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Multiagent Constraint Optimization (DCOP)

the overall cost of the assignment is minimized
Cost ({v1, ..., v ) = 

C = represented as a list of cost functions on 1 ... n variables in 
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ABT for DCOP
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ADOPT
• ADOPT assumes that agents are arranged in a DFS tree:

– constraint graph  rooted graph (select a node as root)
– some links form a tree / others are back edges
– two constrained nodes must be in the same path to the root by tree links 

(same branch)
• Every graph admits a DFS tree
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ADOPT: Description
• Asynchronous algorithm
• Each time an agent receives a message:

– Processes it (the agent may take a new value)
– Sends VALUE messages to its children and pseudochildren
– Sends a COST message to its parentd

• View: set of variable value pairs (as ABT agent view) of ancestor 
agents, in the same branch. Current context:
– Updated by each VALUE message
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ADOPT: Description
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ADOPT: Example
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ADOPT: Messages
• value(parent → children & pseudochildren, value):

parent informs descendants that it has taken value a
• view(child → parent, cost, view):

child informs parent of the best cost of its assignement; attached 
context to detect obsolescence;
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Simple-ADOPT Algorithm
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Simple-ADOPT Algorithm
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Simple-ADOPT Algorithm
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Simple-ADOPT: Example
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Simple-ADOPT: Example

21

Tuesday, November 27, 12



Simple-ADOPT: Example
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Simple-ADOPT: Example
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ADOPT: Properties
• For finite DCOPs with binary non-negative constraints, ADOPT is 

guaranteed to terminate with the globally optimal solution.
• An ADOPT agent takes the value with minimum cost:

– Best-first search with eager behavior:
– Agents may constantly change value

• Graph coloring benchmark:
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ADOPT: Key Ideas
• Optimal, asynchronous algorithm for DCOP

– polynomial space at each agent
• Weak Backtracking  

– lower bound based search method
– Parallel search in independent subtrees

• Efficient reconstruction of abandoned solutions
– backtrack thresholds to control backtracking

• Bounded error approximation
– sub-optimal solutions faster
– bound on worst-case performance
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Dynamic Programming Optimization 
Protocol (DPOP)
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Dynamic Programming Optimization 
Protocol (DPOP)
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Dynamic Programming Optimization 
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Distributed local search
• Drawbacks of systematic search:

– need variable ordering 
– no anytime behavior: have to wait for termination.
– often (too) costly.

• Sacrifice completeness ⇒ local search
– min-conflicts
– distibuted min-conflicts
– breakout algorithm
– random sampling
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Min-conflicts
• Assign random value to each variable in parallel (this will conflict 

with some constraints).
• At each step, find the change in variable assignment which most 

reduces the number of conflicts.
• Corresponds to search by ”hill-climbing”.

37

Tuesday, November 27, 12



Distributed min-conflicts
• Neighbourhood of N(xi) = variables connected to xi through 

constraints.
• Change to xi can happen asynchronously with others as long as 

there is no other change in the neighbourhood.
⇒ two neighbouring agents are not allowed to change 
simultaneously:
– highest improvement wins
– ties broken by fixed ordering
⇒ parallel, distributed execution.

• also called MGM
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Distributed min-conflicts
• Neighbourhood of N(xi) = variables connected to xi through 

constraints.
• Change to xi can happen asynchronously with others as long as 

there is no other change in the neighbourhood.
⇒ two neighbouring agents are not allowed to change 
simultaneously:
– highest improvement wins
– ties broken by fixed ordering
⇒ parallel, distributed execution.

• CAN GET STUCK IN LOCAL MINIMUM
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Distributed min-conflicts
• Neighbourhood of N(xi) = variables connected to xi through 

constraints.
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Breakout Algorithm
• To escape local minima the algorithm identifies quasi-local minima 

and increases the cost of the constraint violations

• Similar to min-conflict, but assign dynamic priority to every conflict 
(constraint), initially =1

• Modify variable which reduces the most the sum of the priority 
values of all conflicts.

• When local minimum:
– increase weight of every existing conflict

• Eventually, new conflicts will have lower weight than existing ones 
⇒ breakout
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Breakout Algorithm: Code
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Breakout Algorithm: Properties

• Theorem (Distributed Breakout is not Complete)
Distributed breakout can get stuck in local minimum. Therefore, 
there are cases where a solution exists and it cannot find it.
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