
A4M33MAS - Multiagent Systems
Distributed Constraint Optimization

Michal Pechoucek & Michal Jakob
Department of Computer Science
Czech Technical University in Prague

In parts based on Multi-agent Constraint Programming, Boi Faltings, Laboratoire d’Intelligence Artificielle, EPFL

Tuesday, November 27, 12

Multiagent Constraint Optimization (DCOP)

the overall cost of the assignment is minimized
Cost ({v1, ..., v) =

C = represented as a list of cost functions on 1 ... n variables in
X and their values from D, so that (X,D) R P !

X

8ci2C

ci({v1, . . . vn})
X

8ci2C

ci({v1, . . . vn})

Tuesday, November 27, 12

ABT for DCOP

3

Tuesday, November 27, 12

ADOPT
• ADOPT assumes that agents are arranged in a DFS tree:

– constraint graph rooted graph (select a node as root)
– some links form a tree / others are back edges
– two constrained nodes must be in the same path to the root by tree links

(same branch)
• Every graph admits a DFS tree

4

Tuesday, November 27, 12

ADOPT: Description
• Asynchronous algorithm
• Each time an agent receives a message:

– Processes it (the agent may take a new value)
– Sends VALUE messages to its children and pseudochildren
– Sends a COST message to its parentd

• View: set of variable value pairs (as ABT agent view) of ancestor
agents, in the same branch. Current context:
– Updated by each VALUE message

5

Tuesday, November 27, 12

ADOPT: Description

6

Tuesday, November 27, 12

ADOPT: Example

7

Tuesday, November 27, 12

ADOPT: Messages
• value(parent → children & pseudochildren, value):

parent informs descendants that it has taken value a
• view(child → parent, cost, view):

child informs parent of the best cost of its assignement; attached
context to detect obsolescence;

8

Tuesday, November 27, 12

Simple-ADOPT Algorithm

9

Tuesday, November 27, 12

Simple-ADOPT Algorithm

10

Tuesday, November 27, 12

Simple-ADOPT Algorithm

11

Tuesday, November 27, 12

Simple-ADOPT: Example

12

Tuesday, November 27, 12

Simple-ADOPT: Example

13

Tuesday, November 27, 12

Simple-ADOPT: Example

14

Tuesday, November 27, 12

Simple-ADOPT: Example

15

Tuesday, November 27, 12

Simple-ADOPT: Example

16

Tuesday, November 27, 12

Simple-ADOPT: Example

17

Tuesday, November 27, 12

Simple-ADOPT: Example

18

Tuesday, November 27, 12

Simple-ADOPT: Example

19

Tuesday, November 27, 12

Simple-ADOPT: Example

20

Tuesday, November 27, 12

Simple-ADOPT: Example

21

Tuesday, November 27, 12

Simple-ADOPT: Example

22

Tuesday, November 27, 12

Simple-ADOPT: Example

23

Tuesday, November 27, 12

ADOPT: Properties
• For finite DCOPs with binary non-negative constraints, ADOPT is

guaranteed to terminate with the globally optimal solution.
• An ADOPT agent takes the value with minimum cost:

– Best-first search with eager behavior:
– Agents may constantly change value

• Graph coloring benchmark:

24

Avg. number of cycles,
link density = 2

Avg. number of cycles,
link density = 3

Avg. messages per cycle

Tuesday, November 27, 12

ADOPT: Key Ideas
• Optimal, asynchronous algorithm for DCOP

– polynomial space at each agent
• Weak Backtracking

– lower bound based search method
– Parallel search in independent subtrees

• Efficient reconstruction of abandoned solutions
– backtrack thresholds to control backtracking

• Bounded error approximation
– sub-optimal solutions faster
– bound on worst-case performance

25

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

26

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

27

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

28

Tuesday, November 27, 12

Dynamic Programming Optimization
Protocol (DPOP)

29

Tuesday, November 27, 12

30

Dynamic Programming Optimization
Protocol (DPOP)

Tuesday, November 27, 12

31

Dynamic Programming Optimization
Protocol (DPOP)

Tuesday, November 27, 12

32

Dynamic Programming Optimization
Protocol (DPOP)

Tuesday, November 27, 12

33

Dynamic Programming Optimization
Protocol (DPOP)

Tuesday, November 27, 12

34

Dynamic Programming Optimization
Protocol (DPOP)

Tuesday, November 27, 12

35

Dynamic Programming Optimization
Protocol (DPOP)

Tuesday, November 27, 12

Distributed local search
• Drawbacks of systematic search:

– need variable ordering
– no anytime behavior: have to wait for termination.
– often (too) costly.

• Sacrifice completeness ⇒ local search
– min-conflicts
– distibuted min-conflicts
– breakout algorithm
– random sampling

36

Tuesday, November 27, 12

Min-conflicts
• Assign random value to each variable in parallel (this will conflict

with some constraints).
• At each step, find the change in variable assignment which most

reduces the number of conflicts.
• Corresponds to search by ”hill-climbing”.

37

Tuesday, November 27, 12

Distributed min-conflicts
• Neighbourhood of N(xi) = variables connected to xi through

constraints.
• Change to xi can happen asynchronously with others as long as

there is no other change in the neighbourhood.
⇒ two neighbouring agents are not allowed to change
simultaneously:
– highest improvement wins
– ties broken by fixed ordering
⇒ parallel, distributed execution.

• also called MGM

38

Tuesday, November 27, 12

Distributed min-conflicts
• Neighbourhood of N(xi) = variables connected to xi through

constraints.
• Change to xi can happen asynchronously with others as long as

there is no other change in the neighbourhood.
⇒ two neighbouring agents are not allowed to change
simultaneously:
– highest improvement wins
– ties broken by fixed ordering
⇒ parallel, distributed execution.

• CAN GET STUCK IN LOCAL MINIMUM

39

Tuesday, November 27, 12

Distributed min-conflicts
• Neighbourhood of N(xi) = variables connected to xi through

constraints.
• Change to xi can happen asynchronously with others as long as

there is no other change in the neighbourhood.
⇒ two neighbouring agents are not allowed to change
simultaneously:
– highest improvement wins
– ties broken by fixed ordering
⇒ parallel, distributed execution.

40

Tuesday, November 27, 12

Breakout Algorithm
• To escape local minima the algorithm identifies quasi-local minima

and increases the cost of the constraint violations

• Similar to min-conflict, but assign dynamic priority to every conflict
(constraint), initially =1

• Modify variable which reduces the most the sum of the priority
values of all conflicts.

• When local minimum:
– increase weight of every existing conflict

• Eventually, new conflicts will have lower weight than existing ones
⇒ breakout

41

Tuesday, November 27, 12

42

Breakout Algorithm: Code

Tuesday, November 27, 12

42

Breakout Algorithm: Code

Tuesday, November 27, 12

43

Breakout Algorithm: Example

Tuesday, November 27, 12

43

Breakout Algorithm: Example

Tuesday, November 27, 12

44

Breakout Algorithm: Example

Tuesday, November 27, 12

45

Breakout Algorithm: Example

Tuesday, November 27, 12

46

Breakout Algorithm: Example

Tuesday, November 27, 12

Breakout Algorithm: Properties

• Theorem (Distributed Breakout is not Complete)
Distributed breakout can get stuck in local minimum. Therefore,
there are cases where a solution exists and it cannot find it.

47

Tuesday, November 27, 12

