

OPPA European Social Fund Prague & EU: We invest in your future.

PLÁNOVÁNÍ A HRY - CV 1

Course Info

- Gerhard Wickler lectures on planning
 - □ First week of term
 - Mon 16:15 19:30, T2:C3-54 (Dejvice)
 - Tue 16:15 19:30, K-112 (Vyčichlova)
 - Wed 16:15 19:30, K-112 (Vyčichlova)
 - Thu 16:15 19:30, K-112 (Vyčichlova)
 - Fri 12:45 − 16:00, K-112 (Vyčichlova)
- Game Theory lectures
 - In the second half of the term
 - Date to be specified

Grading

- □ To get Zápočet
 - Each tutorial short assessment (10 together)
 - Assesments graded 1/0
 - Need to get 70% to get Zápočet
- Exam
 - □ 20% Assignment in the 6th week of term
 - 80% Exam

Course Preparation / Recap

- Algorithm Properties
- Searches
- Logics
- Satisfiability Problem

ALGORITHM PROPERTIES

Algorithm Properties

Soundness

The result returned by the algorithm is a solution to the problem

Completeness

If a solution exists, the algorithm finds it

Admissibility

- It is guaranteed that the algorithm finds the optimal solution
- Optimality has to be defined

SEARCHING

Search Space

- Search Space S is a set of states, where the goal is to find the states that satisfy the condition g.
- Formally the **problem** is defined as a tuple (s₀,g,
 O), where:
 - \square s₀ is the initial state
 - g is the goal condition
 - □ O is a set of state transition operators

Breadth - First Search

- □ Is complete
- Complexity
 - □ Time O(b^d)
 - Space O(b^d)
 - **b** is the number of siblings of each node
 - d is the depth of the search space

Depth-First Search

- Is complete
 - □ if no endless paths are present
- Complexity
 - □ Time depends on the way of the search
 - Space O(d)
 - d is the depth of the search space

- g(n) total distance it has taken to get from the starting position to the current location
- h'(n) the estimated distance from the current position to the goal destination/state. A heuristic function is used to create this estimate on how far away it will take to reach the goal state.

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
- **Relations**: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

- □ Constants KingJohn, 2, NUS,...
- □ Predicates Brother, >,...
- □ Functions Sqrt, LeftLegOf,...
- □ Variables x, y, a, b,...
- \square Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow
- Equality =
- \square Quantifiers \forall , \exists

Atomic sentences

```
Atomic sentence = predicate (term_1,...,term_n)

or term_1 = term_2

Term = function (term_1,...,term_n)

or constant or variable
```

E.g., Brother(KingJohn, RichardTheLionheart) >
 (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

 Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \land S_2$, $S_1 \lor S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)

$$>(1,2) \vee \leq (1,2)$$

$$>(1,2) \land \neg >(1,2)$$

Models for FOL: Example

Universal quantification

- □ ∀<variables> <sentence>
- \square Everyone at NUS is smart: $\forall x \ At(x,CVUT) \Rightarrow Smart(x)$
- $\neg \forall x \ P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

A common mistake to avoid

- \square Typically, \Rightarrow is the main connective with \forall
- □ Common mistake: using \land as the main connective with \forall :

 $\forall x \ At(x, CVUT) \land Smart(x)$

means "Everyone is at CVUT and everyone is smart"

Existential quantification

- □ ∃<variables> <sentence>
- Someone at CVUT is smart:
- $\Box \exists x \ At(x, CVUT) \land Smart(x)$
- \Box $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

Another common mistake to avoid

- \square Typically, \wedge is the main connective with \exists
- \square Common mistake: using \Longrightarrow as the main connective with \exists :
- $\square \exists x \ \mathsf{At}(x, \mathsf{CVUT}) \Longrightarrow \mathsf{Smart}(x)$
 - is true if there is anyone who is not at CVUT!

Equality

□ $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

- □ E.g., definition of Sibling in terms of Parent:

Satisfiability

- Model of the formula is a set of assignments of the true/false values to the variables in a way that the formula is evaluated to be true.
 - \square \neg p is true iff p is false
 - \square p \wedge q is true iff p is true and q is true
- Satisfiability problem (SAT) is a problem of evaluating, whether a model for the given formula exists.

3-SAT problem

- Conjunctive normal form
 - 3-CNF
- First known NP-complete problem
- \Box (x_{11} OR x_{12} OR x_{13}) AND (x_{21} OR x_{22} OR x_{23}) AND (x_{31} OR x_{32} OR x_{33}) AND

• • • • •

OPPA European Social Fund Prague & EU: We invest in your future.