

OPPA European Social Fund Prague & EU: We invest in your future.

A4M33MAS - Multiagent Systems Distributed Constraint Satisfaction

Michal Pechoucek & Michal Jakob Department of Computer Science Czech Technical University in Prague

In parts based on Multi-agent Constraint Programming, Boi Faltings, Laboratoire d'Intelligence Artificielle, EPFL

Constraint Satisfaction Problem

Given $\langle X, D, C \rangle$ where:

- $X = \{x_1, ..., x_n\}$ is a set of n variables.
- $D = \{d_1, ..., d_n\}$ is a set of n domains.
- $C = \{c_1, ..., c_m\}$ is a set of m constraints.

Find solution = $(x_1 = v_1 \in d_1, ..., x_n = v_n \in d_n)$ such that for all constraints, value combinations are allowed by relations.

= Assignment

C= represented as a list of Boolean predicate on $1\dots n$ variables in X and their values from D, so that $\mathcal{P}(X,D) \to \{0,1\}$

Multi-agent Constraint Satisfaction

Given $\langle X, D, C, A \rangle$ where:

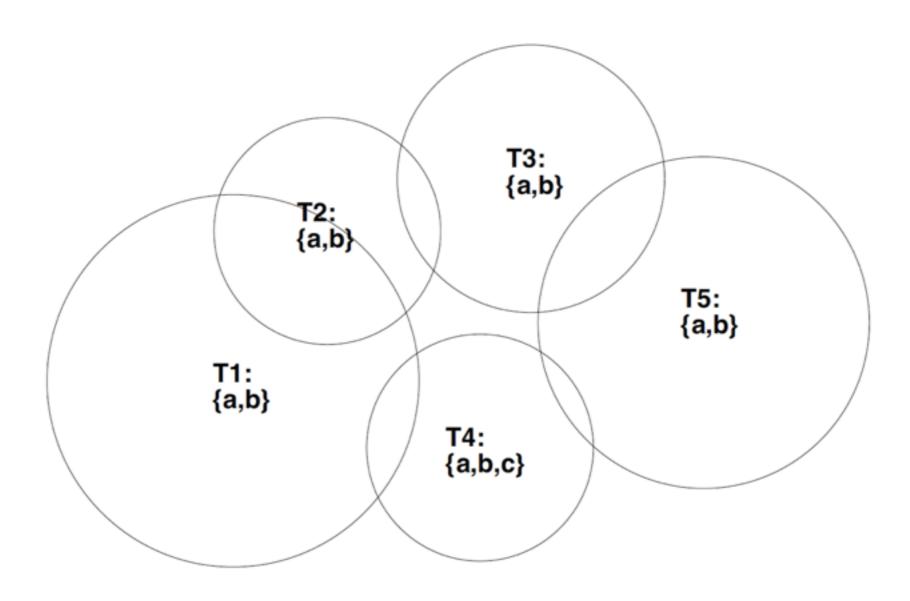
- $X = \{x_1, ..., x_n\}$ is a set of n variables.
- $D = \{d_1, ..., d_n\}$ is a set of n domains.
- $C = \{c_1, ..., c_m\}$ is a set of m constraints.
- $A = \{a_1, ..., a_n\}$ is a set of n agents, not necessarily all different.

Find solution = $(x_1 = v_1 \in d_1, ..., x_n = v_n \in d_n)$ such that for all constraints, value combinations are allowed by relations.

= Assignment

C= represented as a list of Boolean predicate on $1\dots n$ variables in X and their values from D, so that $\mathcal{P}(X,D) \to \{0,1\}$

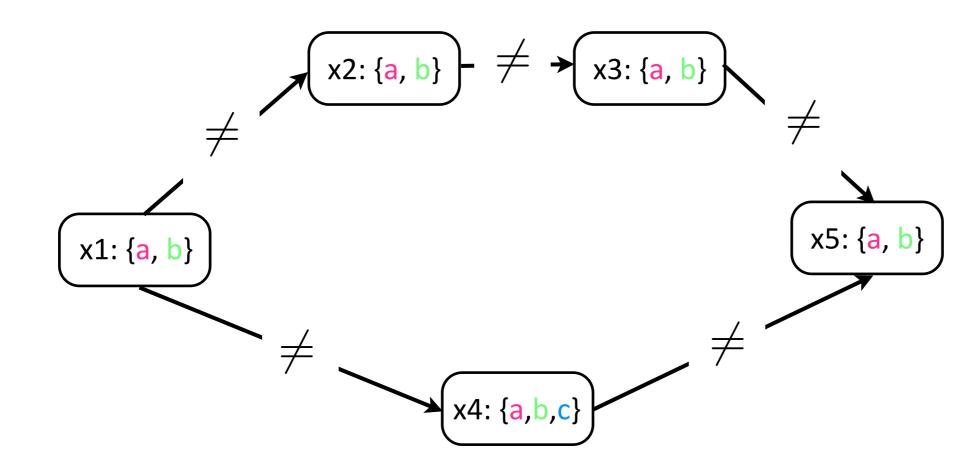
Example



Example

CSP model:

- Variables = choice of frequency
- Domains = frequency bands
- Constraints = inequalities between overlapping ranges
- Agents control transmitters



Multi-agent Constraint Satisfaction

Given $\langle X, D, C, A \rangle$ where:

- $X = \{x_1, ..., x_n\}$ is a set of n variables.
- $D = \{d_1, ..., d_n\}$ is a set of n domains.
- $C = \{c_1, ..., c_m\}$ is a set of m constraints.
- $A = \{a_1, ..., a_n\}$ is a set of n agents, not necessarily all different.

Find solution = $(x_1 = v_1 \in d_1, ..., x_n = v_n \in d_n)$ such that for all constraints, value combinations are allowed by relations.

= Assignment

C= represented as a list of Boolean predicate on $1\dots n$ variables in X and their values from D, so that $\mathcal{P}(X,D) \to \{0,1\}$

Multiagent Constraint Optimization

Given $\langle X, D, C, A \rangle$ where:

- $X = \{x_1, ..., x_n\}$ is a set of n variables.
- $D = \{d_1, ..., d_n\}$ is a set of n domains.
- $C = \{c_1, ..., c_m\}$ is a set of m constraints.
- $A = \{a_1, ..., a_n\}$ is a set of n agents, not necessarily all different.

Find solution = $(x_1 = v_1 \in d_1, ..., x_n = v_n \in d_n)$ such that for all the overall cost of the assignment is minimized

Cost
$$(\{v_1, ..., v_n\}) = \sum_{\forall c_i \in C} c_i(\{v_1, ..., v_n\})$$

C= represented as a list of cost functions on $1\ldots n$ variables in X and their values from D, so that $\mathcal{P}(X,D)\to \mathbf{R}$

- Importance of CSP: large theory and tools for computing solutions
- 2 common methods:
 - backtrack search: assign one variable at a time, backtrack when no assignment without satisfying constraints.
 - local search: start with random assignment, make local changes to reduce number of constraint violations.

Multiagent/Distributed CSP & COP

- Problem is distributed in a network of agents.
- Each variable belongs to one agent who is responsible for setting its value (typically these are connected to complex local subproblems).
- Constraints are known to all agents with variables in it.
- Distributed \neq parallel: distribution of variables to agents cannot be chosen to optimize performance.

WHY?

- Real world problems are distributed, no agreement on a common model.
- Costly to formalize constraints and preferences for all possible cases.
- No trusted third party, privacy concerns.
- but generally not efficiency!

Multiagent/Distributed CSP & COP

- Top-down approaches:
 - Pruning algorithms: used mainly as a preprocessing step
 - * Filtering, Hyper-resolution
 - Search algorithms:
 - * Chronological (Synchronous) Backtracking,
 - * Asynchronous Backtracking, ADOPT
- Bottom-up approaches:
 - * Distributed breakout

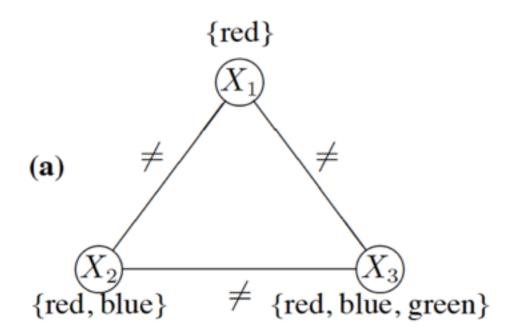
Multiagent/Distributed CSP & COP

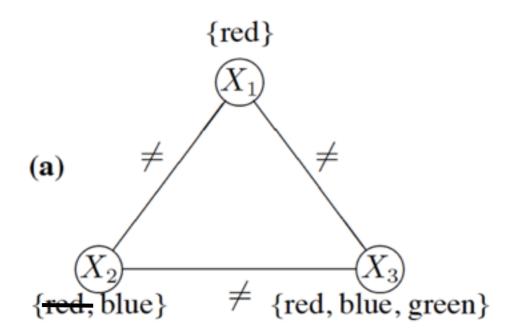
- Top-down approaches:
 - Pruning algorithms: used mainly as a preprocessing step
 - * Filtering, Hyper-resolution
 - Search algorithms:
 - * Chronological (Synchronous) Backtracking,
 - A few agents are active, most are waiting
 - Active agents take decisions with updated information
 - Low degree of concurrency / poor robustness
 - Algorithms: direct extensions of centralized ones
 - * Asynchronous Backtracking, ADOPT
 - All agents are active simultaneously
 - Information is less updated, obsolescence appears
 - High degree of concurrency / robust approaches
 - Algorithms: new approaches

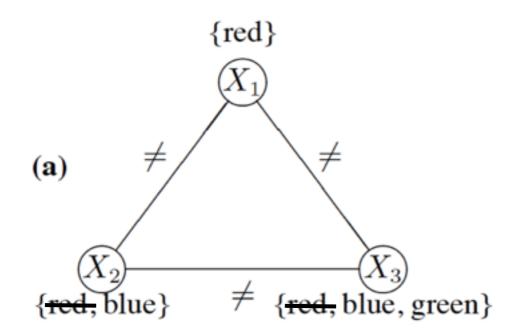
- Filtering algorithm:
 - For each node x_i repeatedly execute $\mathbf{Revise}(x_i, x_j)$ with each neighbour x_j .

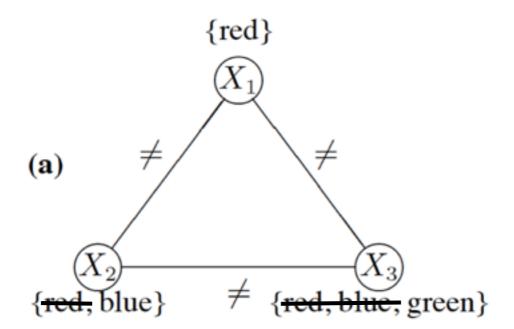
```
\begin{array}{l} \textbf{procedure} \ \text{Revise}(x_i, x_j) \\ \textbf{forall} \ v_i \in D_i \ \textbf{do} \\ & \quad \middle| \ \ \textbf{if} \ \textit{there is no value} \ v_j \in D_j \ \textit{such that} \ v_i \ \textit{is consistent with} \ v_j \ \textbf{then} \\ & \quad \middle| \ \ \middle| \ \ \text{delete} \ v_i \ \text{from} \ D_i \end{array}
```

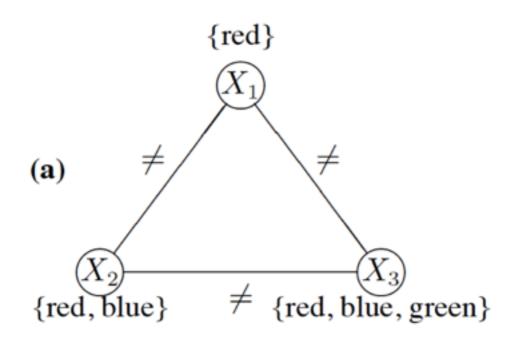
- Filtering terminates when no further elimination happens:
 - The solution is found if there is one value for each variable only
 - If there is an empty set assigned for one of the variables, -> no solution
 - If there is non-singleton set for one variable, the result is nonconlusive

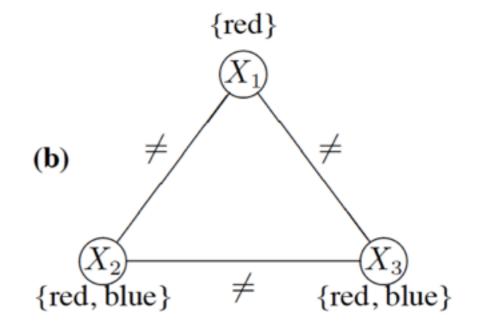


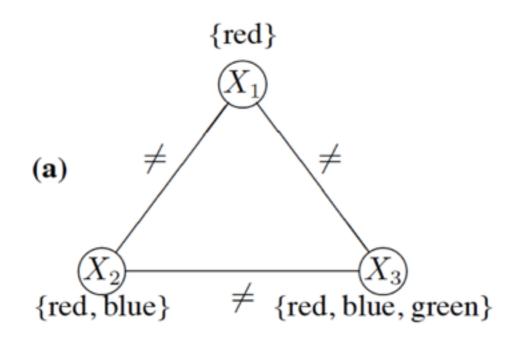


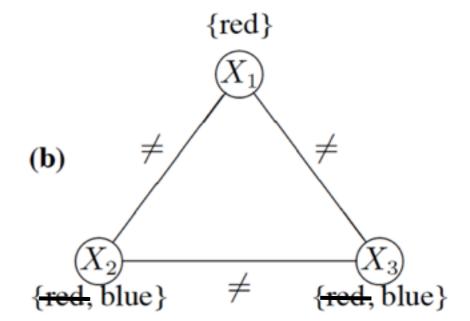


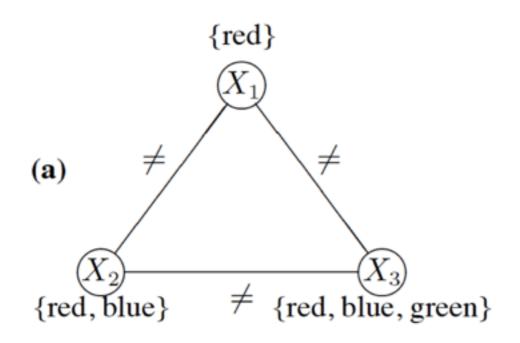


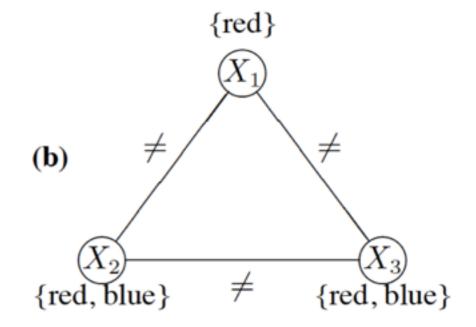


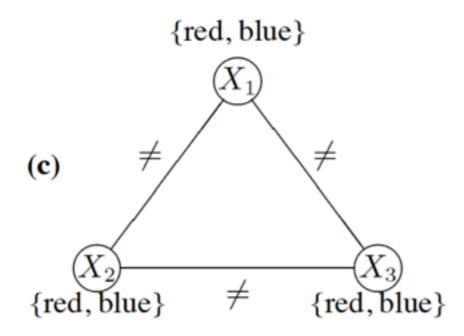


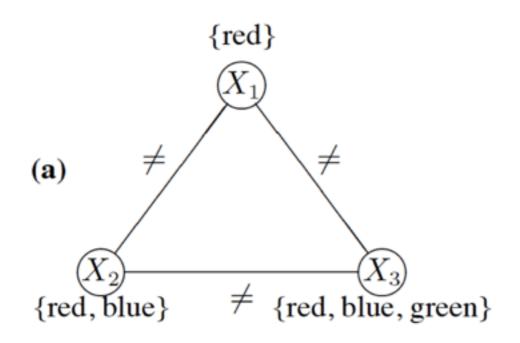


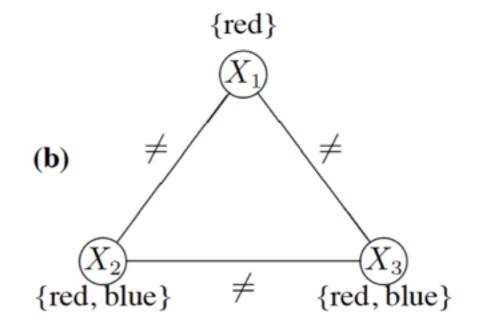


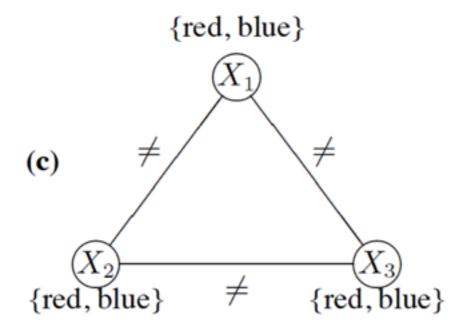


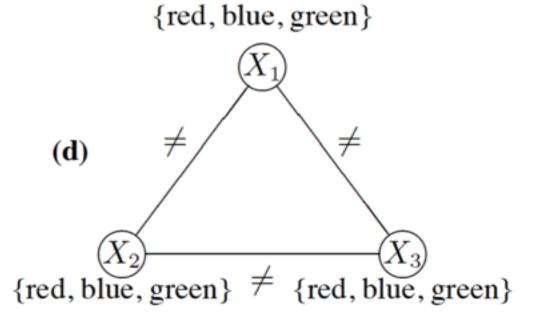












{red}

{red, blue, green}

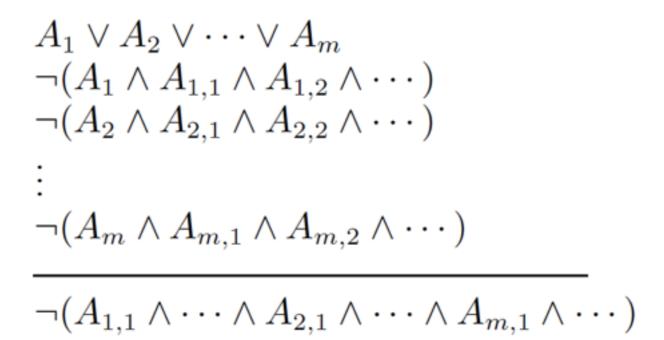
- Works with the concept of forbidden combinations: NOGOOD (NG)
 - example: $\neg(x_1 = red \land x_2 = red)$
- Unit resolution:

$$x_1 = red$$

$$\neg (x_1 = red \land x_2 = red)$$

$$\neg (x_2 = red)$$

Hyper-resolution:

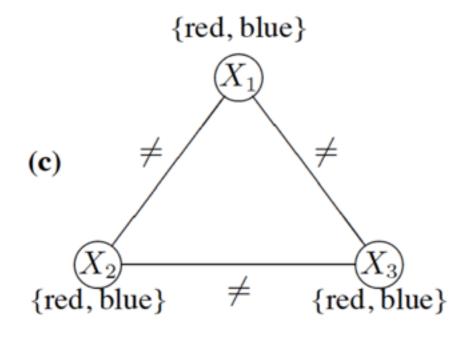


 Each agent repeatedly generates new constraints for his neighbors, notifies them of these new constraints, and prunes his own domain based on new constraints passed to him by his neighbors.

```
procedure ReviseHR(NG_i, NG_j^*)
repeat
```

until there is no change in i's set of Nogoods NG_i

- As hyper-resolution is sound and complete for propositional logic it gave a rise to an efficient while complete distributed CSP algorithm.
- The algorithm is guaranteed to converge in the sense that after sending and receiving a finite number of messages, each agent will stop sending messages and generating Nogoods.



NOGOODS:

$$\{x_1 = red, x_2 = red\}, \{x_1 = red, x_3 = red\}$$

 $\{x_1 = blue, x_2 = blue\}, \{x_1 = blue, x_3 = blue\}$
 $x_1 = red \lor x_1 = blue$
 $\neg(x_1 = red \land x_2 = red)$
 $\neg(x_1 = blue \land x_3 = blue)$
 $\neg(x_2 = red \land x_3 = blue)$

NOGOODS:

$$\{x_2 = red, x_3 = blue\} \{x_2 = blue, x_3 = red\}.$$

$$x_2 = red \lor x_2 = blue$$

$$\neg(x_2 = red \land x_3 = blue)$$

$$\neg(x_2 = blue \land x_3 = blue)$$

$$\neg(x_3 = blue)$$

similarly:

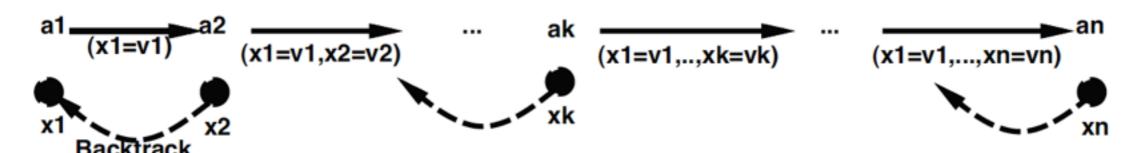
$$\neg(x_3 = red)$$

Chronological Backtracking

01

Agents agree on an variable order and repeat:

- **1** send partial solution up to x_{k-1} to k-th agent.
- 2 k-th agent generates the next extension to this partial solution.
- \odot if solution cannot be extended consistently, $k \leftarrow k-1$.
- 4 if solution can be extended consistently, $k \leftarrow k+1$.
- if k < 1, stop: unsolvable.

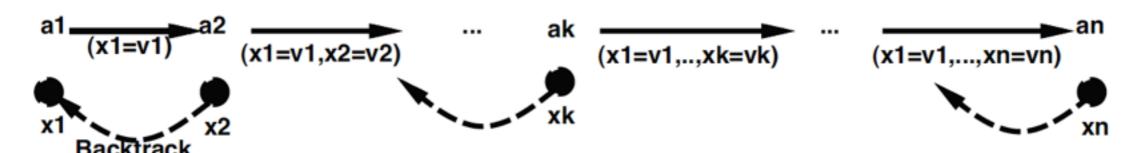


Chronological Backtracking

01

Agents agree on an variable order and repeat:

- **1** send partial solution up to x_{k-1} to k-th agent.
- 2 k-th agent generates the next extension to this partial solution.
- \odot if solution cannot be extended consistently, $k \leftarrow k-1$.
- if solution can be extended consistently, $k \leftarrow k + 1$.
- if k < 1, stop: unsolvable.



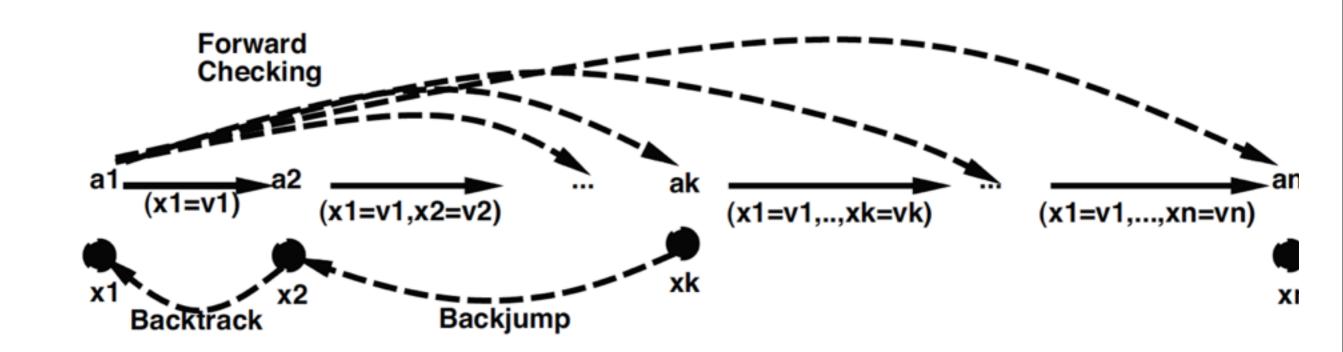
0

Towards optimization: Synchronous branch-bounds

- Extend synchronous backtracking to optimization
 - every constraint contributes a cost.
 - upper bound = lowest cost of full assignment found so far.
 - partial assignment extended while cost < upper bound.
 - result = solution with lowest cost

Synchronous backtracking allows common CSP heuristics:

- forward checking: send partial solution to all higher agents.
- dynamic variable ordering: select next variable according to domain size.
- backjumping: reduce k to last variable involved in conflict.



Distributed forward checking:

- $A(x_k)$ sends $(x_1 = v_1, ..., x_k = v_k)$ to all $A(x_j)$, j > k
- $A(x_j)$ removes inconsistent values and initiates backtrack at x_k whenever domain becomes empty

Can be done aynchronously (asynchronous forward checking) Dynamic variable ordering:

- $A(x_j)$ sends back size of remaining domain for x_j
- $A(x_k)$ chooses smallest one to be x_{k+1}

Backjumping:

reduce k to last variable involved in current conflict.

- non-concurrent constraint checks (NCCC): longest chain of constraint checks with serial dependency (ignores message delivery time).
- concurrent time: (simulated) time taken in parallel execution.
- wall clock time (time taken by the simulator).
- number of messages (ignores computation time and size of messages).
- amount of information exchanged (ignores computation time).

Asynchronous backtracking (ABT) 01

Assumptions:

- Agents communicate by sending messages, agent send messages to others,
 iff it knows their identifiers (directed communication/no broadcasting)
- The delay transmitting a message is finite but random, for any pair of agents, messages are delivered in the order they were sent
- Agents know only the constraints in which they are involved
- Each agent owns a single variable, constraints are binary
- Asynchronous algorithm: Agents work in parallel without synchronization.
 - * all agents active, take a value and inform
 - * no agent has to wait for other agents
- Global priority ordering among variables, and agents (to avoid cycles)
- Constraints are directed: from higher-priority to lower-priority agents
- ABT plays in asynchronous distributed context the same role as backtracking in centralized

- Higher priority agent (j) informs the lower one (k) of its assignment
- Lower priority agent (k) evaluates the constraint with its own assignment
 - If permitted: no action
 - else: look for a value consistent with j
 - * If it exists k takes that value
 - * else the agent view of k becomes a NOGOOD (constraint) & backtrack
- NOGOOD: conjunction of (variable, value) pairs of higher priority agents, which removes a value of the current one
 - are required to ensure systematic traversal of search space in asynchronous, distributed context

- ABT agents: asynchronous action; spontaneous assignment
- **Assignment**: *j* takes value *a*, *j* informs lower priority agents
- Backtrack: k has no consistent values with higher-priority agents,
 k resolves nogoods and sends a backtrack message
- New links: j receives a nogood mentioning i, unconnected with j; j
 asks i to set up a link
- Stop: "no solution" detected by an agent, stop
- Solution: when agents are silent for a while (quiescence), every constraint is satisfied => solution; detected by specialized algorithms

• AgentView (current assignment context):

 $\begin{bmatrix} X_i & X_j \dots \\ a & b \end{bmatrix}$

- values of higher-priority constrained agents
- NOGOOD store: each removed value has justifying NOGOOD
 - stored NOGOOD must be active wrt to AgentView

а	b	С	d
		$x_j = b$	
•		$c_i = \alpha \wedge x_j$	
		×	

0

ABT message passing

```
when received (Ok?, (A_j, d_j)) do
    add (A_j, d_j) to agent_view
    check_agent_view
when received (Nogood, nogood) do
    add nogood to Nogood list
    forall (A_k, d_k) \in \text{nogood}, if A_k is not a neighbor of A_i do
        add (A_k, d_k) to agent\_view request A_k to add A_i as a neighbor
    check_agent_view
 procedure check_agent_view
 when agent_view and current_value are inconsistent do
     if no value in D_i is consistent with agent_view then
          backtrack
     else
          select d \in D_i consistent with agent\_view current\_value \leftarrow d send (\mathbf{ok?}, (A_i, d)) to lower-priority neighbors
```

ABT message passing

procedure backtrack

 $nogood \leftarrow$ some inconsistent set, using hyper-resolution or similar procedure if nogood is the empty set then

broadcast to other agents that there is no solution terminate this algorithm

else

```
select (A_j, d_j) \in nogood where A_j has the lowest priority in nogood send (Nogood, nogood) to A_j remove (A_j, d_j) from agent\_view check_agent_view
```

Variables
$$x_1, x_2, x_3$$
; $D_1 = \{b, a\}, D_2 = \{a\}, D_3 = \{a, b\}$

3 agents, lex ordered:

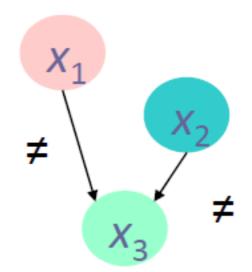
Agent 1 Agent 2 Agent 3

2 difference constraints: c_{13} and c_{23}

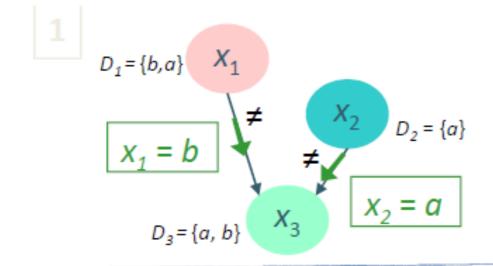
Constraint graph:

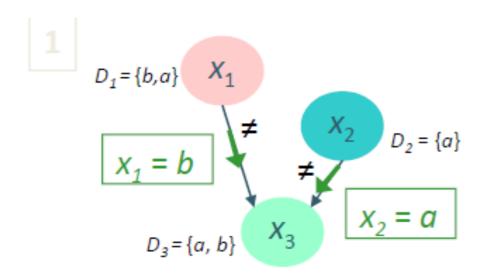
Value-sending agents: x_1 and x_2

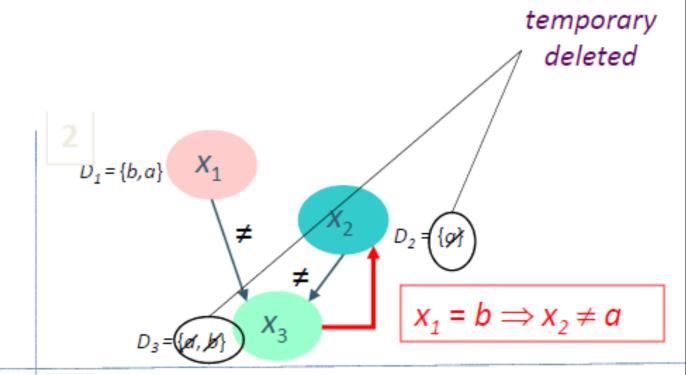
Constraint-evaluating agent: x_3

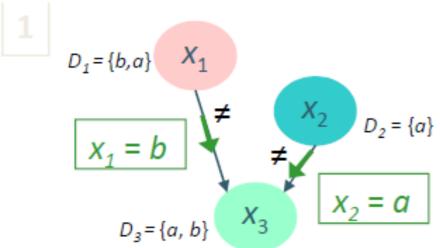


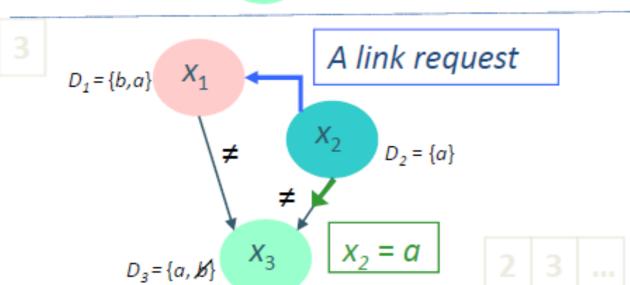
Each agent checks constraints of incoming links: Agent₁ and Agent, check nothing, Agent, checks c_{13} and c_{23}

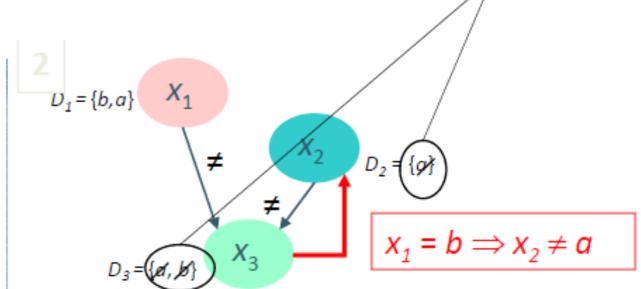




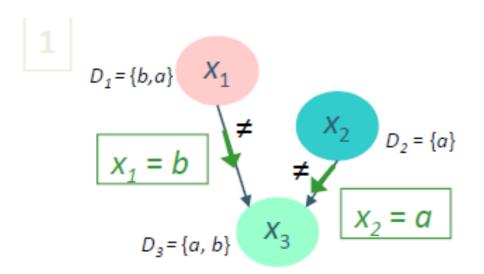


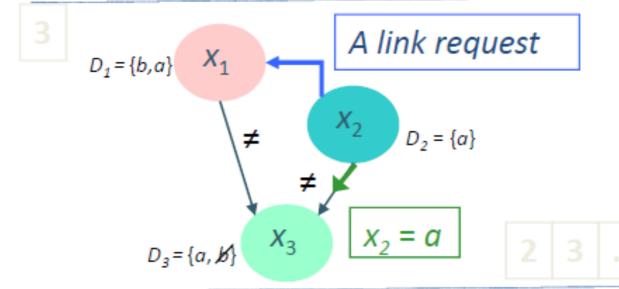


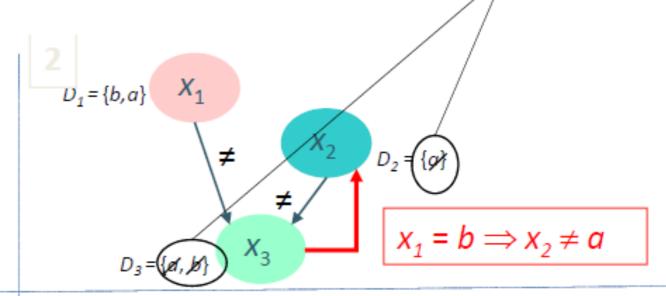




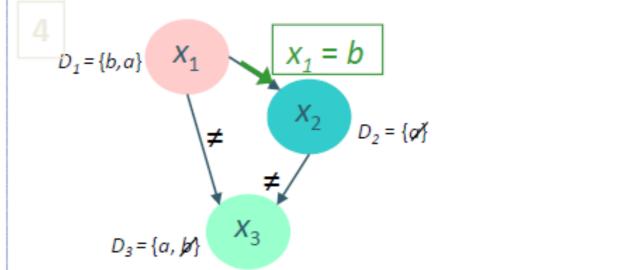
temporary

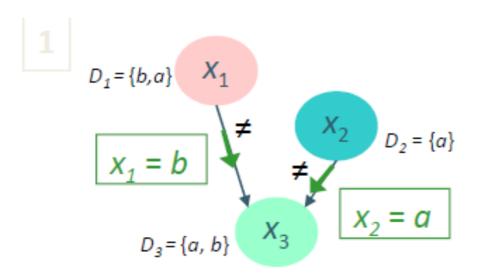


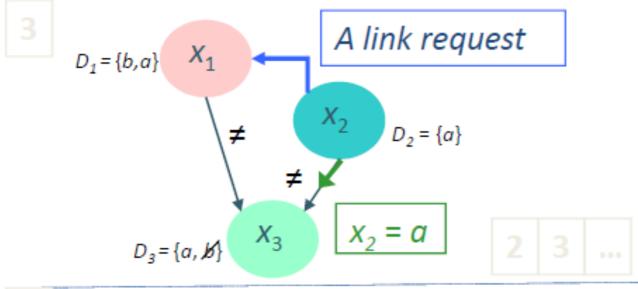


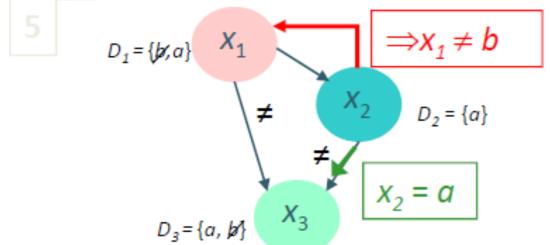


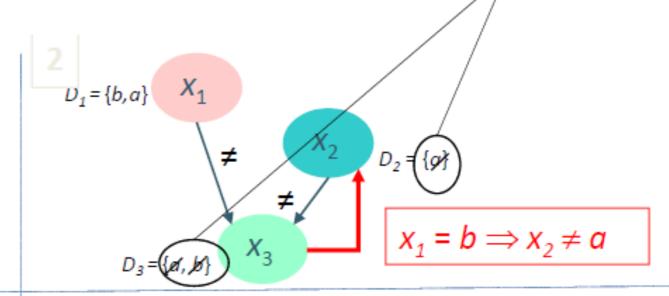
temporary



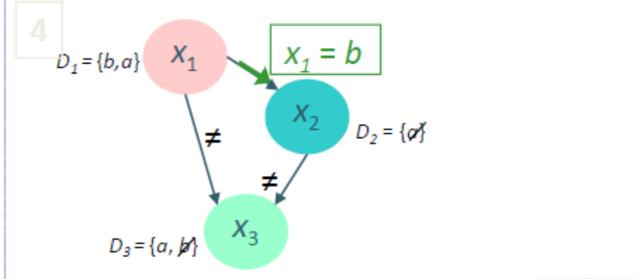


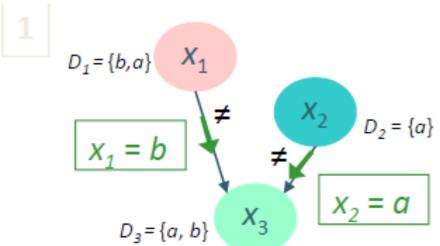


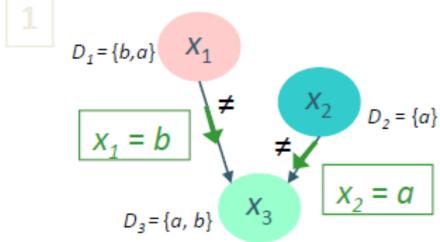


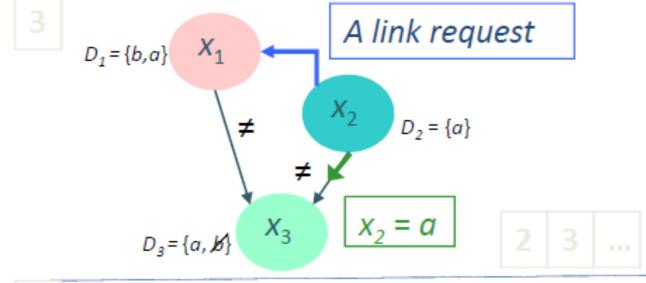


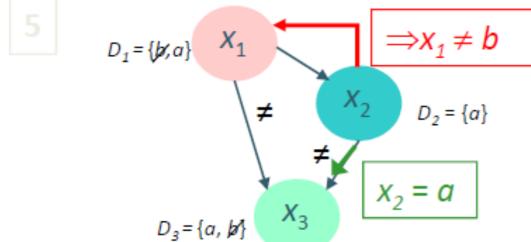
temporary

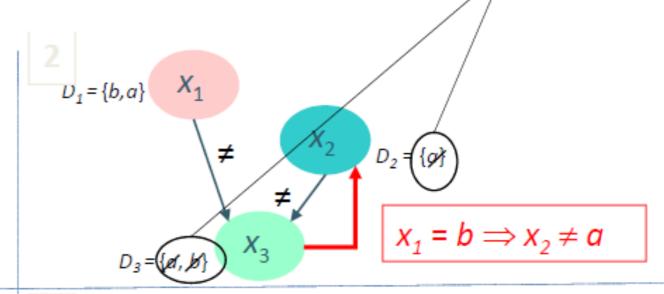




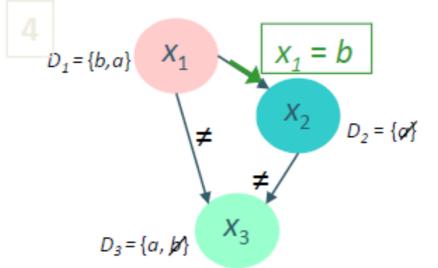


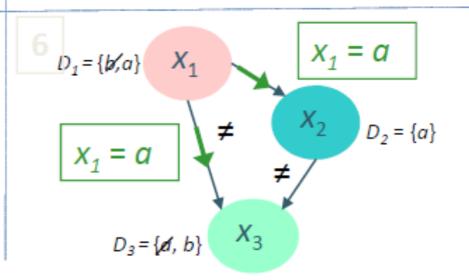


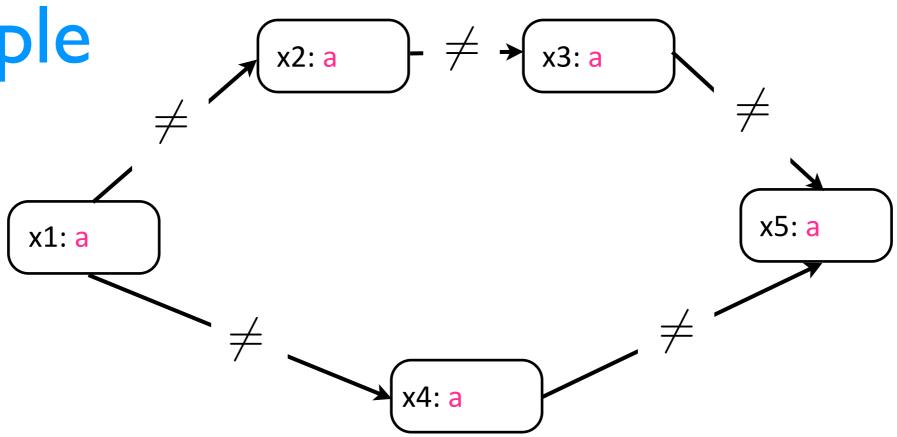




temporary



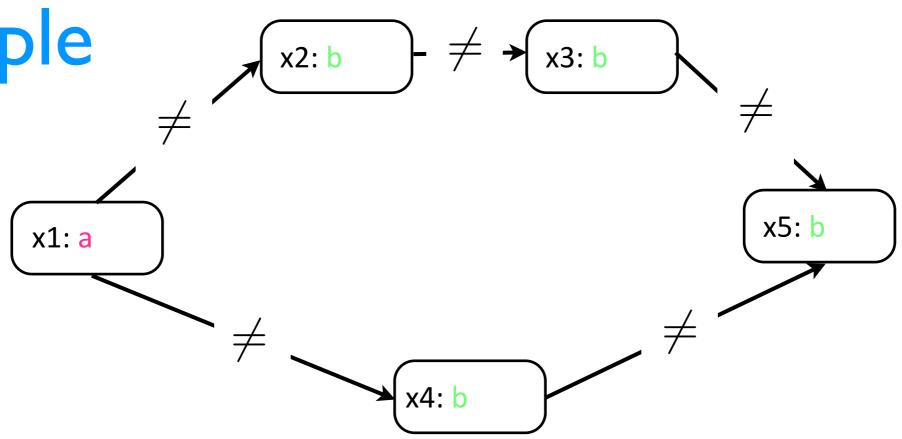




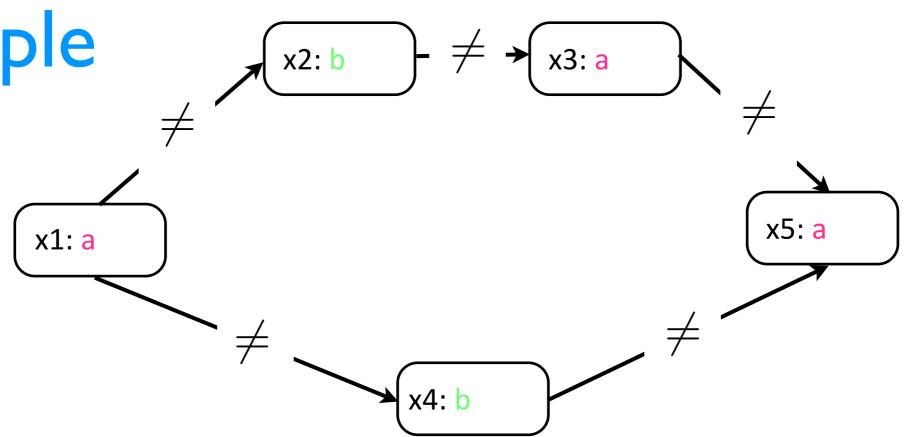
	message(s)	action
<i>a</i> ₂	$OK(x_1=a)$	
<i>a</i> ₃	$OK(x_2=a)$	
<i>a</i> ₄	$OK(x_1=a)$	
<i>a</i> ₅	$OK(x_3=a)$	
	$OK(x_4=a)$	



	message(s)	action
<i>a</i> ₂	$OK(x_1=a)$	$x_2 \leftarrow b$
<i>a</i> ₃	$OK(x_2=a)$	$x_3 \leftarrow b$
<i>a</i> ₄	$OK(x_1=a)$	$x_4 \leftarrow b$
<i>a</i> ₅	$OK(x_3=a)$	$x_5 \leftarrow b$
	$OK(x_4=a)$	



	message(s)	action
<i>a</i> ₃	$OK(x_2=b)$ $OK(x_3=b)$	$x_3 \leftarrow a$
<i>a</i> ₅	$OK(x_3=b)$	$x_5 \leftarrow a$
	$OK(x_4=b)$	



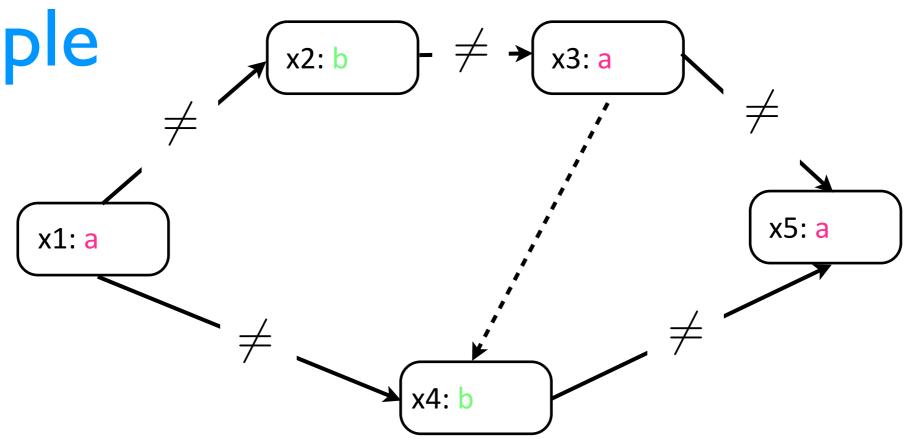
message(s) action

$$a_5$$
 OK(x_3 =a) inconsistent!

 $x_3 = a \Rightarrow x_5 \neq a$
 $x_4 = b \Rightarrow x_5 \neq b$

 a_5 sends a nogood to a_4 :

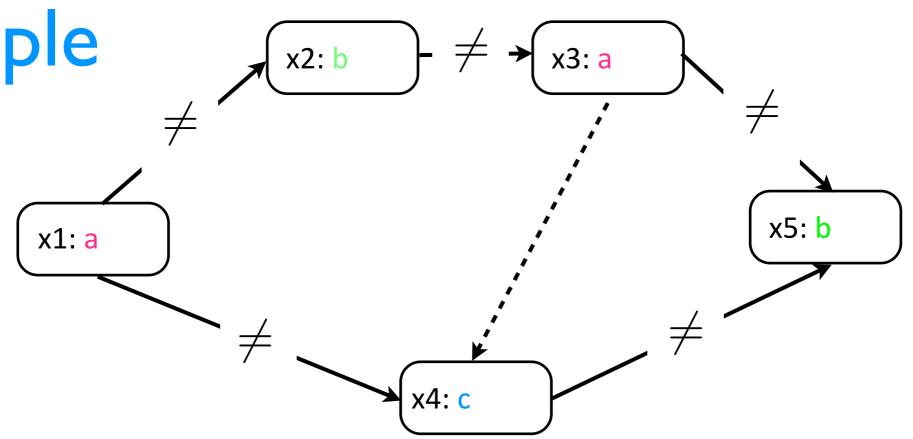
$$v = b$$
, $cond = (x_3 = a)$, $tag = x_5 cost = 1$



		message(s)	action
	<i>a</i> 5	$OK(x_3=a)$	inconsistent!
$x_3 = a \Rightarrow x_5 \neq a$			
$x_4 = b \Rightarrow x_5 \neq b$			

 a_5 sends a nogood to a_4 :

$$v = b$$
, $cond = (x_3 = a)$, $tag = x_5 cost = 1$



		message(s)	action
	<i>a</i> 5	$OK(x_3=a)$	inconsistent!
$x_3 = a \Rightarrow x_5 \neq a$			
$x_4 = b \Rightarrow x_5 \neq b$			

 a_5 sends a nogood to a_4 :

$$v = b$$
, $cond = (x_3 = a)$, $tag = x_5 cost = 1$

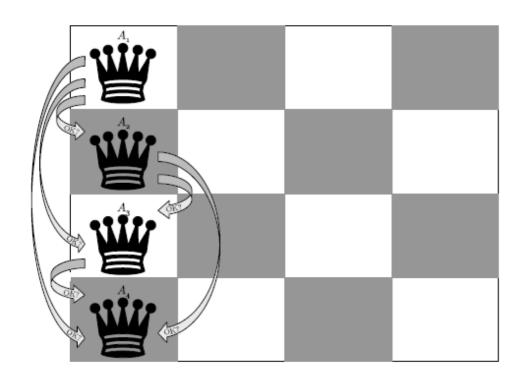


Figure 1.6: Cycle 1 of ABT for four queens. All agents are active.

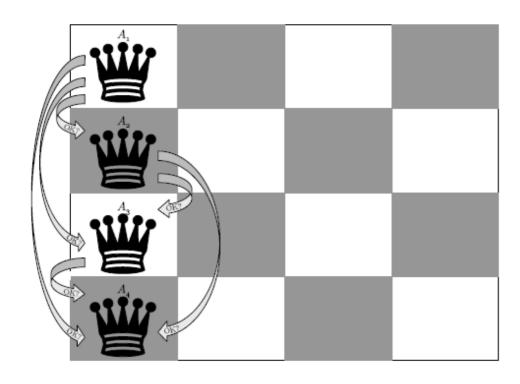


Figure 1.6: Cycle 1 of ABT for four queens. All agents are active.

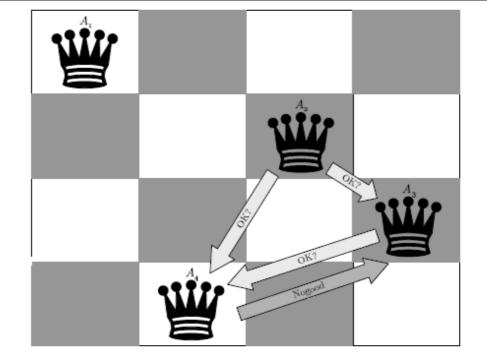


Figure 1.7: Cycle 2 of ABT for four queens. A_2 , A_3 and A_4 are active. The Nogood message is $A_1 = 1 \land A_2 = 1 \rightarrow A_3 \neq 1$.

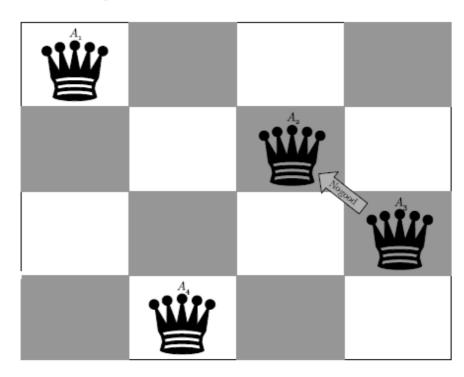


Figure 1.8: Cycle 3. Only A_3 is active. The Nogood message is $A_1 = 1 \rightarrow A_2 \neq 3$.

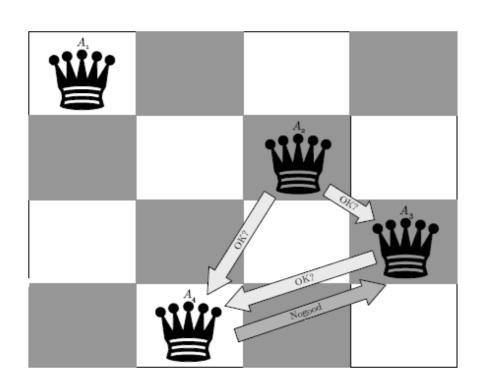


Figure 1.7: Cycle 2 of ABT for four queens. A_2 , A_3 and A_4 are active. The Nogood message is $A_1 = 1 \land A_2 = 1 \rightarrow A_3 \neq 1$.

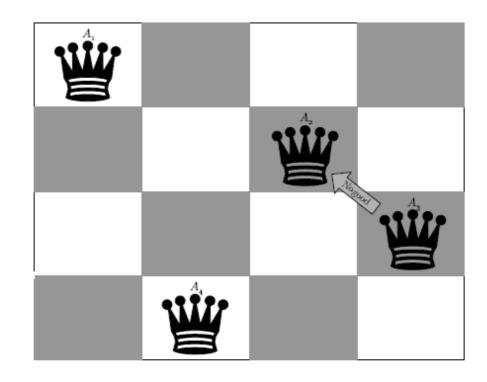


Figure 1.8: Cycle 3. Only A_3 is active. The Nogood message is $A_1 = 1 \rightarrow A_2 \neq 3$.

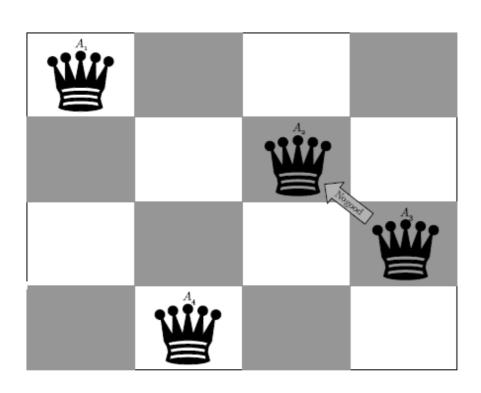


Figure 1.8: Cycle 3. Only A_3 is active. The Nogood message is $A_1 = 1 \rightarrow A_2 \neq 3$.

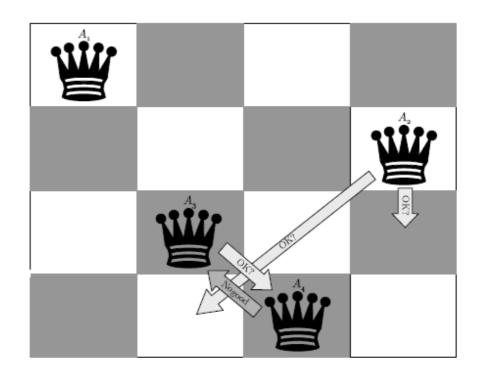


Figure 1.9: Cycles 4 and 5. A_2 , A_3 and A_4 are active. The Nogood message is $A_1 = 1 \land A_2 = 4 \rightarrow A_3 \neq 4$.

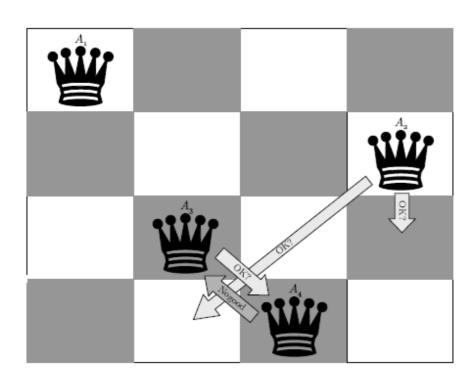


Figure 1.9: Cycles 4 and 5. A_2 , A_3 and A_4 are active. The Nogood message is $A_1 = 1 \land A_2 = 4 \rightarrow A_3 \neq 4$.

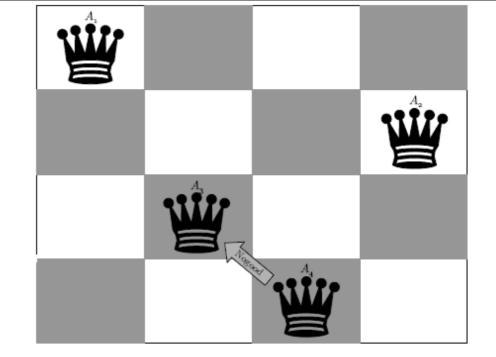


Figure 1.10: Cycle 6. Only A_4 is active. The Nogood message is $A_1 = 1 \land A_2 = 4 \rightarrow A_3 \neq 2$.

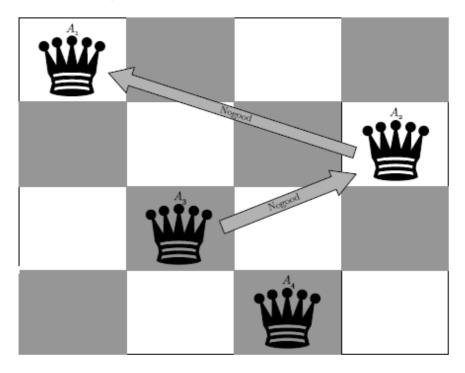


Figure 1.11: Cycles 7 and 8. A_3 is active in the first cycle and A_2 is active in the second. The Nogood messages are $A_1 = 1 \rightarrow A_2 \neq 4$ and $A_1 \neq 1$.

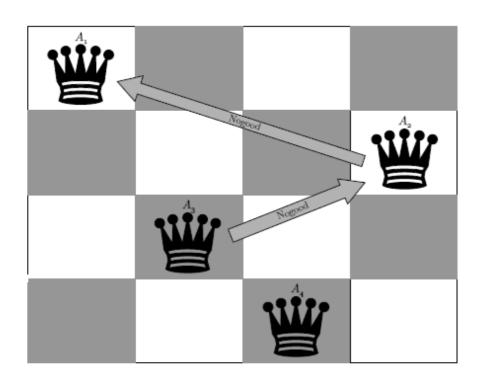


Figure 1.11: Cycles 7 and 8. A_3 is active in the first cycle and A_2 is active in the second. The Nogood messages are $A_1 = 1 \rightarrow A_2 \neq 4$ and $A_1 \neq 1$.

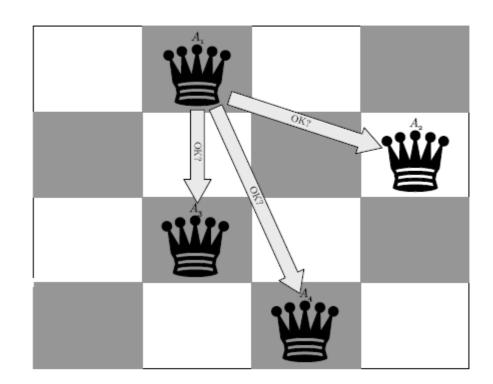


Figure 1.12: Cycle 9. Only A_1 is active.

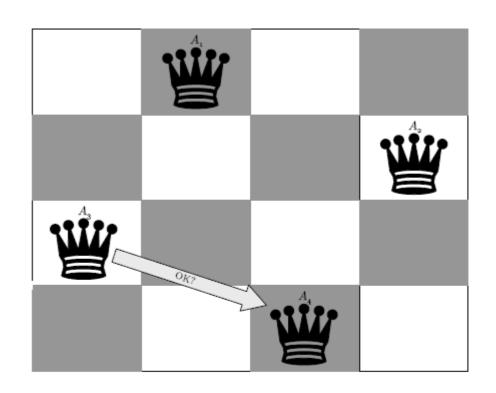


Figure 1.13: Cycle 10. Only A_3 is active.

OPPA European Social Fund Prague & EU: We invest in your future.