
PLÁNOVÁNÍ A HRY - CV 3

kopriva@agents.felk.cvut.cz

mailto:kopriva@agents.felk.cvut.cz

State – space Planning

 Forward Search

 Backward Search

 Lifting

 STRIPS

Forward Search

take c3

take c2
…

Forward Search Properties

 Forward-search is sound

 for any plan returned by any of its nondeterministic

traces, this plan is guaranteed to be a solution

 Forward-search also is complete

 if a solution exists then at least one of Forward-search’s

nondeterministic traces will return a solution.

Task 1: DWR, find 1 finite and 1infinite

trace

 s0:

 g: {at(r1, loc1), loaded(r1, c3)}

Task 2: Interchanging variables

 Objective: Interchange the values of variables v1

and v2.

 s0= {value(v1,3), value(v2,5), value(v3,0)}

 g = {value(v1,5), value(v2,3)}

 assign(v, w, x, y)

 precond: value(v,x), value(w,y)

 effects: value(v,x), value(v,y)

Branching Factor of Forward Search

 Forward search can have a very large branching factor

 E.g., many applicable actions that don’t progress toward goal

 Why this is bad:

 Deterministic implementations can waste time trying lots of
irrelevant actions

 Need a good heuristic function and/or pruning procedure

 How to do pruning?

a3

a1

a2

…a1 a2 a50a3

initial state goal

Backward Search

 For forward search, we started at the initial state and
computed state transitions

 new state = (s,a)

 For backward search, we start at the goal and compute
inverse state transitions

 new set of subgoals = –1(g,a)

 To define -1(g,a), must first define relevance:

 An action a is relevant for a goal g if
 a makes at least one of g’s literals true

 g effects(a) ≠

 a does not make any of g’s literals false
 g+ effects–(a) = and g– effects+(a) =

Inverse State Transitions

 If a is relevant for g, then

 –1(g,a) = (g – effects(a)) precond(a)

 Otherwise –1(g,a) is undefined

 Example: suppose that

 g = {on(b1,b2), on(b2,b3)}

 a = stack(b1,b2)

 What is –1(g,a)?

Backward Search

Lifting

 Can reduce the branching factor of backward

search if we partially instantiate the operators

 this is called lifting

q(a1)

foo(x,y)

precond: p(x,y)

effects: q(x)

foo(a1,a1)

foo(a1,a2)

foo(a1,a3). . .

p(a1,a2)

p(a1,a3)

p(a1,a50)
foo(a1,a50)

q(a1)
foo(a1,y)

p(a1,y)

Lifted Backward Search

 More complicated than Backward-search

 Have to keep track of what substitutions were performed

 But it has a much smaller branching factor

STRIPS

 π the empty plan

 do a modified backward search from g

 instead of -1(s,a), each new set of subgoals is just precond(a)

 whenever you find an action that’s executable in the current state,
then go forward on the current search path as far as possible,
executing actions and appending them to π

 repeat until all goals are satisfied

g

g1

g2

g3

a1

a2

a3

g4

g5

g3

a4

a5

a6

π = a6, a4

s = ((s0,a6),a4)

g6

a3

satisfied in s0

STRIPS

function groundStrips(O,s,g)
plan 〈〉
loop

if s.satisfies(g) then return plan
applicables

{ground instances from O relevant for g-s}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subplan groundStrips(O,s,action.preconditions())
if subplan = failure then return failure
s γ(s, subplan ∙ 〈action〉)
plan plan ∙ subplan ∙ 〈action〉

Blocks World ?
unstack(x,y)

Precond: on(x,y), clear(x), handempty

Effects: on(x,y), clear(x), handempty,

holding(x), clear(y)

stack(x,y)

Precond: holding(x), clear(y)

Effects: holding(x), clear(y),

on(x,y), clear(x), handempty

pickup(x)

Precond: ontable(x), clear(x), handempty

Effects: ontable(x), clear(x),

handempty, holding(x)

putdown(x)

Precond: holding(x)

Effects: holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Sussman Anomaly

 Initial State Goal

 Sub goals:

 1) Put A on B

 2) Put B on C

c

a b c

a

b

Interchanging Variables Repeated

 Objective: Interchange the values of variables v1

and v2.

 s0= {value(v1,3), value(v2,5), value(v3,0)}

 g = {value(v1,5), value(v2,3)}

 assign(v, w, x, y)

 precond: value(v,x), value(w,y)

 effects: value(v,x), value(v,y)

How to Handle Problems like These?

 Several ways:

 Do something other than state-space search

 Use forward or backward state-space search, with

domain-specific knowledge to prune the search space

 Can solve both problems quite easily this way

 Example: block stacking using forward search

Domain-specific knowledge

 A blocks-world planning problem P = (O,s0,g) is
solvable
if s0 and g satisfy some simple consistency conditions

 g should not mention any blocks not mentioned in s0

 a block cannot be on two other blocks at once

 If P is solvable, can easily construct a solution of length
O(2m), where m is the number of blocks

 Move all blocks to the table, then build up stacks from the
bottom
 Can do this in time O(n)

 With additional domain-specific knowledge can do
even better …

Additional Domain-Specific Knowledge

 A block x needs to be moved if any of the following is
true:

 s contains ontable(x) and g contains on(x,y) - see a below

 s contains on(x,y) and g contains ontable(x) - see d below

 s contains on(x,y) and g contains on(x,z) for some y≠z, see
c below

 s contains on(x,y) and y needs to be moved - see e below

initial state goal

e

d

d

ba

c c

a

b

Domain – specific Algorithm

loop
if there is a clear block x such that

x needs to be moved and
x can be moved to a place where it won’t need

to be moved
then move x to that place

else if there is a clear block x such that
x needs to be moved

then move x to the table
else if the goal is satisfied

then return the plan
else return failure

repeat

STRIPS Planning Task

Monkey and Banana

