PLÁNOVÁNÍ A HRY - CV 3

<u>kopriva@agents.felk.cvut.cz</u>

State – space Planning

- Forward Search
- Backward Search
- Lifting
- **STRIPS**

Forward Search

Forward Search Properties

- Forward-search is sound
 - for any plan returned by any of its nondeterministic traces, this plan is guaranteed to be a solution
- Forward-search also is complete
 - if a solution exists then at least one of Forward-search's nondeterministic traces will return a solution.

Task 1: DWR, find 1 finite and 1 infinite trace

□ g: {at(r1, loc1), loaded(r1, c3)}

Task 2: Interchanging variables

- Objective: Interchange the values of variables v1 and v2.
- s₀ = {value(v1,3), value(v2,5), value(v3,0)}
- □ g = {value(v1,5), value(v2,3)}
- assign(v, w, x, y)
 - precond: value(v,x), value(w,y)
 - effects: ¬value(v,x), value(v,y)

Branching Factor of Forward Search

- initial state goal Forward search can have a very large branching factor
 - E.g., many applicable actions that don't progress toward goal
- Why this is bad:
 - Deterministic implementations can waste time trying lots of irrelevant actions
- Need a good heuristic function and/or pruning procedure
- How to do pruning?

Backward Search

For forward search, we started at the initial state and computed state transitions

 $\square \text{ new state} = \gamma(s, \alpha)$

For backward search, we start at the goal and compute inverse state transitions

• new set of subgoals = $\gamma^{-1}(g,a)$

- \Box To define $\gamma^{-1}(g, \alpha)$, must first define relevance:
 - An action a is relevant for a goal g if
 - a makes at least one of g's literals true

■ $g \cap effects(a) \neq \emptyset$

a does not make any of g's literals false

• $g^+ \cap effects^-(a) = \emptyset$ and $g^- \cap effects^+(a) = \emptyset$

Inverse State Transitions

- \Box If a is relevant for g, then
 - $\gamma^{-1}(g,a) = (g effects(a)) \cup precond(a)$
- □ Otherwise $\gamma^{-1}(g, a)$ is undefined
- Example: suppose that
 - $\Box g = \{on(b1,b2), on(b2,b3)\}$
 - $\Box a = stack(b1,b2)$
- \Box What is $\gamma^{-1}(g,a)$?

Backward Search

Backward-search
$$(O, s_0, g)$$

 $\pi \leftarrow$ the empty plan
loop
if s_0 satisfies g then return π
 $A \leftarrow \{a | a \text{ is a ground instance of an operator in } O$
and $\gamma^{-1}(g, a)$ is defined}
if $A = \emptyset$ then return failure
nondeterministically choose an action $a \in A$
 $\pi \leftarrow a.\pi$
 $g \leftarrow \gamma^{-1}(g, a)$

Lifting

Can reduce the branching factor of backward search if we partially instantiate the operators
 this is called *lifting* foo(a₁,y) q(a₁)

 $p(a_1, y)$

Lifted Backward Search

More complicated than Backward-search

Have to keep track of what substitutions were performed

But it has a much smaller branching factor

```
Lifted-backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        A \leftarrow \{(o, \theta) | o \text{ is a standardization of an operator in } O,
                     \theta is an mgu for an atom of g and an atom of effects<sup>+</sup>(o),
                     and \gamma^{-1}(\theta(g), \theta(o)) is defined}
        if A = \emptyset then return failure
        nondeterministically choose a pair (o, \theta) \in A
        \pi \leftarrow the concatenation of \theta(o) and \theta(\pi)
        g \leftarrow \gamma^{-1}(\theta(g), \theta(o))
```

STRIPS

- $\Box \ \pi \leftarrow$ the empty plan
- do a modified backward search from g
 - **I** instead of $\gamma^{-1}(s, a)$, each new set of subgoals is just precond(a)
 - whenever you find an action that's executable in the current state, then go forward on the current search path as far as possible, executing actions and appending them to π
 - repeat until all goals are satisfied

STRIPS

```
function groundStrips(O,s,g)
   plan \leftarrow \langle \rangle
   loop
       if s.satisfies(g) then return plan
       applicables \leftarrow
          {ground instances from O relevant for g-s}
       if applicables.isEmpty() then return failure
       action \leftarrow applicables.chooseOne()
       subplan \leftarrow groundStrips(O, s, action. preconditions())
       if subplan = failure then return failure
      s \leftarrow \gamma(s, subplan \bullet \langle action \rangle)
       plan \leftarrow plan • subplan • \langle action \rangle
```


Sussman Anomaly

- Initial State
- Sub goals:
- □ 1) Put A on B
- □ 2) Put B on C

Interchanging Variables Repeated

- Objective: Interchange the values of variables v1 and v2.
- □ s₀ = {value(v1,3), value(v2,5), value(v3,0)}
- □ g = {value(v1,5), value(v2,3)}
- assign(v, w, x, y)
 - precond: value(v,x), value(w,y)
 - effects: -value(v,x), value(v,y)

How to Handle Problems like These?

Several ways:

Do something other than state-space search

- Use forward or backward state-space search, with domain-specific knowledge to prune the search space
 - Can solve both problems quite easily this way
 - Example: block stacking using forward search

Domain-specific knowledge

- □ A blocks-world planning problem $P = (O, s_0, g)$ is solvable
 - if s_0 and g satisfy some simple consistency conditions
 - g should not mention any blocks not mentioned in s₀
 - a block cannot be on two other blocks at once
- □ If P is solvable, can easily construct a solution of length O(2m), where m is the number of blocks
 - Move all blocks to the table, then build up stacks from the bottom
 - Can do this in time O(n)
- With additional domain-specific knowledge can do even better ...

Additional Domain-Specific Knowledge

- A block x needs to be moved if any of the following is true:
 - **s** contains ON(able(x)) and g contains ON(x,y) see a below
 - **s** contains ON(x,y) and g contains ON(able(x) see d below
 - □ s contains ON(x,y) and g contains ON(x,z) for some $y \neq z$, see C below
 - **s** contains ON(x,y) and y needs to be moved see E below

Domain – specific Algorithm

loop if there is a clear block x such that x needs to be moved **and** x can be moved to a place where it won't need to be moved **then** move x to that place else if there is a clear block x such that x needs to be moved then move x to the table else if the goal is satisfied then return the plan else return failure repeat

STRIPS Planning Task

Monkey and Banana