A4M33MAS - Multiagent Systems
Distributed Constraint Optimization

Michal Pechoucek & Michal Jakob

Department of Computer Science
Czech Technical University in Prague

OTEVRENA
/% 0 INFORMATIKA

In parts based on Multi-agent Constraint Programming, Boi Faltings, Laboratoire d’Intelligence Artificielle, EPFL

Tuesday, November 27, 12

Multiagent Constraint Optimization (DCOP)

Given < X, D, C, A > where:
@ X = {xy,..,X,} is a set of n variables.
@ D={d,...,dn} is a set of n domains.
@ C ={c1,..,cm} is a set of m constraints.

@ A=1{a1,..,a,} is a set of n agents, not necessarily all
different.

Find solution = (x; = v € dy, ..., X, = v, € d,) such that for all
the overall cost of the assignment is minimized

Cost ({vi,..;Vn}) = Z Cz‘({Vl,..,V-n})

Ve, el
C = represented as a list of cost functions on 1 ... n variables in
X and their values from D, so that P(X,D) — R

Tuesday, November 27, 12

ABT for DCOP Ol

@ Nogoods give lower bounds on costs.

@ Compute total cost of all lower priority agents by summing
nogoods.

@ Nogood tags must exactly cover all lower-priority variables,
otherwise some variables are not counted or counted multiple

times.

@ If we can prevent this from happening, then ABT works fine
for optimization as well.

3

Tuesday, November 27, 12

ADOPT

« ADOPT assumes that agents are arranged in a DFS tree:

— constraint graph rooted graph (select a node as root)

— some links form a tree / others are back edges

Ol

— two constrained nodes must be in the same path to the root by tree links

(same branch)

e Every graph admits a DFS tree

4

pseudoparent

:> pseudochild;

!
i
!
!

root

/ |Tparent

I

\child

Tuesday, November 27, 12

ADOPT: Description Ol

e Asynchronous algorithm

e Each time an agent receives a message:
— Processes it (the agent may take a new value)

— Sends VALUE messages to its children and pseudochildren
— Sends a COST message to its parentd

» View: set of variable value pairs (as ABT agent view) of ancestor
agents, in the same branch. Current context:
— Updated by each VALUE message

Tuesday, November 27, 12

ADOPT: Description Ol

Definition: The /ocal cost ¢ incurred at z;, wrt to a given view vw is defined as

oz, ow) =) fij(di,d;j) ,where x; + d;,

. / .
75 €} xj < dj in vw

Definition: A view is a set of variable/value pairs of the form {(z;.d;), (zj,d;)...}.
A variable can appear in a view no more than once. Two views are compatible 1t
they do not disagree on any variable assignment.

6

Tuesday, November 27, 12

ADOPT: Example

~—— Links

f(xixj)) — =" Parent/Child

- O — O

Ol

<—— VALUE messages

<=- -~ VIEW Messages

ADOPT: Messages Ol

o value(parent — children & pseudochildren, value):
parent informs descendants that it has taken value a
o view(child — parent, cost, view):

child informs parent of the best cost of its assignement; attached
context to detect obsolescence;

8

Tuesday, November 27, 12

Simple-ADOPT Algorithm

Initialize: Currentvw <« {};d; < null;
Vd € D; :
c(d) <0
hill_climb;

Ol

Simple-ADOPT Algorithm

Initialize: Currentvw < {};d; < null;
Vd € D; :
c(d) <+ 0
hill_climb:;

procedure hill_climb
Vd € D;:
#e(d) is x;’s estimate of cost if it chooses d

e(d) < d(x;, Currentow U {(z;,d)}) + c(d);

choose d that minimizes e(d)

prefer current value d; for tie;
dz’ — d;

SEND (VALUE, (z;, d;)) to all linked descendents;

SEND (VIEW, Currentvw, e(d;)) to
parent;

10

Ol

Tuesday, November 27, 12

Simple-ADOPT Algorithm Ol

when received (VALUE, (z;,d;)) when received (VIEW, vw, cost)

add (x;,d;) to Currentvw; d < value of x; In vw
context change if vw 1s compatible with
if Currentvw changed then Currentvw U {(z;,d)} then
Vd € D; : c(d) < max(c(d), cost);
c(d) <0 if ¢(d) changed then
end 1f; hill_climb;
hill_Climb; end if;

end if;

11

Tuesday, November 27, 12

o X1 X f(x1.,x7)
Simple-ADOPT: Example oo 1
0 1 2
1 O 2
1 1 0

\
| h cost=0
cost =2 7 vw=(x1,1)

vw=(x1,1)
(x2.0)
r~" "/ = \ |
\
1

vw=(x2,0)(x3.0)
vw=(x2.0)(x3.0)

12

Tuesday, November 27, 12

Simple-ADOPT: Example

0 O
0 1
1 O
1 1

S NN

Initialize: Currentvw <« {}:d; < null;
Vd € D; :

c(d) <+ 0

AN hill_climb;
' | 'wost— 1 Procedure hill_climb
. “ i " vw:(xl,O)l Vd “ -D’L

#e(d) is x;’s estimate of cost if it chooses d
e(d) < d(z;, Currentvw U {(z;,d)}) + c(d);

@ choose d that minimizes e(d)
<------ :
cost =1 prefer current value d; for tie;
vw=(x2.,0)(x3.0)

o d; < d;

SEND (VALUE, (z;, d;)) to all linked descendents;

SEND (VIEW, Currentvw, e(d;)) to
parent;

13

Tuesday, November 27, 12

Simple-ADOPT: Example

0 O
0 1
1 O
1 1

S NN

Initialize: Currentvw <« {}:d; < null;
Vd € D; :

@ c(d) <+ 0
AN hill_climb;
' 'wost— 1 Procedure hill_climb
. " i "vw:(xl,O)l Vd “ -D’I,

#e(d) is x;’s estimate of cost if it chooses d
e(d) < d(z;, Currentvw U {(z;,d)}) + c(d);

@ choose d that minimizes e(d)
<------ :
cost =1 prefer current value d; for tie;
vw=(x2.,0)(x3.0)

o d; < d;

SEND (VALUE, (z;, d;)) to all linked descendents;

SEND (VIEW, Currentvw, e(d;)) to
parent;

14

Tuesday, November 27, 12

. X1 X] f(x1,x1)
Simple-ADOPT: Example 3 f ; .
1 O 2
1 1 0

Initialize: Currentvw <« {};d; < null;
Vd € D; :

@ c(d) «+ 0
hill_climb;
'>C(m _, Pprocedure hill_climb

@ vw:(xl,O)' Vd e Dz.

| #e(d) is x;’s estimate of cost if it chooses d
/ e(d) < d(z;, Currentvw U {(z;,d)}) + c(d);

. choose d that minimizes e(d)
cost =1 @ prefer current value d; for tie;
vw=(x2.,0)(x3.0) dz (_ d,
SEND (VALUE, (z;, d;)) to all linked descendents;
SEND (VIEW, Currentvw, e(d;)) to

parent;

15

Tuesday, November 27, 12

. X1 X] f(x1,x1)
Simple-ADOPT: Example 00T
1 O 2
1 1 0

cost(x;,vw) = Y fij(di,d;) ,where x; + d;,

cV .
75 €} xj < dj in vw
W

1, @ jcost = 1 when received (VIEW vw, cost)
: " vw=(x1,0) .
i d < value of z; In vw

\ if vw 1s compatible with
Currentvw U {(z;,d)} then
<o ' c(d) + max(c(d), cost);
VW=(:2.0)(x3.0) if ¢(d) changed then
hill_climb:;
end 1f;
end 1if;

16

Tuesday, November 27, 12

o X1 X f(x1.x9)
Simple-ADOPT: Example 00T
1 O 2
1 1 0

cost(x;,vw) = Y fij(di,d;) ,where x; + d;,

cV .
75 €} xj < dj in vw
N

' | cost = 1 procedure hill_climb
. " = ' vw=(x10) Vd & Dz

#e(d) is x;’s estimate of cost if it chooses d
\ e(d) < 0(x;, Currentvw U {(z;,d)}) + c(d);

@ choose d that minimizes e(d)
<------ :
cost =1 prefer current value d; for tie;
vw=(x2,0)(x3,0)

o d; < d;

SEND (VALUE, (z;, d;)) to all linked descendents;

SEND (VIEW, Currentvw, e(d;)) to
parent;

17

Tuesday, November 27, 12

o X1 X f(x1.,x7)
Simple-ADOPT: Example oo 1
0 1 2
1 O 2
1 1 0

\
| h cost=0
cost =2 7 vw=(x1,1)

vw=(x1,1)
(x2.0)
r~" "/ = \ |
\
1

vw=(x2,0)(x3.0)
vw=(x2.0)(x3.0)

18

Tuesday, November 27, 12

Simple-ADOPT: Example

context change

Vd € D; :
c(d) <0
end if;
hill_climb:;

19

f(xi,xj)

—_ -0 OofX.

X]
0
1
0
1

when received (VALUE, (z;,d;))
add (z;,d;) to Currentvw;

if Currentvw changed then

S NN

Tuesday, November 27, 12

. X1 X] f(x1,x1)
Simple-ADOPT: Example 3 f ; .
1 O 2
1 1 0

procedure hill_climb

Vd € D;:
#e(d) is x;’s estimate of cost if it chooses d
e(d) < d(x;, Currentvw U {(z;,d)}) + c(d)

choose d that minimizes e(d)
prefer current value d; for tie;

dz' — d;

SEND (VALUE, (z;, d;)) to all linked descendent

SEND (VIEW, Currentvw, e(d;)) to
parent;

Oz, vw) = Y. fij(di,dj) ,where x; + d;,

. / .
75 €} xj < dj in vw

20

Tuesday, November 27, 12

. X1 X] f(x1,x1)
Simple-ADOPT: Example 3 f ; .
1 O 2
1 1 0

procedure hill_climb

Vd € D;:
#e(d) is x;’s estimate of cost if it chooses d
e(d) < d(x;, Currentvw U {(z;,d)}) + c(d)

choose d that minimizes e(d)
prefer current value d; for tie;

dz' — d;

SEND (VALUE, (z;, d;)) to all linked descendent

SEND (VIEW, Currentvw, e(d;)) to
parent;

Oz, vw) = Y. fij(di,dj) ,where x; + d;,

. / .
75 €} xj < dj in vw

21

Tuesday, November 27, 12

. i | i
Simple-ADOPT: Example R
0 1 2
1 O 2
1 1 0
), S
x| L o0
=X vw=(x1,1)

(x2.0)

vw=(x2,0)(x3.0)
vw=(x2,0)(x3.0)

22

Tuesday, November 27, 12

. X1 x] | f(xi1xj)
Simple-ADOPT: Example oo 1
0 1 2
1 O 2
1 1 0

cost =2
vw=(x1.1)

(x2.0)

T COS[-

vw=(x2,0)(x3.0)
vw:(x2 0)(x3.0)

23

Tuesday, November 27, 12

ADOPT: Properties

Ol

e For finite DCOPs with binary non-negative constraints, ADOPT is

guaranteed to terminate with t
« An ADOPT agent takes the va

ne globally optimal solution.

ue with minimum cost:

— Best-first search with eager behavior:

— Agents may constantly change value

e Graph coloring benchmark:

000

4500
4000
3500
3000
2500
2000
1500
1000
00 r

Avg. number of cycles,
link density = 2

Syn

-2 101% 2109 >

.'-’,'r
_—
-

chBB —_— -

r

—T

i0 15 20
Num Agents

25 30 35 40

1 40000 ¢
30000 r

Avg. number of cycles,
link density = 3
80000 T P :
70000 |

60000 r
0000 r

20000
10000
0

8 10 12 14 16 18 20 22 24 26
Num Agents

Tuesday, November 27, 12

ADOPT: Key Ideas

e Optimal, asynchronous algorithm for DCOP
— polynomial space at each agent

« Weak Backtracking
— lower bound based search method

— Parallel search in independent subtrees

e Efficient reconstruction of abandoned solutions

— backtrack thresholds to control backtracking

e Bounded error approximation
— sub-optimal solutions faster

— bound on worst-case performance

Ol

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

@ Principle: replace variables by constraints.
@ Consider variable x having constraint with v.
@ For each value of x, there may be a consistent value of v.

= replace y by a constraint on x:
x=v Is allowed if there is a consistent value of y.

@ Optimization version:
utility(x=v) = utility(x=v,y=w); w = best possible
value of y given x=uv.

26

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

\ value(x)

util(x) | &y

@ y sends constraint in util(x) message.
= X can decide (best) value locally.

@ x informs y of value using value(x) message.

27

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

alue(x0
@ Rooted tree: every node has at most value(x0)

one parent

util(x0)
@ Nodes send UTIL messages to their

parents / ‘u\til(x1)
util(x1) /al ue(xk

@ Best values of x2, x3 = unary
constraint on x1

@ x1 sums up UTIL messages + own
constraint = unary constraint on x0

@ x0 picks best value v(x0); sends
value(x0=v(x0)) — x1

@ x1 picks best value given x0 and
informs x2,x3

28

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

c(xo,x3) c(xo, x1)
X3 X1
Xo w b X0 w b
wi| 3 0 wi|l O
b|3 3 b| 2 2 \
\
C(X1,X2) C(X1,X3) \

X
o <
o+—*$:\>§
— ol o

R
o <
o NS
N O o
F

29

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

C(Xo,X3) C(Xo,Xl) @
3 X1 NAvalue(x0)
X0 w b Xo w b \
w|3 0 w|l O . \
b|3 3 b|2 2 util(x0) \
\
c(x1, Xx2) c(x1, x3) Q u\:(xo,x1)
X2 X3 .
X1 w b x w b util(x1) //alue(xb\ \
wl|l O wl|2 0
b0 1 b|0 2

30

Tuesday, November 27, 12

Dynamic Programming Optimization

Protocol (DPOP)

c(xo, X3) c(xo, x1)
X3 X1
Xo w b X0 w b
w|3 0 w|l O
b|3 3 b|2 2
c(x1, Xx2) c(x1, x3)
X2 X3
X1 w b X1 w b
wi|l 0 w2 0
b|0 1 b| 0 2
f X1 \

value(x0)
\
util(x0) \

Q t\J\iI(xo,x1)

. \
utﬂ(é((‘%u e(xh\ \

Dynamic Programming Optimization
Protocol (DPOP)

c(xo, X3) c(xo, x1)
X3 X1 value(x0)
Xo w b X0 w b \
w|3 0 w|l O . \
b|3 3 b|2 2 util(x0) \
\
c(x1, x2) c(x1, x3) Q util(x0,x1)
X2 X3 i(x1 \
X1 w b X1 w b uti (X) //ahje(xh\ \
w|l O w|2 0
b|0 1 b| 0 2
“ e X1 \
UTIL(x) = w b | UTIL(x0.5) = xo——2
0 0 w| 0 2
b|3 3

. J

Dynamic Programming Optimization
Protocol (DPOP)

c(xo, X3)

X3

w
w | 3
3

oy

W O T

c(x1, x2)

X2

X1 w
1

0

UTIL(x) =

— O T

c(xo, x1)
X

p—

S
N =3
N O T

oy

C(Xlﬂ X3)

33

X1
w
0

b
0

o s &
N O T

o

util(x0)

\

@ value(x0)

A

Q t\l\il(xo,x1)

. \
utll(é‘%u e(xb\ \

UTIL(x0,x1) = Xo
w
b

X1
w
0
3

W N T

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

c(xo, X3) c(xo, x1) @
X3 X1 N~\value(x0)
X0 w b Xo w b \
w3 0 w1 0 | \
b3 3 b2 2 util(x0) \
\
c(x1, x2) c(x1,x3) @ U\:(XO,X")
X2 X3 .
X1 w b x w b util(x1) //alue(x%\ \
w|1l O w| 2 0
b0 1 b| 0 2

X1 X0

UTIL(q) = W b UTIL(x0.) = Xo—rfm ’2’ UTIL(xo) = w b
0 0

b|3 3 b3

Xo: w; send value(xo = w) — x; x1: w; send value(xp = w,x; = w) — x2,X3
34 .

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

@ Two messages per variable (UTIL and VALUE).

= number of messages grows linearly with the size of the
problem.

@ However, the maximum message size grows exponentially with
the tree-width of the induced graph.

@ In many distributed problems, the tree-width is relatively
small.

35

Tuesday, November 27, 12

Distributed local search

e Drawbacks of systematic search:
— need variable ordering
— no anytime behavior: have to wait for termination.

— often (too) costly.

e Sacrifice completeness = local search

— min-conflicts
— distibuted min-conflicts
— breakout algorithm

— random sampling

36

Ol

Tuesday, November 27, 12

Min-conflicts Ol

o Assign random value to each variable in parallel (this will conflict
with some constraints).

e At each step, find the change in variable assignment which most
reduces the number of conflicts.

e Corresponds to search by "hill-climbing".

Tuesday, November 27, 12

Distributed min-conflicts Ol

e Neighbourhood of N(x;) = variables connected to x; through
constraints.

e Change to x;j can happen asynchronously with others as long as
there is no other change in the neighbourhood.

= two neighbouring agents are not allowed to change

simultaneously:
— highest improvement wins

— ties broken by fixed ordering

= parallel, distributed execution.

e also called MGM

Tuesday, November 27, 12

Distributed min-conflicts Ol

e Neighbourhood of N(x;) = variables connected to x; through
constraints.

e Change to x;j can happen asynchronously with others as long as
there is no other change in the neighbourhood.

= two neighbouring agents are not allowed to change

simultaneously:
— highest improvement wins

— ties broken by fixed ordering

= parallel, distributed execution.

« CAN GET STUCK IN LOCAL MINIMUM

Tuesday, November 27, 12

Distributed min-conflicts Ol

e Neighbourhood of N(x;) = variables connected to x; through

constraints.

e Change to x;j can happen asynchronously with others as long as
there is no other change in the neighbourhood.

= two neighbouring agents are not allowed to change

simultaneous

Y.

— highest improvement wins

— ties broken by fixed ordering

= parallel, distributed execution.

Definition 2.6 (Quasi-local minimum). An agent x; is in a quasi-local minimum
of it 1s violating some constraint and neither it nor any of its neighbors can make a

change that results

in lower total cost for the system.

Tuesday, November 27, 12

Breakout Algorithm Ol

e To escape local minima the algorithm identifies quasi-local minima
and increases the cost of the constraint violations

e Similar to min-conflict, but assign dynamic priority to every conflict
(constraint), initially =1

e Modify variable which reduces the most the sum of the priority
values of all conflicts.

e When local minimum:
— increase weight of every existing conflict

e Eventually, new conflicts will have lower weight than existing ones
= breakout

Tuesday, November 27, 12

Breakout Algorithm: Code

HANDLE-OK?(j, ;)
received-ok|j| < TRUE
agent-view «— agent-view +(j, x;)
if Vieneighvors received-ok|k] = TRUE
then SEND-IMPROVE()
Vieneighbors received-ok|k] < FALSE

U = W N =

SEND-IMPROVE()

1 new-value «— value that gives maximal improvement
2 my-improve < possible maximal improvement
3 Vkeneighbors k.- HANDLE-IMPROVE (%, my-improve, cost)

HANDLE-IMPROVE(], improve)

1 receiwed-improve[j| « improve

2 if Yicneighvors received-improve k] # NONE
3 then SEND-OK

4 agent-view <« ()

Ol

Tuesday, November 27, 12

Breakout Algorithm: Code Ol

2 my-improve < possible maximal improvement
3 Vkeneighbors k- HANDLE-IMPROVE (%, my-improve, cost)

HANDLE-IMPROVE(], improve)

1 recewed-improve|j| « improve
2 if Yicneighbors received-improve k] # NONE

3 then SEND-OK

4 agent-view «— ()

5 Vieneighbors Teceived-improve|k| <« NONE

SEND-OK()

1 if Yieneighbors my-improve > received-improve|k]|

2 then z; «— new-value

3 if cost > 0 A Vieneighbors received-improvelk] < 0 > quasi-local optimu
4 then increase weight of constraint violations

5 Vkeneighbors k.- HANDLE-OK? (%, ;)

42

Tuesday, November 27, 12

Breakout Algorithm: Example

HANDLE-OK?(j, 2 ;)

received-ok|j| < TRUE

agent-view «— agent-view +(j, ;)

if Vieneighbors received-ok|k] = TRUE
then SEND-IMPROVE()

—
—_—
TU = LW N =

SEND-IMPROVE()

1 new-value +— value that gives maximal improveme
2 my-improve < possible maximal improvement
3 Vkeneighbors K. HANDLE-IMPROVE (7, my-improve, cost

HANDLE-IMPROVE(], improve)

1 recewed-improve|j| « improve
2 if Yicneighbors received-improve k] # NONE
. 3 then SEND-OK

Tuesday, November 27, 12

Breakout Algorithm: Example

43

L new-value +— value tnat gives maxiial 1mprovemer
2 my-improve « possible maximal improvement
3 Vkeneighbors k-HANDLE-IMPROVE(i, my-improve, cost

HANDLE-IMPROVE(], improve)

1 recewed-improve[j| « improve

2 if Yicneighbors received-improve k] # NONE

3 then SEND-OK

4 agent-view «— ()

5 Vieneighbors received-improve|k] < NONE

SEND-OK()

if Vicneighbors my-improve > received-improve k]
then »; «— new-value

if cost > 0 A Vieneighbors received-improve k] < 0 >
then increase weight of constraint violations

Vieneighbors k. HANDLE-OK? (%, ;)

U = QO N =

Tuesday, November 27, 12

Breakout Algorithm: Example

1 1 1 1
1 8 , , p 1 1 8 - p 1
@/ \°> @/ \°>
1 1 1 1

Ol

Breakout Algorithm: Example

Ol

Breakout Algorithm: Example Ol

I 1 2 2 2 2 2 2
o—® o6 (O—9O O—0
1 1

1

1 1 1 1 1 1
11 2 2

O—0O O0—0 0—0O 06—

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1
O—@

46

Tuesday, November 27, 12

Breakout Algorithm: Properties Ol

e Theorem (Distributed Breakout is not Complete)

Distributed breakout can get stuck in local minimum. Therefore,
there are cases where a solution exists and it cannot find it.

47

Tuesday, November 27, 12

