

OPPA European Social Fund Prague & EU: We invest in your future.

TEMPORAL LOGIC & PLANNING

kopriva@agents.felk.cvut.cz

Quick Review of First Order Logic

- □ First Order Logic (FOL):
 - constant symbols, function symbols, predicate symbols
 - □ logical connectives (\lor , \land , \neg , \Rightarrow , \Leftrightarrow), quantifiers (\forall , \exists), punctuation
 - Syntax for formulas and sentences $on(A,B) \land on(B,C)$
- $on(A,B) \land on(B,C)$ $\exists x on(x,A)$ $\forall x (ontable(x) \Rightarrow clear(x))$

- □ First Order Theory *T*:
 - "Logical" axioms and inference rules encode logical reasoning in general
 - Additional "nonlogical" axioms talk about a particular domain
 - Theorems: produced by applying the axioms and rules of inference
- Model: set of objects, functions, relations that the symbols refer to
 - For our purposes, a model is some state of the world s
 - \square In order for s to be a model, all theorems of T must be true in s
 - s |= on(A,B) read "s satisfies on(A,B)" or "s models on(A,B)"
 means that on(A,B) is true in the state s

Linear Temporal Logic

- Modal logic: FOL plus modal operators П
- Linear Temporal Logic (LTL):
 - Purpose: to express a limited notion of time
 - An infinite sequence $\langle 0, 1, 2, ... \rangle$ of time instants
 - An infinite sequence $M = \langle s_0, s_1, \ldots \rangle$ of states of the world
 - Modal operators to refer to the states in which formulas are true:
 - $\bigcirc f$ - nextf - f holds in the next state, e.g., \bigcirc on(A,B)
 - $\Diamond f$ eventually f f either holds now or in some future state
 - | | f always f f holds now and in all future states

 - $f_1 \cup f_2$ f_1 until f_2 f_2 either holds now or in some future state, and f_1 holds until then
 - Propositional constant symbols TRUE and FALSE

Linear Temporal Logic (continued)

Quantifiers cause problems with computability

- **D** Suppose f(x) is true for infinitely many values of x
- **D** Problem evaluating truth of $\forall x \ f(x)$ and $\exists x \ f(x)$

Bounded quantifiers

■ Let g(x) be such that $\{x : g(x)\}$ is finite and easily computed $\forall [x:g(x)] f(x)$

• means $\forall x \ (g(x) \Rightarrow f(x))$

• expands into $f(x_1) \wedge f(x_2) \wedge \ldots \wedge f(x_n)$

 $\exists [x:g(x)] f(x)$

• means $\exists x (g(x) \land f(x))$

• expands into $f(x_1) \lor f(x_2) \lor \ldots \lor f(x_n)$

Models for LTL

 \square A model is a triple (*M*, s_i , *v*)

- $\square M = \langle s_0, s_1, \ldots \rangle \text{ is a sequence of states}$
- \square s_i is the *i*'th state in *M*,
- v is a variable assignment function
 - a substitution that maps all variables into constants

□ Write
$$(M, s_i, v)$$
 | = f
to mean that $v(f)$ is true in s_i

□ Always require that $(M, s_i, v) \mid = TRUE$ $(M, s_i, v) \mid = \neg FALSE$

Examples

Suppose $M = \langle s_0, s_1, \ldots \rangle$

 $(M,s_0,v) \mid = \bigcirc \bigcirc on(A,B)$ means A is on B in s_2

Abbreviations:

 $\begin{array}{ll} (M,s_0) & |= & \bigcirc \bigcirc on(A,B) \text{no free variables, so } v \text{ is irrelevant:} \\ M & |= & \bigcirc \bigcirc on(A,B) & \text{if we omit the state, it defaults to } s_0 \end{array}$

Equivalently,

 $(M,s_2,v) \mid = on(A,B)$ $s_2 \mid = on(A,B)$

same meaning with no modal operators same thing in ordinary FOL

 \square M |= \square -holding(C)

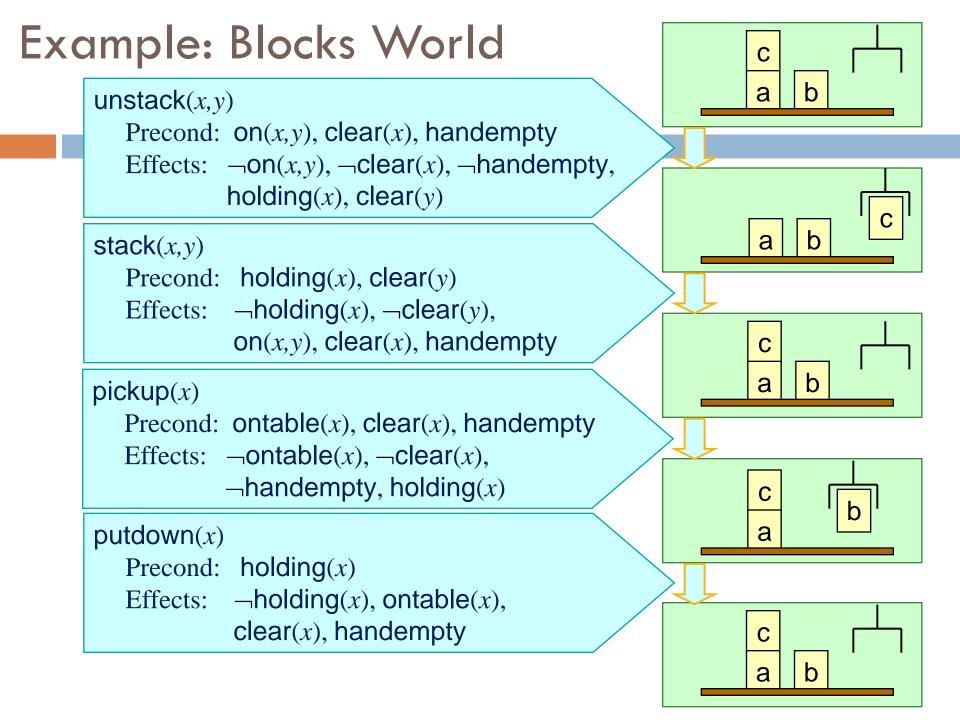
in every state in M, we aren't holding C

 $\square M \mid = \square(on(B, C) \Longrightarrow (on(B, C) \cup on (A, B)))$

 \square whenever we enter a state in which B is on C, B remains on C until A is on B.

Where We're Going

- Basic idea:
 - TLPLan does a forward search, using LTL to do pruning tests
 - Input includes a current state s, and a control formula f written in LTL
 - If f isn't satisfied, then s is unacceptable => backtrack
 - Else keep going
- We'll need to augment LTL to include a way to refer to goal states
 Include a GOAL operator such that GOAL(f) means f is true in every goal state
 ((M,s_i,V),g) |= GOAL(f) iff (M,s_i,V) |= f for every s_i ∈ g
- Next, some examples of control formulas



Supporting Axioms

- Want to define conditions under which a stack of blocks will never need to be moved
- \Box If x is the top of a stack of blocks, then we want goodtower(x) to hold if
 - x doesn't need to be anywhere else
 - None of the blocks below x need to be anywhere else
- Definitions to support this:
 - **goodtower(x)** \Leftrightarrow clear(x) $\land \neg$ GOAL(holding(x)) \land goodtowerbelow(x)
 - **goodtowerbelow**(x) \Leftrightarrow

[ontable(x) ∧ ¬∃[y:GOAL(on(x,y)]] ∨ ∃[y:on(x,y)] {¬GOAL(ontable(x)) ∧ ¬GOAL(holding(y)) ∧ ¬GOAL(clear(y)) ∧ ∀[z:GOAL(on(x,z))] (z = y) ∧ ∀[z:GOAL(on(z,y))] (z = x) ∧ goodtowerbelow(y)}

■ badtower(x) \Leftrightarrow clear(x) $\land \neg$ goodtower(x)

Blocks World Example (continued)

Three different control formulas:

(1) Every goodtower must always remain a goodtower:

 $\Box \left(\forall [x:clear(x)] \ goodtower(x) \Rightarrow \bigcirc (clear(x) \lor \exists [y:on(y,x)] \ goodtower(y)) \right)$

(2) Like (1), but also says never to put anything onto a badtower: $\Box \Big(\forall [x:clear(x)] \ goodtower(x) \Rightarrow \bigcirc (clear(x) \lor \exists [y:on(y,x)] \ goodtower(y) \\ \land \ badtower(x) \Rightarrow \bigcirc (\neg \exists [y:on(y,x)]) \Big) \Big)$

(3) Like (2), but also says never to pick up a block from the table unless you can put it onto a goodtower:

$$\Box \left(\forall [x:clear(x)] \ goodtower(x) \Rightarrow \bigcirc (clear(x) \lor \exists [y:on(y,x)] \ goodtower(y)) \\ \land \ badtower(x) \Rightarrow \bigcirc (\neg \exists [y:on(y,x)]) \\ \land \ (ontable(x) \land \exists [y:GOAL(on(x,y))] \neg goodtower(y)) \\ \Rightarrow \bigcirc (\neg holding(x)) \right)$$

Outline of How TLPIan Works

- Recall that TLPLan's input includes a current state s, and a control formula f written in LTL
 - How can TLPLan determine whether there exists a sequence of states M beginning with s_r such that $M \mid = f$?

• We can compute a formula f^+ such that for every sequence $M = \langle s, s^+, s^{++}, ... \rangle$,

- $\square M \mid = f^{+} \text{ iff } M^{+} = \langle s^{+}, s^{++}, \ldots \rangle \text{ satisfies } f^{+}$
- **\Box** f^+ is called the **progression** of f through s
- □ If f^+ = FALSE then no M^+ can satisfy f^+
 - Thus no M can satisfy f, so TLPLan can backtrack
- \Box Otherwise, need to determine whether there is an M^+ that satisfies f^+
 - For every child s^+ of s, call TLPLan recursively on s^+ and f^+
- \Box How to compute the progression of f through s?

Procedure Progress(*f*, *s*)

Case

1. f contains no temporal operators:

$$f^{+} := \text{TRUE if } s^{-} \models f, \text{FALSE otherwise.}$$
2. $f = f_1 \wedge f_2$:
 $f^{+} := \text{Progress}(f_1, s) \wedge \text{Progress}(f_2, s)$
3. $f = \neg f_1$:
 $f^{+} := \neg \text{Progress}(f_1, s)$
4. $f = \bigcirc f_1$:
 $f^{+} := f_1$
5. $f = f_1 \cup f_2$:
 $f^{+} := \text{Progress}(f_2, s) \vee (\text{Progress}(f_1, s) \wedge f)$
6. $f = \diamondsuit f_1$:
 $f^{+} := \text{Progress}(f_1, s) \vee f$
7. $f = \Box f_1$:
 $f^{+} := \text{Progress}(f_1, s) \wedge f$
8. $f = \forall [x:\gamma(x)] f_1$:
 $f^{+} := \wedge_{i=1,\ldots,n} \text{Progress}(f_i, s)$
9. $f = \exists [x:\gamma(x)] f_1$:
 $f^{+} := \bigvee_{j=1,\ldots,n} \text{Progress}(f_i, s)$

where $\{c_1, ..., c_n\} = \{x : s \mid = \gamma(x)\}$, and $f_i = f$ with x replaced by c_i

Boolean simplification rules:

- 1. [FALSE $\land \phi | \phi \land$ FALSE] \mapsto FALSE, 3. \neg TRUE \mapsto FALSE,
- 2. [TRUE $\land \phi | \phi \land \text{TRUE}] \mapsto \phi$,

- Starken / meon,
- 4. \neg FALSE \mapsto TRUE.

Examples

□ Suppose $f = \Box$ on(a,b)

- □ f^+ = Progress(on(a,b), s) \land □ on(a,b)
- **If** on(a,b) is true in s then
 - $f^+ = \text{TRUE} \land \Box \text{ on}(a,b)$
 - simplifies to □ on(a,b)
- If on(a,b) is false in s then
 - $f^+ = FALSE \land \Box on(a,b)$
 - simplifies to FALSE

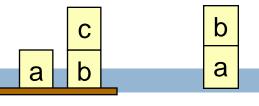
Summary:

- \square generates a test on the current state
- \square If the test succeeds, \square propagates it to the next state

Examples (continued)

- $\Box \quad \text{Suppose } f = \Box(on(a,b) \Rightarrow Oclear(a))$
 - □ f^+ = Progress[□(on(a,b) ⇒Oclear(a)), s]
 - $\square = \operatorname{Progress}[\operatorname{on}(a,b) \Rightarrow \operatorname{Oclear}(a), s] \land \Box(\operatorname{on}(a,b) \Rightarrow \operatorname{Oclear}(a))$
 - If on(a,b) is true in s, then
 - f^+ = clear(a) $\land \Box$ (on(a,b) \Rightarrow Oclear(a))
 - Since on(a,b) is true in s, s⁺ must satisfy clear(a)
 - The "always" constraint is propagated to s⁺
 - If on(a,b) is false in s, then
 - $f^+ = \Box(on(a,b) \Rightarrow Oclear(a))$
 - The "always" constraint is propagated to s⁺

Example



- $\square s = \{ontable(a), ontable(b), clear(a), clear(c), on(c,b)\}$
- $\Box g = \{on(b, a)\}$
- f = □∀[x:clear(x)] {(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ O¬holding(x)}
 never pick up a block x if x is not required to be on another block y

$$f^+ = \mathsf{Progress}(f, s) \land f$$

- Progress(f,s)
 - = Progress(\forall [x:clear(x)] {(ontable(x) $\land \neg \exists$ [y:GOAL(on(x,y))]) \Rightarrow O \neg holding(x)},s)
 - = Progress((ontable(a) $\land \neg \exists [y:GOAL(on(a,y))]) \Rightarrow O\neg holding(a)$ },s) \land Progress((ontable(b) $\land \neg \exists [y:GOAL(on(b,y))]) \Rightarrow O\neg holding(b)$ },s)

= --holding(a) \land TRUE

$$f^{+} = -holding(a) \land TRUE \land f \\ = -holding(a) \land \\ \Box \forall [x:clear(x)] \{(ontable(x) \land \neg \exists [y:GOAL(on(x,y))]) \Rightarrow O \neg holding(x)\}$$

Pseudocode for TLPIan

Nondeterministic forward search

- \square Input includes a control formula f for the current state s
- \square When we expand a state s, we progress its formula f through s
- If the progressed formula is false, s is a dead-end
- Otherwise the progressed formula is the control formula for s's children

Procedure TLPlan (s, f, g, π) $f^+ \leftarrow \text{Progress}(f, s)$ if $f^+ = \text{FALSE}$ then return failure if s satisfies g then return π $A \leftarrow \{ \text{actions applicable to } s \}$ if A = empty then return failurenondeterministically choose $a \in A$ $s^+ \leftarrow \gamma(s, a)$ return TLPlan $(s^+, f^+, g, \pi.a)$

Discussion

- 2000 International Planning Competition
 - TALplanner: same kind of algorithm, different temporal logic
 - received the top award for a "hand-tailored" (i.e., domainconfigurable) planner
- TLPIan won the same award in the 2002 International Planning Competition
- □ Both of them:
 - Ran several orders of magnitude faster than the "fully automated" (i.e., domain-independent) planners
 - especially on large problems
 - Solved problems on which the domain-independent planners ran out of time/memory

OPPA European Social Fund Prague & EU: We invest in your future.