PRA|HA * ¥
PRA|GA B i
A PRA|G e

EVROPSKA UNIE

OPPA European Social Fund
Prague & EU: We invest in your future.




Multi-agent Constraint Satisfaction

Multi-agent Constraint Programming

Boi Faltings

Laboratoire d’'Intelligence Artificielle
boi.faltings@epfl.ch
http://moodle.epfl.ch/

May 10, 2012

Boi Faltings Multi-agent Constraint Programming 1/58



Multi-agent Constraint Satisfaction

Multi-agent Constraint Satisfaction Problems (CSP)

Given < X, D, C, A > where:
@ X ={x1,..,%n} is a set of n variables.
o D={dy,..,d,} is a set of n domains.
o C={c,..,cm} is a set of m constraints.
@ A={a1,..,a,} is a set of n agents, not necessarily all
different.

Find solution = (x; = v; € di, ..., X, = v, € d,) such that for all
constraints, value combinations are allowed by relations.
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Multi-agent Constraint Satisfaction

Example of a CSP: Radio Spectrum Allocation

Goal: select transmission channels that do not interfere with
others:
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Multi-agent Constraint Satisfaction

Resource Allocation (2)

CSP model:
@ Variables = choice of frequency
@ Domains = frequency bands
@ Constraints = inequalities between overlapping ranges

@ Agents control transmitters
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Multi-agent Constraint Satisfaction

Constraint Optimization

@ Some solutions are better than others.
@ Express using soft constraints: every tuple has a cost.

@ Optimal solution =

# solution that minimizes sum of costs (utiliarian).
» solution that minimizes maximal cost (egalitarian).
@ mixture (semiring).

@ Most real problems are optimization problems.
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Multi-agent Constraint Satisfaction

Overview

Distributed algorithms for solving CSP and COP.
@ synchronous backtracking
@ asynchronous backtracking/ADOPT
@ dynamic programming/DPOP
@ distributed local search
@ random sampling

Follows survey article:

Faltings, B. Distributed Constraint Programming. In Rossi, F., van Beek,
P. and Walsh, T. (editors), Handbook of Constraint Programming, pages
699-729. Elsevier, 2006 (also at http://liawww.epfl.ch/)
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Multi-agent Constraint Satisfaction

Solving a CSP

Importance of CSP: large theory and tools for computing solutions
2 common methods:

@ backtrack search: assign one variable at a time, backtrack
when no assignment without satisfying constraints.

@ local search: start with random assignment, make local
changes to reduce number of constraint violations.
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Multi-agent Constraint Satisfaction

Distributed CSP (DCSP)

@ Problem is distributed in a network of agents.

@ Each variable belongs to one agent who is responsible for
setting its value (typically these are connected to complex
local subproblems).

@ Constraints are known to all agents with variables in it.

@ Distributed # parallel: distribution of variables to agents
cannot be chosen to optimize performance.
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Multi-agent Constraint Satisfaction

Reasons for a distributed solution

Real world problems are often distributed:

@ no agreement on a common model.

@ costly to formalize constraints and preferences for all possible
cases.

@ no trusted third party.

] privacy concerns.

but generally not efficiency!
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Complete Algorithms

Synchronous Backtracking

Agents agree on an variable order and repeat:

© send partial solution up to x,_1 to k-th agent.

© k-th agent generates the next extension to this partial solution.
© if solution cannot be extended consistently, kK + k — 1.
@ if solution can be extended consistently, k < k + 1.
@ if k <1, stop: unsolvable.
Q@ if k > n, assigment = solution.

(x1=v1r=, K=vixz=vz) 2K (x1=v1,.xk=vK)  (x1=v1,..xn=vn) "
RN A G
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Complete Algorithms

Optimization: SyncBB

Extend synchronous backtracking to optimization:

every constraint contributes a cost.
upper bound = lowest cost of full assignment found so far.

o
°
@ partial assignment extended while cost < upper bound.
o

result = solution with lowest cost.
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Synchronous Backtracking
Complete Algorithms

Improvements

Synchronous backtracking allows common CSP heuristics:
o forward checking: send partial solution to all higher agents.

@ dynamic variable ordering: select next variable according to
domain size.

@ backjumping: reduce k to last variable involved in conflict.

Forward ———— T T e ——— e
Checking E:—‘=“~_ S~o
ST ———_ T=~a S~
al _)»az — \ ak o -, =an
(x1=v1 (x1=v1,x2=v2) (x1=v1,..,xk=vk) (x1=Vv1,...,xn=vn)
\ ,"\ ’, .
e o2 TN—a =TT Xk xn
BacKtrack Backjump
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Synchronous Backtrack
Complete Algorithms s

Implementing CSP heuristics

Distributed forward checking:
@ A(xx) sends (x1 = v1,..,xk = vk) to all A(x;), j > k

@ A(x;j) removes inconsistent values and initiates backtrack at
X, whenever domain becomes empty

Can be done aynchronously (asynchronous forward checking)
Dynamic variable ordering:

@ A(x;j) sends back size of remaining domain for x;
@ A(xx) chooses smallest one to be xi1
Backjumping:
reduce k to last variable involved in current conflict.
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s Backtracking
Complete Algorithms chronous B i

Performance metrics

@ non-concurrent constraint checks (NCCC): longest chain of
constraint checks with serial dependency (ignores message
delivery time).

@ concurrent time: (simulated) time taken in parallel execution.

@ wall clock time (time taken by the simulator).

@ number of messages (ignores computation time and size of
messages).

@ amount of information exchanged (ignores computation time).
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Complete Algorithms

Asynchronous Backtracking

Agents work in parallel without synchronization.

@ Global priority ordering among variables (ex.: unique processor
id); assume x; has higher priority than x; whenever i < j.

@ Asynchronous message delivery, but all messages arrive in
order in which they were sent.

@ constraints are binary.

@ every agent a; is responsible for one variable x;.
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Complete Algorithms

ABT data structures

Each agent maintains

@ a current value for its own variable.

@ all constraints with higher priority variables.
@ a list of all lower priority variables.
0

an agent view that records the values of all known higher
priority variables.

for each value of its own variable, a set of nogood that
indicate lower bounds on the cost that choosing this value has
for lower priority variables.
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Synchron
Complete Algorithms Asynchrono
Dynamic Prog

Adjusting own variable value

Own variable should be adjusted to the value with the lowest
possible cost:

cost(v) > > constraints(agent view) + ) nogoods(v)
if all nogoods are exact, cost(v) is also exact.

set variable x <— v with lowest cost bound.

if cost(v) > 0 send nogood to higher priority variable.

e & © 6 ¢

similarly if cost is exact, indicate to higher priority variable.
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Complete Algorithms

ABT messages

Agent informs:

@ lower priority agents of value choice using 0K? messages.

@ closest higher priority agent of cost bounds using nogood
messages.

@ newly discovered agents using add-link messages.
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Example (1)

Boi Faltings

Synchronous Backtracking
Complete Algorithms Asynchronous Backtracking
Dynamic Programming - DPOP

message(s) | action

a> | OK(xy=a) Xp < b
a3 | 0K(xp=a) | x3< b
as | OK(xy=a) X4 < Db
as | OK(x3=a) X5 < b
0K (xz=a)

Multi-agent Constraint Programming

19/58



Synchronous Backtracking
Complete Algorithms Asynchronous Backtracking
Dynamic Programming - DPOP

Example (2)

| message(s) | action

az | 0K(xx=b) | x3 ¢+ a

as | 0K(x3=b) | x5 < a
0K(X4=b)
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Complete Algorithms

Example (3)

| message(s) | action

as | 0K(xz=a) | inconsistent!
X3=a= X5 £a
X4 =b = x5 75 b

as sends a nogood to as:
v = b, cond = (x3 = a), tag = x5 cost = 1

Boi Faltings Multi-agent Constraint Programming 21/58



Synchrono
Complete Algorithms Asynchror
Dynamic

Example(4)

@ Nogoods give lower bounds on costs incurred by the lower

priority variables mentioned in the tag:
nogood.cond C self.agentview N\ nogood.v = self.z.v =

cost-sum(nogood. tag) > mogood.cost
@ a4 adds the nogood for value b, with tag xs.

@ However, this requires checking whether it is applicable, i.e.
that nogood.cond corresponds to its agent view.

@ a4 does not know about x3, so it requests a new link using an
add-1link message to a3.

@ Now it can be verified that the agentview satisfies the
condition.
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Complete Algorithms

Example (5)

@ a4 now finds that value a is inconsistent because of x;, and b
is inconsistent because of the nogood.

@ chooses a third value, ¢, and informs as.

@ a5 can now choose x5 = b and obtain a consistent solution.
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Complete Algorithms

Termination Detection

@ x5 has a value with cost=0 and no lower priority agents.

= cost of x5 is exact, as sends an exact nogood with cost 0 to
as and as.

@ a4 now has an exact nogood for its only lower-priority agent,
and itself sends an exact nogood with cost 0 to as.

@ a; has no higher-priority agent: it generates an exact nogood
but decides termination.

@ when there is no solution, a; generates an exact nogood with
cost # 0.
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Complete Algorithms

Extension to Optimization

@ Nogoods give lower bounds on costs.
@ Compute total cost of all lower priority agents by summing
nogoods.

@ Nogood tags must exactly cover all lower-priority variables,
otherwise some variables are not counted or counted multiple
times.

o If we can prevent this from happening, then ABT works fine
for optimization as well.
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Complete Algorithms

Pseudotrees

Split constraint graph into spanning tree 4+ back edges.
Identify root: every node has one parent (path to the root).
Pseudotree: all backedges go to ancestors of the node.

A pseudotree exists for all graphs and choices of root node.

Example: DFS tree.
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Complete Algorithms

Constructing a DFS ordering

Depth-first search traversal:
@ move to neighbour not yet visited

@ connect neighbours already in graph
by back edges

@ backtrack when no new neighbour

Note: all back edges connect to ancestors!
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Complete Algorithms

Properties of DFS trees

@ nogoods are always sent to lowest-priority agent.
= nogoods are never sent along back edges.
=- no variable can appear in nogoods from different branches.

= exact nogoods always add up to an exact bound!
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Synchron
Complete Algorithms Asynchrono
Dynamic Prog

Asynchronous optimization: ADOPT

@ using pseudotree ordering = ABT algorithm with valued
nogoods gives exact optimization.

@ additional optimization: remember cost of nogoods that are
erased after change in agent view; when context is revisited,
install as bound using backtrack thresholds.

@ result = ADOPT, a widely cited algorithm for distributed
constraint optimization.
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Complete Algorithms

ADOPT-NG

@ different optimization of ABT: send valued nogoods to all
ancestors, not just the lowest one.

= ancestors higher in the tree can form bounds on the relative
quality of different valuations.

@ greatly improves efficiency, even without backtrack threshold
mechanism.
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Complete Algorithms

Properties of asynchronous backtracking

@ Algorithm is complete: if there is a solution, it will be found
(due to direct correspondence with backtracking algorithm).

@ CSP heuristics costly to implement.

@ Termination needs to be detected with termination detection
algorithm (= consensus problems).

@ Asynchronous behavior can create wasted search effort =

& more messages than synchronous backtracking, but
& sometimes shorter execution time (parallelism)
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Complete Algorithms

Dynamic Programming Optimization Protocol (DPOP)

@ Principle: replace variables by constraints.

@ Consider variable x having constraint with y.

@ For each value of x, there may be a consistent value of y.
= replace y by a constraint on x:

x=v is allowed if there is a consistent value of y.

@ Optimization version:
utility(x=v) = utility(x=v,y=w); w = best possible
value of y given x=uv.
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Complete Algorithms

Example

value(x)
util(x)
@ y sends constraint in util(x) message.

= x can decide (best) value locally.

@ x informs y of value using value(x) message.
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Complete Algorithms

Dynamic programming in trees

@ Rooted tree: every node has at most

value(x0)
one parent \

util(x0)
@ Nodes send UTIL messages to their .
util(x1)

parents

til(x1 \
@ Best values of x2, x3 = unary util(x1) )/Iue(x\

constraint on x1

@ x1 sums up UTIL messages + own
constraint = unary constraint on x0

@ x0 picks best value v(x0); sends
value(x0=v(x0)) — x1

@ x1 picks best value given x0 and
informs x2,x3
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Use pseudotree/DFS ordering:

@ send UTIL messages along the tree
edges.

@ add extra dimensions for variables
involved in back edges.

@ message size grows exponentially in
number of dimensions.

Complexity exponential in treewidth of order-
ing!
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Complete Algorithms
Dynamic Programming - DPOP

Example Problem

C(Xo,X3) C(Xo,Xl)
X3 X1
Xo | w b Xo | w b
w ‘ 3 0 w ‘ 1 0
b3 3 b|2 2
\
C(X17X2) C(X17X3) \\
X2 X3 \
X1 | w b X1 | w b \\
w1l 0 wl2 0 \
b‘ 0 1 b‘ 0 2
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Complete Algorithms Asynchron
Dynamic Programm

Distributed dynamic programming

x1
UTIL(xx)= w b
0 O
X1 vaIue(xO)
w b \
UTIL(x0, x1) = X
(0, x1) = xo— 0 2 utiI(xO)‘ \\\
b|3 3 \
util(x0,x1)
0 til(x1 @ \\
UTIL(x) = w b util(x1) /v/auue(x%\ \
1 3

xo: w; send value(xp = w) — x1
x1: w; send value(xp = w,x1 = W) — x2, X3
xp and x3: b

Boi Faltings
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Complete Algorithms

Complexity

@ Two messages per variable (UTIL and VALUE).

= number of messages grows linearly with the size of the
problem.

@ However, the maximum message size grows exponentially with
the tree-width of the induced graph.

@ In many distributed problems, the tree-width is relatively
small.
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Complete Algorithms

DPOP variants

o S-DPOP (AAAI 2005): self-stabilizing.

@ A-DPOP (CP 2005): approximation through dropping
constraints.

@ O-DPOP (AAAI 2006): Open DPOP: incremental elicitation.
@ PC-DPOP (1JCAI 2007): DPOP with partial centralization.
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Complete Algorithms

MB-DPOP (1JCAI 2007)

@ tradeoff between number and size of messages: combine
search with dynamic programming.

@ MB-DPOP limits message size and switches to search
whenever message exceeds dimension limit.

@ allows continuous scaling from pure search to pure dynamic
programming.
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Complete Algorithms \
Dynami

Open Constraint Optimization

@ Observation: can solve CSP without knowing domains

completely.
@ Extends to optimization:
x1 F | X2
A(0) A(0)
B(4) \ B(3)
T®| [cE”
D(7) D(7)

o If xy = a,xo = b is consistent, no other solution can be better!
@ Implemented in ODPOP.
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nchronous Backtrackin
Complete Algorithms nchronous Backtracking
Dynamic Programming - DPOP

DPOP performance
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Distributed Local Search

2andom Sambline
Incomplete Algorithms Random Sampling

Distributed local search

Drawbacks of systematic search:

@ need variable ordering (impossibility result by Dechter)
@ no anytime behavior: have to wait for termination.

@ often (too) costly.

Sacrifice completeness = local search
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Distributed Local Search

2andom Sambline
Incomplete Algorithms Random Sampling

Min-conflicts

@ Assign random value to each variable in parallel (this will
conflict with some constraints).

@ At each step, find the change in variable assignment which
most reduces the number of conflicts .

@ Corresponds to search by "hill-climbing”.
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Distributed Local Search

2andom Sambline
Incomplete Algorithms Random Sampling

Distributed min-conflicts

@ Neighbourhood of N(x;) = variables connected to x; through
constraints.

@ Change to x; can happen asynchronously with others as long
as there is no other change in the neighbourhood.

= two neighbouring agents are not allowed to change
simultaneously:
@ highest improvement wins
o ties broken by fixed ordering

= parallel, distributed execution.
@ also called MGM
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Distributed Local Search

2andom Sambline
Incomplete Algorithms Random Sampling

Breakout Algorithm

@ Similar to min-conflict, but assign dynamic priority to every
conflict (constraint), initially =1

@ Modify variable which reduces the most the sum of the
priority values of all conflicts.

@ When local minimum:
increase weight of every existing conflict

@ Eventually, new conflicts will have lower weight than existing
ones = breakout

Boi Faltings Multi-agent Constraint Programming 46/58



Distributed Local Search

2andom Sambline
Incomplete Algorithms Random Sampling

Local minima

If all improvements = 0:
@ increase weight of all constraint violations

@ restart asynchronous changes
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Distributed Loc

Incomplete Algorithms RandomjSampl

Random Sampling

Carry out optimization as in synchronous branch-and-bound, but:
@ instead of systematic enumeration, sample variable domains
randomly

@ for each sampled assignment, feed backwards sum of costs:
each agent knows the cost to its children.

@ keep a record of the best cost pf , for each context a and
sample value d, and also the best value d, found at time t.

Termination: sequentially select best value from first to last agent.

Boi Faltings Multi-agent Constraint Programming 48/58



Distributed Local Search
Random Sampling

Incomplete Algorithms

Extension to Pseudotrees

Does not require linear order, but samples can be generated
simultaneously for different branches in a pseudotree:
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Distributed Local Search

Incomplete Algorithms RandomiSampling

Distributed Upper Confidence Bounds on Trees (DUCT)

@ for value d and context a, compute confidence interval Lg d
using Hoeffding bound.

estimate distance from optimum of worst sample.
estimate bound B! , on optimal cost for value d in context a.
sample values with lowest estimate.

bound probability that ji, 4, is further than ¢ from the
optimum to be ¢
= termination condition.

o L 4 I

Note that all tests are local, no communication is required.

See:

Ottens, B., Dimitrakakis, C. and Faltings, B. DUCT: An Upper Confidence Bound Approach to Distributed

Constraint Optimization Problems. In Proceedings of the 26th conference of the AAAI, 2012.
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Distributed L.
Random Sampling

Search

Incomplete Algorithms

Performance: Cost
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Distribute al
Random Sampling

Incomplete Algorithms

Performance: Time
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Distributed Loc

Incomplete Algorithms RandomjSampl

Privacy Protection

@ Distributed computation alone does not protect privacy.

@ Homomorphic encryption can ensure complete privacy of
preferences and final choices.

@ With codenames, distributed computation can protect
identities of agents and structure of constraints.

See:

Faltings, B., Léauté, T. and Petcu, A. Privacy Guarantees through Distributed Constraint Satisfaction. In
Proceedings of the 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'08),
pages 350-358, 2008

Léaut]'e, T. and Faltings, B. Privacy-Preserving Multi-agent Constraint Satisfaction. In 2009 IEEE International
Conference on Privacy, Security, Risk and Trust (PASSAT-09), pages 17-25, 2009

Léaut]'e, T. and Faltings, B. Coordinating Logistics Operations with Privacy Guarantees. In Proceedings of the
Twenty-Second International Joint Conference on Atrtificial Intelligence (IJCAI'11), 2011
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Distributed Local Search

Incomplete Algorithms RandomiSampling

Self-Interest

@ In many cases, agents just want to maximize their own
benefit.

@ Most solutions are better for some and worse for others.
= need to compensate those who lose.

@ Not a problem when utilities are publicly known: gain of the
winners always exceeds losses of the losers.

@ However, agents could manipulate the propagation.
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Distributed Local Search

Incomplete Algorithms RandomiSampling

Private Utilities

@ When utilities are private, agents would exaggerate their own
preferences.

@ Counter by making each agent pay a VCG
(Vickrey-Clarke-Groves) tax.

@ VCG tax(a;) = cost increase on other agents due to agent a;.

= changes agent incentive from optimizing own cost to
optimizing combined cost of all agents.

= agent has no incentive to manipulate solving process (faithful
execution)!
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Distributed Local Search
Random Sampling

Incomplete Algorithms

@ Computing VCG tax requires computing costs when agent a;
is not present (marginal economy).

@ For much of the problem, this is the same as the full
optimization: reuse this work.

@ M-DPOP combines all propagations in parallel and makes this
process efficient.
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Distributed Local Search

Incomplete Algorithms RandomiSampling

Software

Several open-source frameworks exist:

@ FRODO (http://frodo2.sourceforge.net/): from
EPFL-LIA, implements most algorithms using search, dynamic
programming, local search and (soon) DUCT. Integration with
open-source JaCoP solver for complex local problems.

@ DisChoco (http://www2.lirmm.fr/coconut/dischoco/):
from CNRS Montpellier, distributed framework for connecting
Choco constraint solvers.

@ various algorithms available individually.
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Distributed Local Search

Incomplete Algorithms RandomiSampling

Summary

Multi-agent constraint satisfaction: interest of distributed
algorithms.

Synchronous and asynchronous backtracking.
From satisfaction to optimization.

DPOP: dynamic programming.

Distributed local search.
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