## OPPA European Social Fund Prague \& EU: We invest in your future.

## A4M33MAS - Multiagent Systems Introduction to Game Theory

Michal Pechoucek \& Michal Jakob
Department of Computer Science Czech Technical University in Prague


In parts based on Kevin Leyton-Brown: Foundations of Multiagent Systems an introduction to algorithmic game theory, mechanism design and auctions

## Game Theory

- Game theory is the study of strategic decision making, the study of mathematical models of conflict and cooperation between intelligent rational decision-makers, interactive decision theory
- Given the rule of the game, game theory studies strategic behaviour of the agents in the form of a mixed/pure strategy (e.g. optimality, stability)
- Given the strategic behavior of the agents, mechanism design (reverse game theory) studies(designs) the rule of games with respect to a specific outcome of the game

Yoav Shoham, Kevin Leyton-Brown, Multiagent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations Cambridge University Press, 2009
http://www.masfoundations.orq


## Types of Games

- Cooperative or non-cooperative


## Types of Games

- Cooperative or non-cooperative
- Symmetric and asymmetric


## Types of Games

- Cooperative or non-cooperative
- Symmetric and asymmetric
- Zero-sum and non-zero-sum


## Types of Games

- Cooperative or non-cooperative
- Symmetric and asymmetric
- Zero-sum and non-zero-sum
- Simultaneous and sequential


## Types of Games

- Cooperative or non-cooperative
- Symmetric and asymmetric
- Zero-sum and non-zero-sum
- Simultaneous and sequential
- Perfect information and imperfect information (complete info. games)


## Types of Games

- Cooperative or non-cooperative
- Symmetric and asymmetric
- Zero-sum and non-zero-sum
- Simultaneous and sequential
- Perfect information and imperfect information (complete info. games) Combinatorial games


## Types of Games

- Cooperative or non-cooperative
- Symmetric and asymmetric
- Zero-sum and non-zero-sum
- Simultaneous and sequential
- Perfect information and imperfect information (complete info. games) Combinatorial games
- Infinitely long games


## Types of Games

- Cooperative or non-cooperative
- Symmetric and asymmetric
- Zero-sum and non-zero-sum
- Simultaneous and sequential
- Perfect information and imperfect information (complete info. games) Combinatorial games
- Infinitely long games
- Discrete and continuous games, differential games


## TCP Backoff Game

## TCP Backoff Game

- Consider this situation as a two-player game:
- both use a correct implementation: both get 1 ms delay
- one correct, one defective: 4 ms delay for correct, 0 ms for defective
- both defective: both get a 3 ms delay.


## TCP Backoff Game

- Consider this situation as a two-player game:
- both use a correct implementation: both get 1 ms delay
- one correct, one defective: 4 ms delay for correct, 0 ms for defective
- both defective: both get a 3 ms delay.
- Questions:
- What action should a player of the game take?
- Would all users behave the same in this scenario?
- What global patterns of behaviour should the system designer expect?
- Under what changes to the delay numbers would behavior be the same?
- What effect would communication have?
- Repetitions? (finite? infinite?)
- Does it matter if I believe that my opponent is rational?


## Game definition

- Finite, $n$-person game: $\langle N, A, u\rangle$ :
- $N$ is a finite set of $n$ players, indexed by $i$
- $A=A_{1} \times \ldots \times A_{n}$, where $A_{i}$ is the action set for player $i$
- $a \in A$ is an action profile, and so $A$ is the space of action profiles
- $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$, a utility function for each player, where $u_{i}: A \mapsto \mathbb{R}$
- Writing a 2-player game as a matrix:
- row player is player 1 , column player is player 2
- rows are actions $a \in A_{1}$, columns are $a^{\prime} \in A_{2}$
- cells are outcomes, written as a tuple of utility values for each player


## Game definition

- Writing a 2-player game as a matrix:
- row player is player 1 , column player is player 2
- rows are actions $a \in A_{1}$, columns are $a^{\prime} \in A_{2}$
- cells are outcomes, written as a tuple of utility values for each player


## Game definition

- Writing a 2-player game as a matrix:
- row player is player 1 , column player is player 2
- rows are actions $a \in A_{1}$, columns are $a^{\prime} \in A_{2}$
- cells are outcomes, written as a tuple of utility values for each player


## Game definition

- Writing a 2-player game as a matrix:
- row player is player 1 , column player is player 2
- rows are actions $a \in A_{1}$, columns are $a^{\prime} \in A_{2}$
- cells are outcomes, written as a tuple of utility values for each player



## Other Games: Coordination Games


driving side

battle of sexes

## Other Games: Coordination Games

Players have exactly the same interests.

- no conflict: all players want the same things
- $\forall a \in A, \forall i, j, u_{i}(a)=u_{j}(a)$
- we often write such games with a single payoff per cell
- why are such games "noncooperative"?


## Other Games: Prisoners Dilemma



$$
\begin{aligned}
& \left(A_{d}, B_{c}\right)^{0} \preccurlyeq\left(A_{c}, B_{c}\right)^{1} \prec\left(A_{d}, B_{d}\right)^{3} \prec\left(A_{c}, B_{d}\right)^{5} \\
& \left(A_{c}, B_{d}\right)^{0} \prec\left(A_{c}, B_{c}\right)^{1} \prec\left(A_{d}, B_{d}\right)^{3} \prec\left(A_{d}, B_{c}\right)^{5}
\end{aligned}
$$

## Other Games: Prisoners Dilemma


any game where $c \succeq a \succeq d \succeq b$

## Other Games: Matching Pennies

|  | Heads | Tails |
| :---: | :---: | :---: |
| Heads | 1, -1 | -1, 1 |
| Tails | -1, 1 | 1, -1 |

## Other Games: Matching Pennies

|  | Heads | Tails |
| :---: | :---: | :---: |
| Heads | 1, -1 | -1, 1 |
| Tails | -1, 1 | 1, -1 |

## Other Games: Matching Pennies



## Other Games: Rock-paper-scissors

|  | Rock | Paper | Scissors |
| :---: | :---: | :---: | :---: |
| Rock | 0 | -1 | 1 |
| Paper | 1 | 0 | -1 |
| Scissors | -1 | 1 | 0 |

## Properties of the games

- Finite, $n$-person game: $\langle N, A, u\rangle$ :
- $N$ is a finite set of $n$ players, indexed by $i$
- $A=A_{1} \times \ldots \times A_{n}$, where $A_{i}$ is the action set for player $i$
- $a \in A$ is an action profile, and so $A$ is the space of action profiles
- $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$, a utility function for each player, where $u_{i}: A \mapsto \mathbb{R}$
- strategy $s_{i}$ refers to a decision (about action choice) at each stage of the game that the agent $i$ makes and which leads to an outcome
- outcome is the set of possible states resulting from agent's decision making
- strategy profile refers to the set of strategies played by the agents. Set of strategy profiles: $S=S_{1} \times \ldots \times S_{n}$.


## Properties of the games

- Social welfare (Collective utility):

$$
U(a)=\sum_{\forall i} u_{i}\left(a_{i}\right)
$$

- Cooperative agents choose such $a_{i}$ that maximizes $U(a)$
- Self-interested (individually rational) agents choose such $a_{i}$ that maximizes $u_{i}\left(a_{i}\right)$
- When designing a multiagent system designers worry about:
- individual rationalty of each agent
- social welfare and welfare efficiency
- stability of the strategy (action) profile


## Pareto Efficiency

- Pareto Efficiency:
- action (strategy) profile is Pareto optimal if there is no other action that at least one agent is better off and no other agent is worse off than in the given profile
- Dominance:
- measure comparing two strategies. $b$ dominates weakly $a$ as follows:

$$
a \preceq b \text { iff } \forall i: u_{i}\left(a_{i}\right) \leq u_{i}\left(b_{i}\right)
$$

- dominant strategy: strategy that is not dominated by any other strategy

Pareto efficient strategy is such a strategy that is not weakly dominated by any other strategy

## Pareto Efficiency



## Nash Equilibrium

- If you know what overyone else was going to do, it would easy to pick your own actions
- Let $a_{i}=\left\langle a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right\rangle$.now $a=\left(a_{-i}, a_{i}\right)$


## Definition (Best Response)

$a_{i}^{*} \in B R\left(a_{-i}\right)$ iff $\forall a_{i} \in A_{i}, u_{i}\left(a_{i}^{*}, a_{-i}\right) \geq u_{i}\left(a_{i}, a_{-i}\right)$

## Definition (Nash Equilibrium)

The strategy profile $a=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is in Nash Equilibrium iff $\forall i, a_{i} \in B R\left(a_{-i}\right)$

Idea: look for stable action profiles.

## Nash Equilibrium

## Nash Equilibrium

- Nash equilibrium, is a set of strategies, one for each player, such that no player has incentive to unilaterally change her action. Players are in equilibrium if a change in strategies by any one of them would lead that player to earn less than if she remained with her current strategy.


## Nash Equilibrium

- Nash equilibrium, is a set of strategies, one for each player, such that no player has incentive to unilaterally change her action. Players are in equilibrium if a change in strategies by any one of them would lead that player to earn less than if she remained with her current strategy.
- Strong Nash Equilibrium is such an equilibrium that is stable against deviations by cooperation.


## Nash Equilibrium



## Nash Equilibrium



## Nash Equilibrium



|  | Heads | Tails |
| :---: | :---: | :---: |
| Heads | 1 | -1 |
| Tails | -1 | 1 |

## Nash Equilibrium



| Heads |  | Tails |
| :---: | :---: | :---: |
| Heads1 -1 <br>  $\quad$Tails <br> -1 |  |  |


| Left |
| :---: |
| Right |
|  |

## Nash Equilibrium



|  | Head | Tails |
| :---: | :---: | :---: |
| Heads | 1 | -1 |
| Tails | -1 | 1 |



## Nash Equilibrium



|  | Heads | Tails |
| :---: | :---: | :---: |
| Heads | 1 | -1 |
| Tails | -1 | 1 |



## Nash Equilibrium



|  | Heads | Tails |
| :---: | :---: | :---: |
| Heads | 1 | -1 |
| Tails | -1 | 1 |



## Strong Nash Equilibrium



## Strong Nash Equilibrium



## Prisoners Dilemma: PE, NE



$$
\begin{aligned}
& \xi_{A}=\left(A_{d}, B_{c}\right)^{0} \preccurlyeq\left(A_{c}, B_{c}\right)^{1} \prec\left(A_{d}, B_{d}\right)^{3} \prec\left(A_{c}, B_{d}\right)^{5} \\
& \xi_{B}=\left(A_{c}, B_{d}\right)^{0} \preccurlyeq\left(A_{c}, B_{c}\right)^{1} \prec\left(A_{d}, B_{d}\right)^{3} \preccurlyeq\left(A_{d}, B_{c}\right)^{5}
\end{aligned}
$$

## Prisoners Dilemma: PE, NE



$$
\begin{aligned}
& \xi_{A}=\left(A_{d}, B_{c}\right)^{0} \preccurlyeq\left(A_{c}, B_{c}\right)^{1} \prec\left(A_{d}, B_{d}\right)^{3} \prec\left(A_{c}, B_{d}\right)^{5} \\
& \xi_{B}=\left(A_{c}, B_{d}\right)^{0} \prec\left(A_{c}, B_{c}\right)^{1} \prec\left(A_{d}, B_{d}\right)^{3} \preccurlyeq\left(A_{d}, B_{c}\right)^{5}
\end{aligned}
$$

## Prisoners Dilemma: PE, NE



The paradox of Prisoner's Dilemma: the Nash equilibrium is the only non-Pareto-optimal outcome

## Prisoners Dilemma: PE, NE



The paradox of Prisoner's Dilemma: the Nash equilibrium is the only non-Pareto-optimal outcome

## Prisoners Dilemma: PE, NE



The paradox of Prisoner's Dilemma: the Nash equilibrium is the only non-Pareto-optimal outcome

## Mediated Prisoners Dilemma

|  | Cooperate | Defect |
| ---: | :---: | :---: |
| Cooperate1,1 | 5,0 |  |
|  |  |  |

## Mediated Game

|  | Mediator | Cooperate | Defect |
| :---: | :---: | :---: | :---: |
| Mediator | 1,1 | 0,5 | 2,2 |
| Cooperate | 5,0 | 1,1 | 5,0 |
|  |  |  |  |
|  |  |  |  |

## Mediated Equlibrium

|  | Mediator | Cooperate | Defect |
| :---: | :---: | :---: | :---: |
| Mediator | 1,1 | 0,5 | 2,2 |
| Cooperate | 5,0 | 1,1 | 5,0 |
|  |  |  |  |
|  |  |  |  |

## Iterated Prisoner Dilemma

- The problem of repeatedly played PD game. Optimization for total count of each player outcome. Sometimes IPD can be played against a range of different; opponents (or even several at the same time).
- motives for cooperation: (i) if you know you will be meeting your opponent again, then the incentive to defect appears to evaporate. (ii) defection may be punished in the future round,
- motives for defection: (i) you can test the water by defection (ii) cooperative defection is the rational choice in the infinitely repeated prisoner's dilemma


## Iterated Prisoner Dilemma

- What strategy to choose, so as to maximize your overall payoff?
- Axelrod (1984) investigated this problem, with a computer tournament for programs playing the iterated prisoner's dilemma:

| ALLD | Always defect. the Hawk or Free rider strategy |
| :--- | :--- |
| ALLC | Always cooperate |
| TITforTAT | first cooperate, than do what your opponent did |
| TF2T | Same as above, but requires TWO consecutive defections for a <br> defection to be returned |
| STFT | Suspicious TFT - first, defect. If the opponent retaliated, then play <br> TITforTAT. Otherwise intersperse cooperation \& defection. |
| JOSS | As TIT-FOR-TAT, except periodically defect. |

## Mixed Strategy

- In many games, deterministic strategy is very inefficient.
- example: matching pennies, security games
- Solution: randomize selection of an action
- Pure strategy
- agents makes the decision to play one action
- Mixed strategy
- agents chose to play more actions with positive probabilities
- support of the mixed strategy is the set of all selected actions
- Payoff
- given the strategy profile $s \in S$ for all agents, the utility for the agent $i$

$$
u_{i}(s)=\sum_{a \in A} u_{i}\left(a_{i}\right) \operatorname{Pr}(a \mid s) \quad \operatorname{Pr}(a \mid s)=\prod_{j \in N} s_{j}\left(a_{i}\right)
$$

## Mixed Strategy

Let us generalize the NE concepts for strategy profiles:

- Best response:
- $s_{i}^{*} \in B R\left(s_{-i}\right)$ iff $\forall s_{i} \in S_{i}, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$
- Nash equilibrium:
- $s=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is a Nash equilibrium iff $\forall i, s_{i} \in B R\left(s_{-i}\right)$
- Every finite game has a Nash equilibrium! [Nash, 1950]
- e.g., matching pennies:


## Mixed Strategy

Let us generalize the NE concepts for strategy profiles:

- Best response:
- $s_{i}^{*} \in B R\left(s_{-i}\right)$ iff $\forall s_{i} \in S_{i}, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$
- Nash equilibrium:
- $s=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is a Nash equilibrium iff $\forall i, s_{i} \in B R\left(s_{-i}\right)$
- Every finite game has a Nash equilibrium! [Nash, 1950]
- e.g., matching pennies: both players play heads/tails 50\%/50\%


## Mixed Strategy

- It's hard in general to compute Nash equilibria, but it's easy when you can guess the support. For BoS, let's look for an equilibrium where all actions are part of the support.

- Let player 2 play B with $p, \mathrm{~F}$ with $1-p$.
- If player I best-responds with a mixed strategy, player 2 must make him indifferent between $F$ and $B$ (why?)


## Mixed Strategy



- Let player 2 play B with $p, \mathrm{~F}$ with $1-p$.
- If player I best-responds with a mixed strategy, player 2 must make him indifferent between $F$ and $B$ (why?)


## Mixed Strategy



- Let player 2 play B with $p, \mathrm{~F}$ with $1-p$.
- If player I best-responds with a mixed strategy, player 2 must make him indifferent between $F$ and $B$ (why?)


## Mixed Strategy



- Let player 2 play B with $p, \mathrm{~F}$ with $1-p$.
- If player I best-responds with a mixed strategy, player 2 must make him indifferent between $F$ and $B$ (why?)

$$
\begin{aligned}
u_{1}(B) & =u_{1}(F) \\
2 p+0(1-p) & =0 p+1(1-p) \\
p & =\frac{1}{3}
\end{aligned}
$$

## Mixed Strategy



- Likewise: Let player I play B with $q, F$ with $1-q$.

$$
\begin{aligned}
u_{2}(B) & =u_{2}(F) \\
q+0(1-q) & =0 q+2(1-q) \\
q & =\frac{2}{3}
\end{aligned}
$$

- Thus the mixed strategy $\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)$ is in Nash Equilibrium


## Interpreting Mixed Strategy

- What does it mean to play a mixed strategy? Different interpretations:
- Randomize to confuse your opponent
* consider the matching pennies example
- Randomize when they are uncertain about the other's action
* consider battle of the sexes
- Randomize when they you allocated limitted resources
- Mixed strategies are a concise description of what might happen in repeated play: count of pure strategies in the limit
- Mixed strategies describe population dynamics: 2 agents chosen from a population, all having deterministic strategies.


## OPPA European Social Fund Prague \& EU: We invest in your future.

