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Multi-agent Constraint Satisfaction Problems (CSP)

Given < X ,D,C ,A > where:

X = {x1, .., xn} is a set of n variables.

D = {d1, .., dn} is a set of n domains.

C = {c1, .., cm} is a set of m constraints.

A = {a1, .., an} is a set of n agents, not necessarily all
different.

Find solution = (x1 = v1 ∈ d1, ..., xn = vn ∈ dn) such that for all
constraints, value combinations are allowed by relations.
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Example of a CSP: Radio Spectrum Allocation

Goal: select transmission channels that do not interfere with
others:
.

T2:
{a,b}

T3:
{a,b}

T5:
{a,b}

T4:
{a,b,c}

T1:
{a,b}
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Resource Allocation (2)

CSP model:

Variables = choice of frequency

Domains = frequency bands

Constraints = inequalities between overlapping ranges

Agents control transmitters

x1:
{a,b}

x2:
{a,b}

=

=
=

=

=

x3:
{a,b}

x4:
{a,b,c}

x5:
{a,b}
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Constraint Optimization

Some solutions are better than others.

Express using soft constraints: every tuple has a cost.

Optimal solution =

solution that minimizes sum of costs (utiliarian).
solution that minimizes maximal cost (egalitarian).
mixture (semiring).

Most real problems are optimization problems.
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Overview

Distributed algorithms for solving CSP and COP.

synchronous backtracking

asynchronous backtracking/ADOPT

dynamic programming/DPOP

distributed local search

random sampling

Follows survey article:
Faltings, B. Distributed Constraint Programming. In Rossi, F., van Beek,

P. and Walsh, T. (editors), Handbook of Constraint Programming, pages

699-729. Elsevier, 2006 (also at http://liawww.epfl.ch/)
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Solving a CSP

Importance of CSP: large theory and tools for computing solutions
2 common methods:

backtrack search: assign one variable at a time, backtrack
when no assignment without satisfying constraints.

local search: start with random assignment, make local
changes to reduce number of constraint violations.
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Distributed CSP (DCSP)

Problem is distributed in a network of agents.

Each variable belongs to one agent who is responsible for
setting its value (typically these are connected to complex
local subproblems).

Constraints are known to all agents with variables in it.

Distributed �= parallel: distribution of variables to agents
cannot be chosen to optimize performance.
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Reasons for a distributed solution

Real world problems are often distributed:

no agreement on a common model.

costly to formalize constraints and preferences for all possible
cases.

no trusted third party.

privacy concerns.

but generally not efficiency!
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Synchronous Backtracking
Asynchronous Backtracking
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Synchronous Backtracking

Agents agree on an variable order and repeat:

1 send partial solution up to xk−1 to k-th agent.

2 k-th agent generates the next extension to this partial solution.

3 if solution cannot be extended consistently, k ← k − 1.

4 if solution can be extended consistently, k ← k + 1.

5 if k < 1, stop: unsolvable.

6 if k > n, assigment = solution.

a1 a2 ... ak ... an

x1 x2 xk xn

(x1=v1,x2=v2) (x1=v1,..,xk=vk) (x1=v1,...,xn=vn)(x1=v1)

Backtrack
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Optimization: SyncBB

Extend synchronous backtracking to optimization:

every constraint contributes a cost.

upper bound = lowest cost of full assignment found so far.

partial assignment extended while cost < upper bound.

result = solution with lowest cost.
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Improvements

Synchronous backtracking allows common CSP heuristics:

forward checking: send partial solution to all higher agents.

dynamic variable ordering: select next variable according to
domain size.

backjumping: reduce k to last variable involved in conflict.

a1 a2 ... ak ... an

x1 x2 xk xn

(x1=v1,x2=v2) (x1=v1,..,xk=vk) (x1=v1,...,xn=vn)(x1=v1)

Forward
Checking

Backtrack Backjump
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Implementing CSP heuristics

Distributed forward checking:

A(xk) sends (x1 = v1, .., xk = vk) to all A(xj), j > k

A(xj) removes inconsistent values and initiates backtrack at
xk whenever domain becomes empty

Can be done aynchronously (asynchronous forward checking)
Dynamic variable ordering:

A(xj) sends back size of remaining domain for xj

A(xk) chooses smallest one to be xk+1

Backjumping:
reduce k to last variable involved in current conflict.
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Performance metrics

non-concurrent constraint checks (NCCC): longest chain of
constraint checks with serial dependency (ignores message
delivery time).

concurrent time: (simulated) time taken in parallel execution.

wall clock time (time taken by the simulator).

number of messages (ignores computation time and size of
messages).

amount of information exchanged (ignores computation time).
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Asynchronous Backtracking

Agents work in parallel without synchronization.

Global priority ordering among variables (ex.: unique processor
id); assume xi has higher priority than xj whenever i < j .

Asynchronous message delivery, but all messages arrive in
order in which they were sent.

constraints are binary.

every agent ai is responsible for one variable xi .
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ABT data structures

Each agent maintains

a current value for its own variable.

all constraints with higher priority variables.

a list of all lower priority variables.

an agent view that records the values of all known higher
priority variables.

for each value of its own variable, a set of nogood that
indicate lower bounds on the cost that choosing this value has
for lower priority variables.
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Adjusting own variable value

Own variable should be adjusted to the value with the lowest
possible cost:

cost(v) ≥ ∑
constraints(agent view) +

∑
nogoods(v)

if all nogoods are exact, cost(v) is also exact.

set variable x ← v with lowest cost bound.

if cost(v) > 0 send nogood to higher priority variable.

similarly if cost is exact, indicate to higher priority variable.
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ABT messages

Agent informs:

lower priority agents of value choice using OK? messages.

closest higher priority agent of cost bounds using nogood

messages.

newly discovered agents using add-link messages.

xi:
{v,w,..}

ADD−LINK

NOGOOD(...)

OK(...)

NOGOOD(...)

OK(...)xj xk

j,l < i < kxl
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Example (1)

=

=
=

=

=
x2=a

x1=a

x3=a

x4=a

x5=a

message(s) action

a2 OK(x1=a) x2 ← b

a3 OK(x2=a) x3 ← b

a4 OK(x1=a) x4 ← b

a5 OK(x3=a) x5 ← b

OK(x4=a)
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Example (2)

=

=
=

=

=

x1=a

x2=b

x3=b

x5=b

x4=b

message(s) action

a3 OK(x2=b) x3 ← a

a5 OK(x3=b) x5 ← a

OK(x4=b)
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Example (3)

=

=
=

=

=

x1=a

x2=b

x3=a

x5=a

x4=b

message(s) action

a5 OK(x3=a) inconsistent!
x3 = a⇒ x5 �= a

x4 = b⇒ x5 �= b

a5 sends a nogood to a4:
v = b, cond = (x3 = a), tag = x5 cost = 1
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Example(4)

Nogoods give lower bounds on costs incurred by the lower
priority variables mentioned in the tag:
nogood.cond ⊆ self.agentview ∧ nogood.v = self.x.v ⇒
cost-sum(nogood.tag) ≥ nogood.cost

a4 adds the nogood for value b, with tag x5.

However, this requires checking whether it is applicable, i.e.
that nogood.cond corresponds to its agent view.

a4 does not know about x3, so it requests a new link using an
add-link message to a3.

Now it can be verified that the agentview satisfies the
condition.
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Example (5)

=

=
=

=

=

x1=a

x2=b

x3=a

x5=?

x4=b

a4 now finds that value a is inconsistent because of x1, and b
is inconsistent because of the nogood.

chooses a third value, c , and informs a5.

a5 can now choose x5 = b and obtain a consistent solution.
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Termination Detection

x5 has a value with cost=0 and no lower priority agents.

⇒ cost of x5 is exact, a5 sends an exact nogood with cost 0 to
a4 and a3.

a4 now has an exact nogood for its only lower-priority agent,
and itself sends an exact nogood with cost 0 to a3.

...

a1 has no higher-priority agent: it generates an exact nogood
but decides termination.

when there is no solution, a1 generates an exact nogood with
cost �= 0.
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Extension to Optimization

Nogoods give lower bounds on costs.

Compute total cost of all lower priority agents by summing
nogoods.

Nogood tags must exactly cover all lower-priority variables,
otherwise some variables are not counted or counted multiple
times.

If we can prevent this from happening, then ABT works fine
for optimization as well.
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Pseudotrees

Split constraint graph into spanning tree + back edges.

Identify root: every node has one parent (path to the root).

Pseudotree: all backedges go to ancestors of the node.

A pseudotree exists for all graphs and choices of root node.

Example: DFS tree.
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Constructing a DFS ordering

Depth-first search traversal:

move to neighbour not yet visited

connect neighbours already in graph
by back edges

backtrack when no new neighbour

Note: all back edges connect to ancestors!

x1

x2

x3

x4

x5
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Properties of DFS trees

nogoods are always sent to lowest-priority agent.

⇒ nogoods are never sent along back edges.

⇒ no variable can appear in nogoods from different branches.

⇒ exact nogoods always add up to an exact bound!
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Asynchronous optimization: ADOPT

using pseudotree ordering ⇒ ABT algorithm with valued
nogoods gives exact optimization.

additional optimization: remember cost of nogoods that are
erased after change in agent view; when context is revisited,
install as bound using backtrack thresholds.

result = ADOPT, a widely cited algorithm for distributed
constraint optimization.
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ADOPT-NG

different optimization of ABT: send valued nogoods to all
ancestors, not just the lowest one.

⇒ ancestors higher in the tree can form bounds on the relative
quality of different valuations.

greatly improves efficiency, even without backtrack threshold
mechanism.
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Properties of asynchronous backtracking

Algorithm is complete: if there is a solution, it will be found
(due to direct correspondence with backtracking algorithm).

CSP heuristics costly to implement.

Termination needs to be detected with termination detection
algorithm (= consensus problems).

Asynchronous behavior can create wasted search effort ⇒
more messages than synchronous backtracking, but
sometimes shorter execution time (parallelism)
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Dynamic Programming Optimization Protocol (DPOP)

Principle: replace variables by constraints.

Consider variable x having constraint with y.

For each value of x, there may be a consistent value of y.

⇒ replace y by a constraint on x:

x=v is allowed if there is a consistent value of y.

Optimization version:

utility(x=v) = utility(x=v,y=w); w = best possible
value of y given x=v.
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Example

value(x)

y

x

util(x)

y sends constraint in util(x) message.

⇒ x can decide (best) value locally.

x informs y of value using value(x) message.
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Dynamic programming in trees

Rooted tree: every node has at most
one parent

Nodes send UTIL messages to their
parents

Best values of x2, x3 ⇒ unary
constraint on x1

x1 sums up UTIL messages + own
constraint ⇒ unary constraint on x0

x0 picks best value v(x0); sends
value(x0=v(x0)) → x1

x1 picks best value given x0 and
informs x2,x3

x3x2

x1

x0

util(x1)

util(x0)

value(x0)

value(x1)

util(x1)

Boi Faltings Multi-agent Constraint Programming 34/58



Multi-agent Constraint Satisfaction
Complete Algorithms

Incomplete Algorithms

Synchronous Backtracking
Asynchronous Backtracking
Dynamic Programming - DPOP

Dynamic programming in graphs

Use pseudotree/DFS ordering:

send UTIL messages along the tree
edges.

add extra dimensions for variables
involved in back edges.

message size grows exponentially in
number of dimensions.

Complexity exponential in treewidth of order-

ing!

x1

x2

x3

x4

x5

Boi Faltings Multi-agent Constraint Programming 35/58



Multi-agent Constraint Satisfaction
Complete Algorithms

Incomplete Algorithms

Synchronous Backtracking
Asynchronous Backtracking
Dynamic Programming - DPOP

Example Problem

x0

c(x0, x3)
x3
w b

w 3 0
b 3 3

x0

c(x0, x1)
x1
w b

w 1 0
b 2 2

x1

c(x1, x2)
x2
w b

w 1 0
b 0 1

x1

c(x1, x3)
x3
w b

w 2 0
b 0 2 x3x2

x1

x0
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Distributed dynamic programming

UTIL(x1) =
x1

w b
0 0

UTIL(x0, x1) = x0

x1
w b

w 0 2
b 3 3

UTIL(x0) =
x0

w b
1 3 x3x2

x1

x0

util(x0,x1)

util(x1)

util(x0)

value(x0)

value(x1)

x0: w; send value(x0 = w) → x1
x1: w; send value(x0 = w, x1 = w) → x2, x3
x2 and x3: b
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Complexity

Two messages per variable (UTIL and VALUE).

⇒ number of messages grows linearly with the size of the
problem.

However, the maximum message size grows exponentially with
the tree-width of the induced graph.

In many distributed problems, the tree-width is relatively
small.
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DPOP variants

S-DPOP (AAAI 2005): self-stabilizing.

A-DPOP (CP 2005): approximation through dropping
constraints.

O-DPOP (AAAI 2006): Open DPOP: incremental elicitation.

PC-DPOP (IJCAI 2007): DPOP with partial centralization.
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MB-DPOP (IJCAI 2007)

tradeoff between number and size of messages: combine
search with dynamic programming.

MB-DPOP limits message size and switches to search
whenever message exceeds dimension limit.

allows continuous scaling from pure search to pure dynamic
programming.
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Open Constraint Optimization

Observation: can solve CSP without knowing domains
completely.

Extends to optimization:
x1 x2=

A(0)

B(4)

C(6)

D(7)

..

A(0)

B(3)

C(5)

D(7)

..

If x1 = a, x2 = b is consistent, no other solution can be better!

Implemented in ODPOP.
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DPOP performance
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Distributed local search

Drawbacks of systematic search:

need variable ordering (impossibility result by Dechter)

no anytime behavior: have to wait for termination.

often (too) costly.

Sacrifice completeness ⇒ local search

Boi Faltings Multi-agent Constraint Programming 43/58



Multi-agent Constraint Satisfaction
Complete Algorithms

Incomplete Algorithms

Distributed Local Search
Random Sampling

Min-conflicts

Assign random value to each variable in parallel (this will
conflict with some constraints).

At each step, find the change in variable assignment which
most reduces the number of conflicts .

Corresponds to search by ”hill-climbing”.
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Distributed min-conflicts

Neighbourhood of N(xi ) = variables connected to xi through
constraints.

Change to xi can happen asynchronously with others as long
as there is no other change in the neighbourhood.

⇒ two neighbouring agents are not allowed to change
simultaneously:

highest improvement wins
ties broken by fixed ordering

⇒ parallel, distributed execution.

also called MGM
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Breakout Algorithm

Similar to min-conflict, but assign dynamic priority to every
conflict (constraint), initially =1

Modify variable which reduces the most the sum of the
priority values of all conflicts.

When local minimum:
increase weight of every existing conflict

Eventually, new conflicts will have lower weight than existing
ones ⇒ breakout
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Local minima

If all improvements = 0:

1 increase weight of all constraint violations

2 restart asynchronous changes
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Random Sampling

Carry out optimization as in synchronous branch-and-bound, but:

instead of systematic enumeration, sample variable domains
randomly

for each sampled assignment, feed backwards sum of costs:
each agent knows the cost to its children.

keep a record of the best cost µt
a,d for each context a and

sample value d , and also the best value da found at time t.

Termination: sequentially select best value from first to last agent.
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Extension to Pseudotrees

Does not require linear order, but samples can be generated
simultaneously for different branches in a pseudotree:

Boi Faltings Multi-agent Constraint Programming 49/58



Multi-agent Constraint Satisfaction
Complete Algorithms

Incomplete Algorithms

Distributed Local Search
Random Sampling

Distributed Upper Confidence Bounds on Trees (DUCT)

for value d and context a, compute confidence interval Lta,d
using Hoeffding bound.

⇒ estimate distance from optimum of worst sample.

⇒ estimate bound B t
a,d on optimal cost for value d in context a.

⇒ sample values with lowest estimate.

bound probability that µa,da is further than δ from the
optimum to be ε
⇒ termination condition.

Note that all tests are local, no communication is required.
See:

Ottens, B., Dimitrakakis, C. and Faltings, B. DUCT: An Upper Confidence Bound Approach to Distributed

Constraint Optimization Problems. In Proceedings of the 26th conference of the AAAI, 2012.
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Performance: Cost
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Performance: Time
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Privacy Protection

Distributed computation alone does not protect privacy.

Homomorphic encryption can ensure complete privacy of
preferences and final choices.

With codenames, distributed computation can protect
identities of agents and structure of constraints.

See:
Faltings, B., Léauté, T. and Petcu, A. Privacy Guarantees through Distributed Constraint Satisfaction. In
Proceedings of the 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’08),
pages 350-358, 2008
Léaut]’e, T. and Faltings, B. Privacy-Preserving Multi-agent Constraint Satisfaction. In 2009 IEEE International
Conference on Privacy, Security, Risk and Trust (PASSAT-09), pages 17-25, 2009
Léaut]’e, T. and Faltings, B. Coordinating Logistics Operations with Privacy Guarantees. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI’11), 2011
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Self-Interest

In many cases, agents just want to maximize their own
benefit.

Most solutions are better for some and worse for others.

⇒ need to compensate those who lose.

Not a problem when utilities are publicly known: gain of the
winners always exceeds losses of the losers.

However, agents could manipulate the propagation.
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Private Utilities

When utilities are private, agents would exaggerate their own
preferences.

Counter by making each agent pay a VCG
(Vickrey-Clarke-Groves) tax.

VCG tax(ai) = cost increase on other agents due to agent ai .

⇒ changes agent incentive from optimizing own cost to
optimizing combined cost of all agents.

⇒ agent has no incentive to manipulate solving process (faithful
execution)!
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M-DPOP

Computing VCG tax requires computing costs when agent ai
is not present (marginal economy).

For much of the problem, this is the same as the full
optimization: reuse this work.

M-DPOP combines all propagations in parallel and makes this
process efficient.
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Software

Several open-source frameworks exist:

FRODO (http://frodo2.sourceforge.net/): from
EPFL-LIA, implements most algorithms using search, dynamic
programming, local search and (soon) DUCT. Integration with
open-source JaCoP solver for complex local problems.

DisChoco (http://www2.lirmm.fr/coconut/dischoco/):
from CNRS Montpellier, distributed framework for connecting
Choco constraint solvers.

various algorithms available individually.
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Summary

Multi-agent constraint satisfaction: interest of distributed
algorithms.

Synchronous and asynchronous backtracking.

From satisfaction to optimization.

DPOP: dynamic programming.

Distributed local search.
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