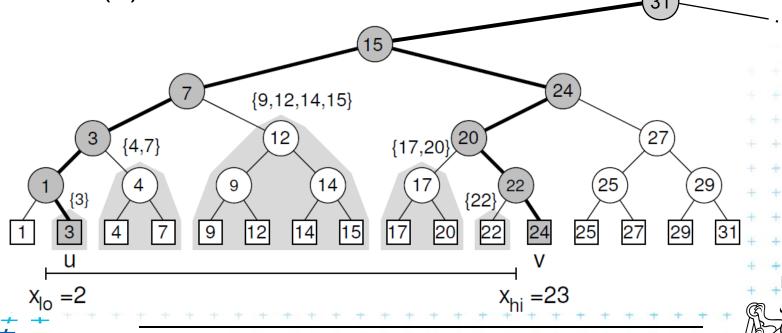
1D range queries (interval queries)

- Search the interval [x_{lo}, x_{hi}] in
- Points $P = \{p_1, p_2, ..., p_n\}$ on the line
 - a) Binary search in an array
 - Simple, but
 - not generalize to any higher dimensions
 (values in inner nodes are not reachable in particular level below,
 to get them, we must traverse back to root)
 - b) Balanced binary search tree
 - 1D range tree
 - maintains canonical subsets
 - generalize to higher dimensions

1D range tree definition

- Balanced binary search tree
 - leaves sorted points
 - inner node label the largest key in its left child
 - Each node associate with subset of descendants

=> O(n) canonical subsets



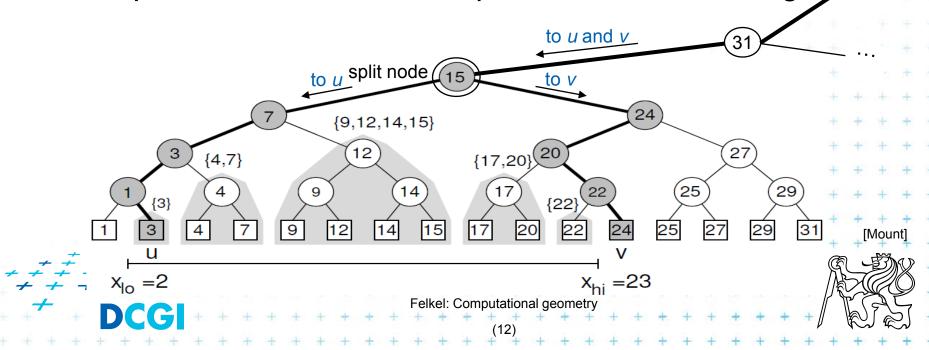
Felkel: Computational geometry

Canonical subsets and <2,23> search

Canonical subsets for this subtree are $\{ \{1\}, \{3\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., [31], ..., [31$ 16 {1, 3}, {4, 7}, ..., {29, 31} $\{1, 3, 4, 7\}, \{9, 12, 14, 15\}, \dots, \{25, 27, 29, 31\}$ {1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31} 2 {1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31} {9,12,14,15} {17,20}(20 27 {4,7} Felkel: Computational geometry

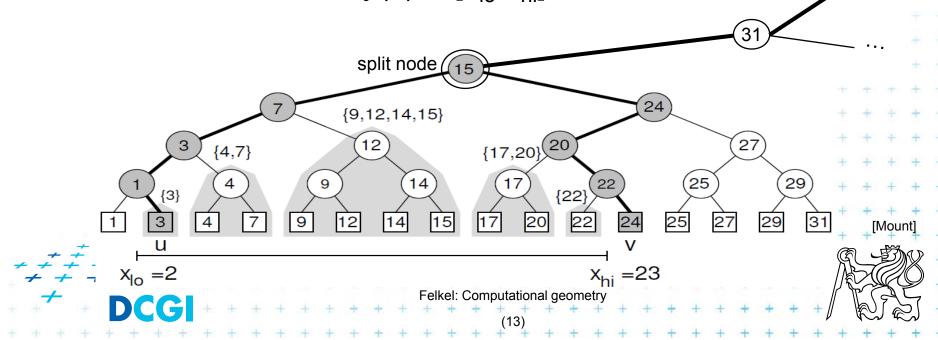
1D range tree search interval <2,23>

- Canonical subsets for any range found in O(log n)
 - Search x_{lo} : Find leftmost leaf u with $key(u) \ge x_{lo} 2 -> 3$
 - Search x_{hi} : Find leftmost leaf v with $key(v) \ge x_{hi} 23 >_{24}$
 - Points between u and v lie within the range => report canon. subsets of maximal subtrees between u and v
 - Split node = node, where paths to u and v diverge



1D range tree search

- Reporting the subtrees (below the split node)
 - On the path to u whenever the path goes left, add the canonical subset associated to right child
 - On the path to v whenever the path goes right, add the canonical subset associated to left child
 - − In the leaf u, if key(u) ∈ [x_{lo} : x_{hi}] then add CS of u
 - In the leaf v, if key(v) ∈ [x_{lo} : x_{hi}] then add CS of v



1D range tree search complexity

- Path lengths O(log n)
 - => O(log n) canonical subsets (subtrees)

 $root(\mathfrak{T})$

split node

- Return just the number of points in given range
- Sum the total numbers of leaves stored in maximal subtree roots... O(log n) time
- Range reporting queries
 - Return all k points in given range
 - Traverse the canonical subtrees ... O(log n + k) time
- O(n) storage, $O(n \log n)$ preprocessing (sort P)

Find split node

FindSplitNode(T, [x:x'])

Input: Tree T and Query range [x:x'], $x \le x'$

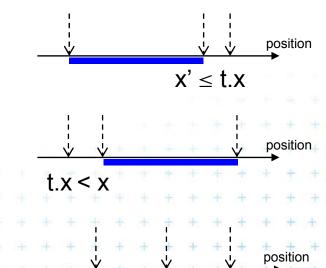
split node

Output: The node, where the paths to x and x' split

or the leaf, where both paths end

- 1. t = root(T)
- 2. while(t is not a leaf and $x' \le t.x$ or t.x < x) // out of the range [x:x']
- 3. if $(x' \le t.x) t = t.left$
- 4. else t = t.right

5. return t $root(\mathfrak{I})$



Felkel: Computational geometry

```
1dRangeQuery( t, [x:x'])
Input:
                1d range tree t and Query range
Output:
                All points in t liying in the range
    t<sub>split</sub> = FindSplitNode( t, x, x')
                                          // find interval point t ∈ [x:x']
    if( t<sub>split</sub> is leaf )
3.
       check if the point in t<sub>solit</sub> must be reported
    else // follow the path to x, reporting points in subtrees right of the path
5.
       t = t_{split}.left
       while(t is not a leaf)
          if( x \leq t.x)
              ReportSubtree( t( t.right ) ) // any kind of tree traversal
8
9.
             t = t.left
10.
          else t = t.right
         check if the point in leaf t must be reported
11.
         // Symmetrically follow the path to x' reporting points left of the path
12.
          = t<sub>split</sub>.right ...
```

Multidimensional range searching

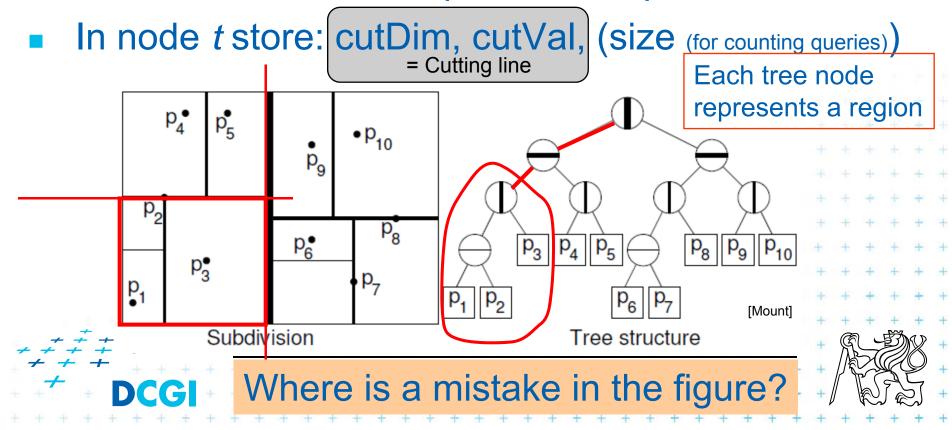
- Equal principle find the largest subtrees contained within the range
- Separate one *n*-dimensional search into *n* 1-dimensional searches
- Different tree organization
 - Kd tree
 - Orthogonal (Multilevel) search tree range tree

Kd-tree

- Easy to implement
- Good for different searching problems (counting queries, nearest neighbor,...)
- Designed by Jon Bentley as k-dimensional tree (2-dimensional kd-tree was a 2-d tree, ...)
- Not the asymptotically best for orthogonal range search (=> range tree is better)
- Types of queries
 - Reporting points in range
 - Counting number of points in range

Kd-tree principle

- Subdivide space according to different dimension (x-coord, then y-coord, ...)
- This subdivides space into rectangular cells
 => hierarchical decomposition of space



Kd-tree principle

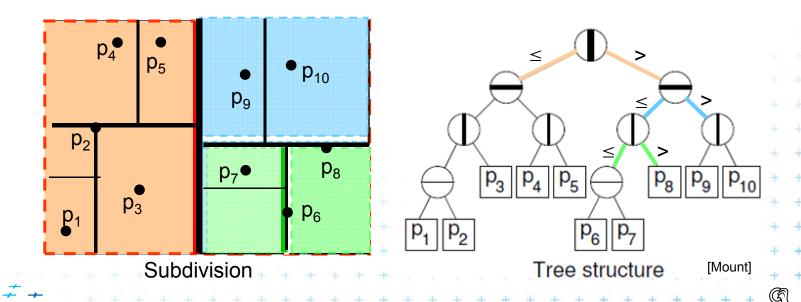
- Which dimension to cut? (cutDim)
 - Cycle through dimensions (round robin)
 - Save storage cutDim is implicit ~ depth in the tree
 - May produce elongated cells (if uneven data distribution)
 - Greatest spread (the largest difference of coordinates)
 - Adaptive
 - Called "Optimal kd-tree"
- Where to cut? (cutVal)
 - Median, or midpoint between upper and lower median
 O(n)
 - Presort coords of points in each dimension (x-, y-,...)
 for O(1) median resp. O(d) for all d dimensions

Kd-tree principle

- What about points on the cell boundary?
 - Boundary belongs to the left child

- Left: $p_{cutDim} \le cutVal$

- Right: $p_{cutDim} > cutVal$



Felkel: Computational geometry

Kd-tree construction in 2-dimensions

BuildKdTree(*P, depth*)

Input: A set of points *P* and current *depth*.

Output: The root of a kD tree storing P.

```
    If (P contains only one point) [or small set of (10 to 20) points]
    then return a leaf storing this point
```

3. **else if (***depth* is even)

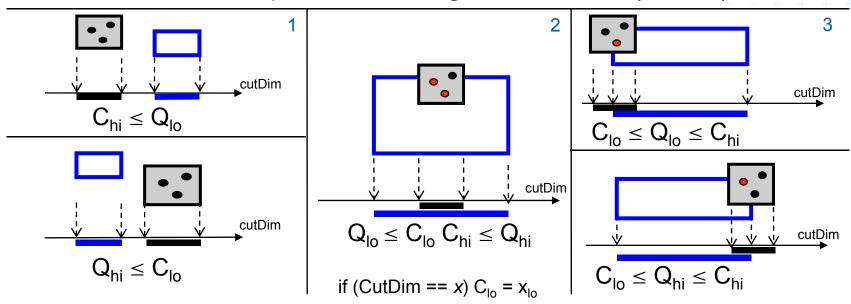
Split according to (depth%max_dim) dimension

- 4. **then** split P with a vertical line I through median x into two subsets P_1 and P_2 (left and right from median)
- else split P with a horiz. line I through median y into two subsets P_1 and P_2 (below and above the median)
- 6. $t_{\text{left}} = \text{BuildKdTree}(P_1, depth+1)$
- 7. $t_{right} = BuildKdTree(P_2, depth+1)$
- 8. create node t storing l, t_{left} and t_{right} children l l = cutDim, cutVal
- 9. return t

If median found in O(1) and array split in O(n) $T(n) = 2 T(n/2) + n => O(n \log n)$ construction

a) Compare rectang. Array Q with rectangular cells C

- Rectangle C: $[x_{lo}, x_{hi}, y_{lo}, y_{hi}]$ computed on the fly
- Test of kD node cell C against query Q (in one cutDim)
 - 1. if cell is disjoint with Q ... $C \cap Q = \emptyset$... stop
 - 2. If cell C completely inside Q ... $C \subseteq Q$... stop and report cell points
 - 3. else cell C overlaps Q ... recurse on both children
- Recursion stops on the largest subtree (in/out)

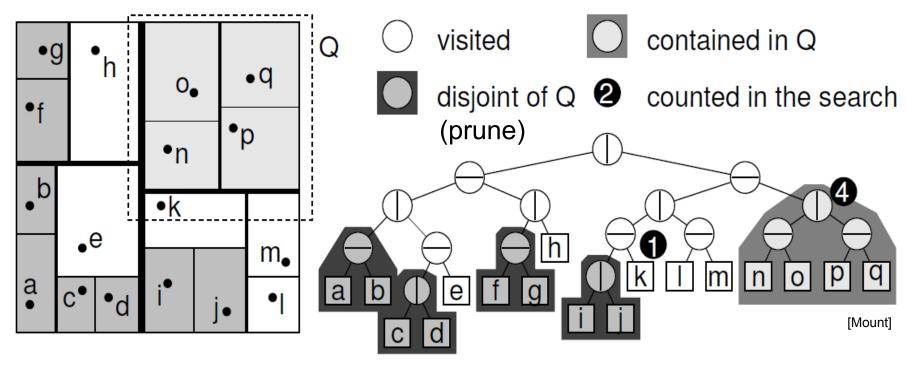


Kd-tree rangeCount (with rectangular cells)

```
int rangeCount(t, Q, C)
Input:
               The root t of kD tree, query range Q and t's cell C.
Output:
               Number of points at leaves below t that lie in the range.
    if (t is a leaf)
       if (t.point lies in Q) return 1 / / or loop this test for all points in leaf
                                          // visited, not counted
       else return 0
    else // (t is not a leaf)
       if (C \cap Q = \emptyset) return 0
                                            ... disjoint
5.
                                           C is fully contained in Q
       else if (C \subseteq Q) return t.size
       else
          split C along t's cutting value and dimension,
8.
          creating two rectangles C_1 and C_2.
          return rangeCount(t.left, Q, C<sub>1</sub>) + rangeCount(t.right, Q, C<sub>2</sub>)
9.
                               // (pictograms refer to the next slide)
```

Kd-tree rangeCount example

Tree node (rectangular region)

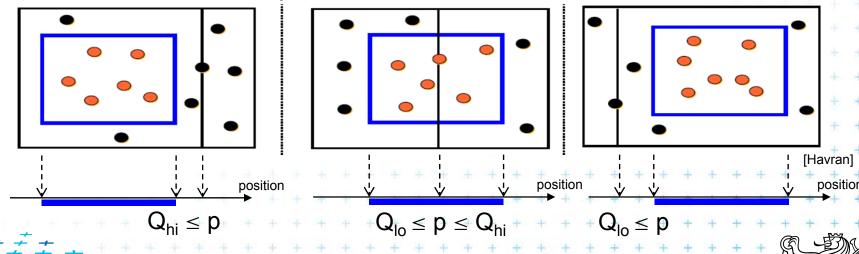


kd-tree subdivision

Nodes visited in range search

b) Compare Q with cutting lines

- Line = Splitting value p in one of the dimensions
- Test of single position given by dimension against Q
 - Line is right from Q
 - ... recurse on left child only (prune right child)
 - 2. Line is left from Q
- ... recurse on right child only (prune left ch.)
- 3. Line intersects Q
- ... recurse on both children
- Recursion stops in leaves traverses the whole tree



Kd-tree rangeSearch (with cutting lines)

```
int rangeSearch(t, Q)

Input: The root t of (a subtree of a) kD tree and query range Q.
```

Output: Points at leaves below t that lie in the range.

```
    if (t is a leaf)
    if (t.point lies in Q) report t.point // or loop test for all points in leaf
    else return
    else (t is not a leaf)
    if (Q<sub>hi</sub> ≤ t.cutVal) rangeSearch(t.left, Q) // go left only
    if (Q<sub>lo</sub> > t.cutVal) rangeSearch(t.right, Q) // go right only
    else
        rangeSearch(t.left, Q) // go to both
        rangeSearch(t.right, Q)
```


Kd-tree - summary

- Orthogonal range queries in the plane (in balanced 2d-tree)
 - Counting queries $O(\sqrt{n})$ time
 - Reporting queries O($\sqrt{n + k}$) time, where k = No. of reported points
 - Space O(n)
 - Preprocessing: Construction O(n log n) time
 (Proof: if presorted points to arrays in dimensions. Median in O(1) and split in O(n) per level, log n levels of the tree)
- For d≥2:
 - Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)

Orthogonal range tree (RT)

- DS highly tuned for orthogonal range queries
- Query times in plane

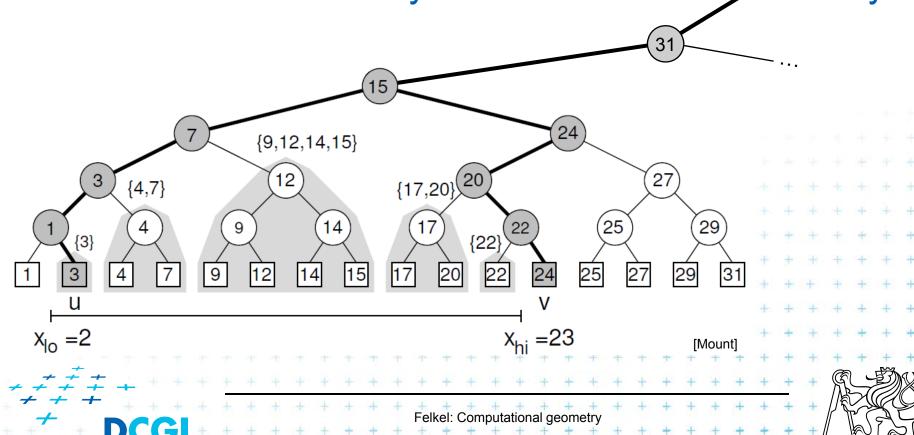
2d tree versus	range tree
O($\sqrt{n + k}$) time of Kd	O(log n) time query
O(n) space of Kd	O(n log n) space

n = number of points

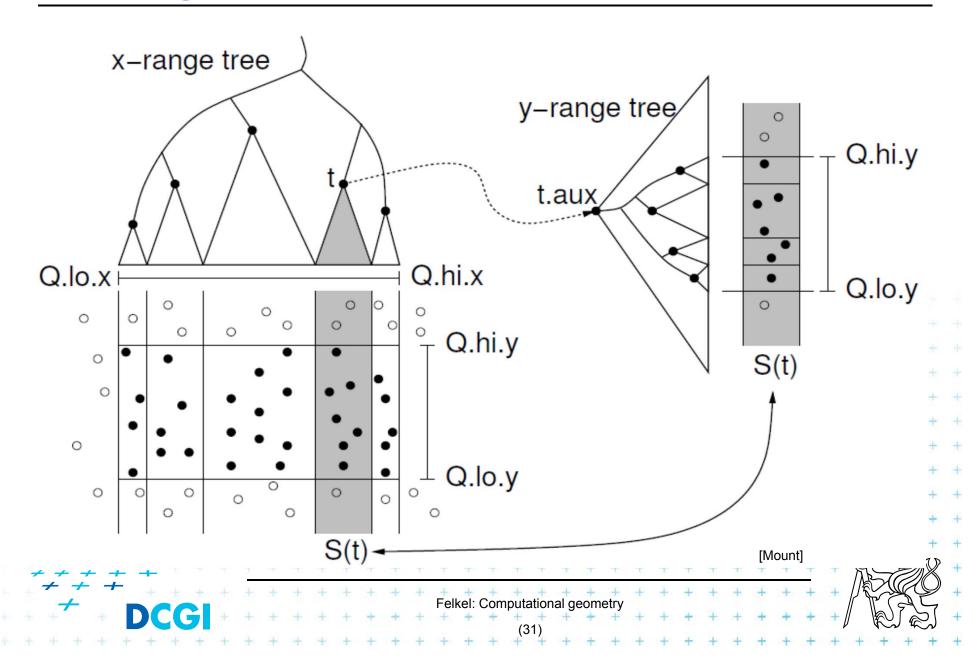
k = number of reported points

From 1D to 2D range tree

- Search points from [Q.x_{lo,} Q.x_{hi}] [Q.y_{lo,} Q.y_{hi}]
- 1d range tree: log n canonical subsets based on x
- Construct an auxiliary tree for each such subset y



2D range tree



2D range search

```
2dRangeQuery( t, [x:x'] × [y:y'] )
Input:
               2d range tree t and Query range
Output:
                All points in t laying in the range
1. t<sub>split</sub> = FindSplitNode( t, x, x')
    if( t<sub>split</sub> is leaf )
3.
       check if the point in t_{split} must be reported ... t.x \in [x:x'], t.y \in [y:y']
    else // follow the path to x, calling 1dRangeQuery on y
5.
       t = t<sub>split</sub>.left // path to the left
       while(t is not a leaf)
6.
          if( x \leq t.x)
             1dRangeQuerry( t<sub>assoc</sub>( t.right ), [y:y'] ) // check associated su
8.
             t = t.left
10.
          else t = t.right
      check if the point in leaf t must be reported ... t.x \le x', t.y \in [y:y]
      Similarly for the path to x' ... // path to the right
```

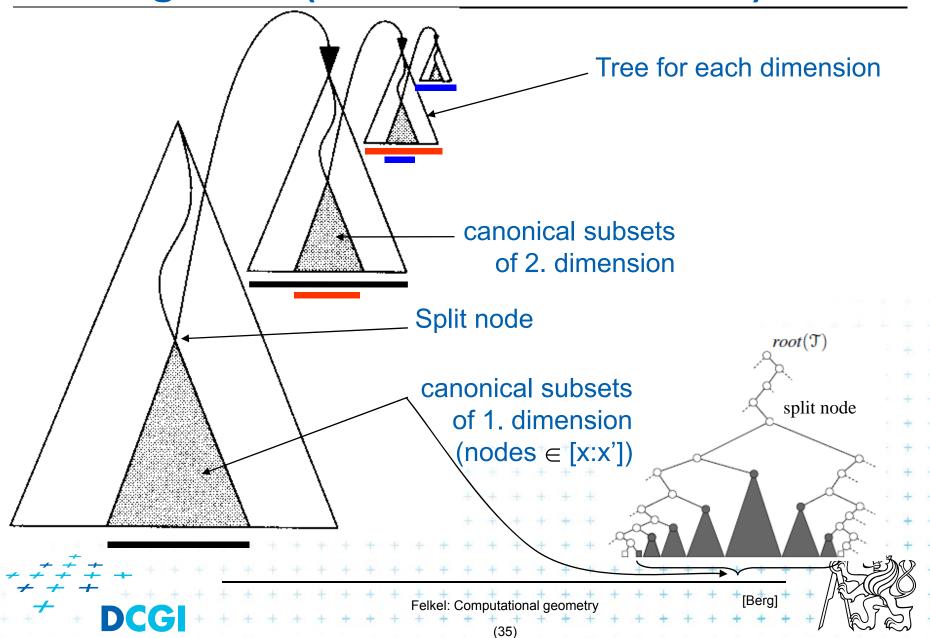

2D range tree

- Search O(log² n + k) log n in x-, log n in y
- Space O(n log n)
 - O(n) the tree for x-coords
 - O(n log n) trees for y-coords
 - Point p is stored in all canonical subsets along the path from root to leaf with p,
 - once for x-tree level
 - each canonical subsets is stored in one auxiliary tree
 - log n levels of x-tree => O(n log n) space for y-trees
- Construction O(n log n)
 - Sort points (by x and by y). Bottom up construction

Canonical subsets

Canonical subsets for this subtree are # $\{ \{1\}, \{3\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., \{31\}, ..., [31], ..., [31$ 16 {1, 3}, {4, 7}, ..., {29, 31} $\{1, 3, 4, 7\}, \{9, 12, 14, 15\}, \dots, \{25, 27, 29, 31\}$ {1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31} 2 {1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31} {9,12,14,15} {17,20} 27 $\{4,7\}$ Felkel: Computational geometry

nD range tree (multilevel search tree)

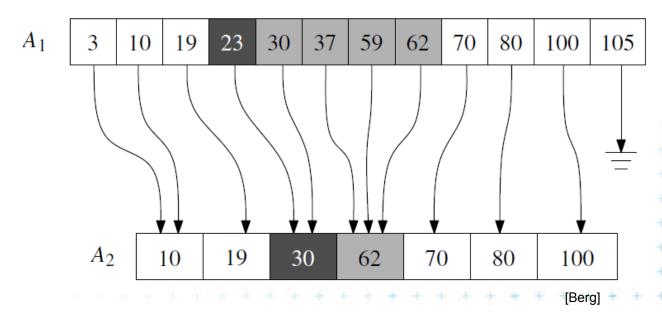


Fractional cascading - principle

- Two sets S₁, S₂ stored in sorted arrays A₁, A₂
- Report objects in both whose keys in [y:y']
- Naïve approach
 - $O(log n_1 + k_1)$ search in A_1 + report k_1 elements
 - $O(log n_2 + k_2)$ search in A_2 + report k_2 elements
- Fractional cascading adds pointers from A₁ to A₂
 - $O(log n_1 + k_1 + 1 + k_2)$ search in A_1 + report k_1 elements
 - $O(1 + k_2)$ jump to A_2 + report k_2 elements
 - Saves the $O(log n_2)$ search

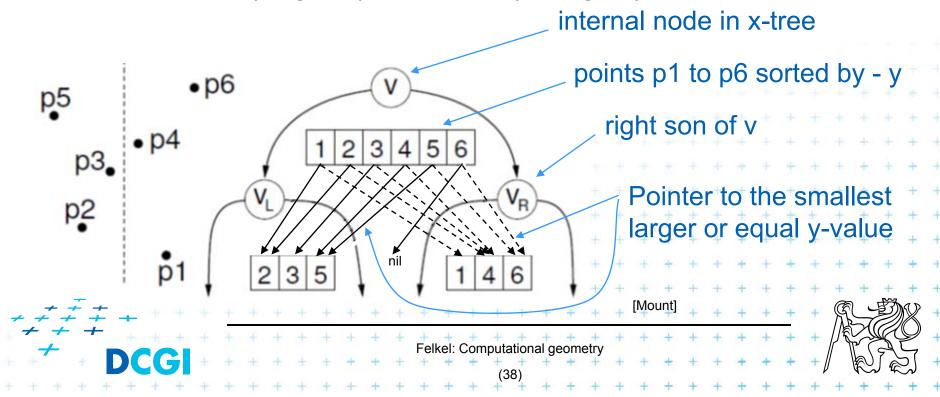
Fractional cascading – principle for arrays

- Add pointers from A₁ to A₂
 - From element in A₁ with a key y_i point to the element in A₂ with the smallest key larger or equal to y_i
- Example query with the range [20 : 65]



Fractional cascading in the 2D range tree

- How to save one log n during last dim. search?
 - Store canonical subsets in arrays sorted by y
 - Pointers to subsets for both child nodes v_L and v_R
 - O(1) search in lower levels => in two dimensional search O(log² n) time -> O(2 log n)



Orthogonal range tree - summary

- Orthogonal range queries in plane
 - Counting queries O(log² n) time,
 or with fractional cascading O(log n) time
 - Reporting queries plus O(k) time, for k reported points
 - Space O($n \log n$)
 - Construction O(n log n)
- Orthogonal range queries in d-dimensions, d≥2
 - Counting queries O(log^d n) time,
 or with fractional cascading O(log^(d-1) n) time
 - Reporting queries plus O(k) time, for k reported points
 - Space $O(n \log^{(d-1)} n)$
 - Construction O(n log(d-1) n) time

References

- [Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry: Algorithms and Applications, Springer-Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, Chapter 5, http://www.cs.uu.nl/geobook/
- [Mount] David Mount, CMSC 754: Computational Geometry, Lecture Notes for Spring 2007, University of Maryland, Lectures 17 and 18. http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml
- [Havran] Vlastimil Havran, Materiály k předmětu Datové struktury pro počítačovou grafiku, přednáška č. 6, Proximity search and its Applications 1, CTU FEL, 2007

