

GAMNEP Game-theoretic approach to network intrusion detection

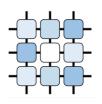
Michal Pechoucek (PI), Karel Bartos , Branislav Bosanky, Martin Grill, Jan Jusko, Pavel Jisl, Martin Komon, Viliam Lisy, Tomas Pevny, Radek Pibil, Martin Rehak, Jan Stiborek, Michal Svoboda

Czech Technical University in Prague

Outline

CAMNEP Intrusion Detection System

GAMNEP Project Objectives


Adversarial Plan Recognition Game (APRG)

Monte-Carlo Tree Search

Solving APRG

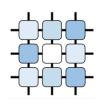
Experimental Results

CAMNEP: Intrusion detection system

Goal: Identify illegitimate traffic and report it to the operator High accuracy vs. low number of **false positives**

network flow data (no deep packet inspection)

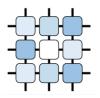
```
Date flow start
                         Duration Proto
                                              Src IP Addr:Port
                                                                         Dst IP Addr:Port
                                                                                            Packets
                                                                                                        Bytes Flows
2009-03-20 01:11:12 923
                          364.932 TCP
                                           147.251.198.84:2430
                                                                                               8699
                                                                                                        8.1 M
                                                                                                                104
                                                                      78.154.195.124:47575
2009-03-20 01:12:38.215
                          276.256 UDP
                                                                                              19266
                                                                                                        4.1 M
                                                                                                                 72
                                            92.240.244.30:27022 -> 147.251.211.107:27005
2009-03-20 01:11:51.690
                           308.352 TCP
                                                                                                                 55
                                             62.67.50.133:80
                                                                        147.251.68.5:3671
                                                                                               41696
                                                                                                       53.3 M
2009-03-20 01:12:18.467
                          292,902 TCP
                                                                                              18189
                                                                                                      1035699
                                                                                                                 51
                                             91.66.122.66:53858 -> 147.251.215.168:23314
2009-03-20 01:12:01.886
                          337.372 TCP
                                            64.15.156.212:8000 ->
                                                                     147.251.146.27:1150
                                                                                               2028
                                                                                                        2.0 M
                                                                                                                 47
                           28.134 TCP
2009-03-20 01:16:56.525
                                          147.251.215.235:2517 ->
                                                                      213.134.25.222:27192
                                                                                                343
                                                                                                       269375
                                                                                                                 45
2009-03-20 01:12:39.400
                          299.943 UDP
                                                                                                        2.4 M
                                                                                                                 44
                                                                                              18214
                                           147.175.185.54:1693 -> 147.251.206.207:29359
                           15.283 TCP
                                                                                                                 43
2009-03-20 01:15:42.653
                                              77.75.73.48:25
                                                                        147.251.4.40:40166
                                                                                                186
                                                                                                        16009
2009-03-20 01:13:46.343
                          213.639 TCP
                                                                                                3864
                                                                                                       155898
                                                                                                                 43
                                          147.251.210.122:55628 ->
                                                                        66.55.141.34:80
2009-03-20 01:08:00.699
                          578.690 TCP
                                          147.251.211.172:64037 -> 217.162.223.125:14817
                                                                                               4900
                                                                                                       215352
                                                                                                                 41
```

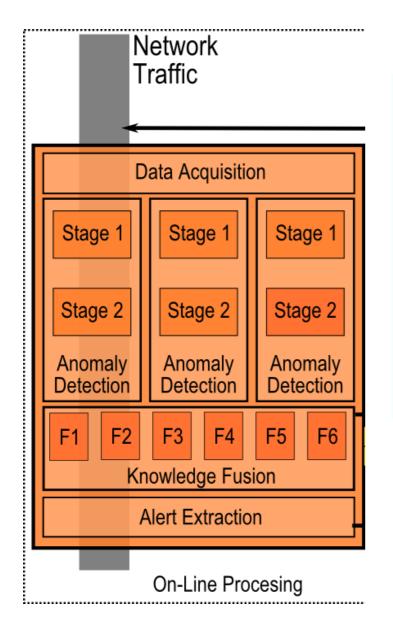

anomaly detection (no pattern matching)

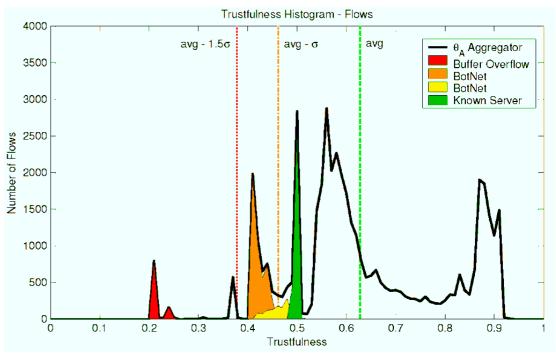
Zero-day attacks

Unusual legitimate behavior (changes in the network)

Scalability

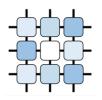

Anomaly Detection

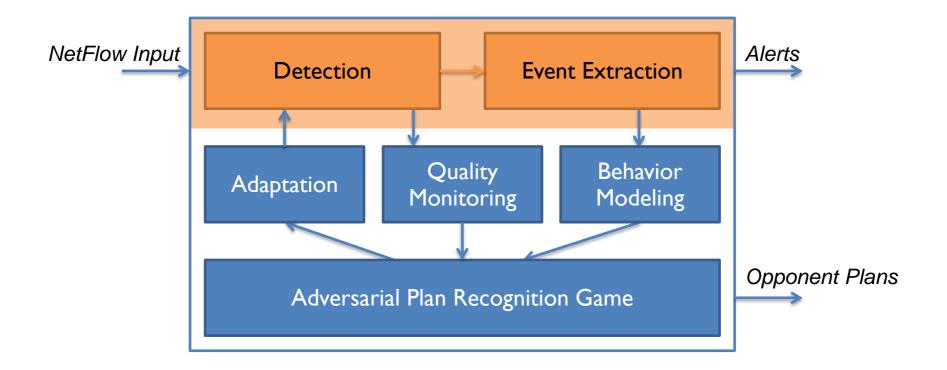


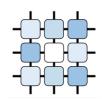

Method/Attack	Malware Brute force	Horizontal scanning	Vertical Sc. Fingerprint.	DoS/DDoS Flooding/Spoof.		
MINDS	***	****	****	***		
Xu	**	****	***	***		
Xu-dst IP	*	*	**	****		
Lakhina - Volume	**	***	***	***		
Lakhina - Entropy	***	****	**	***		
TAPS	***	****	****	**		

Entropy modeling, Trend modeling, Volume modeling, Principal components analysis, Information-theoretical measures

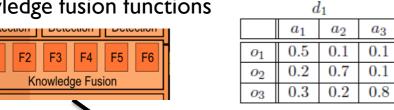
Inside CAMNEP






Event Extraction: Converts the statistics into actionable output

GAMNEP Concept



GAMNEP – IDS Interface

Parameter setting: Selecting one of the

knowledge fusion functions

NetFlow Input

Detection quality:

Reporting the current quality of each knowledge fusion function in form of confusion matrix

 a_1

0.9

0.1

0.0

 o_1

 o_2

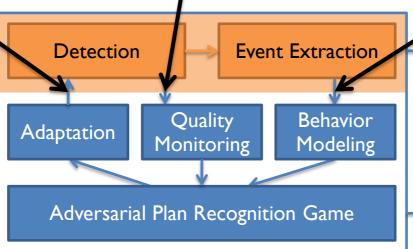
 a_3

 a_2

0.3

0.3

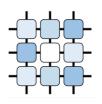
0.4


0.2

0.4

0.4

Observed attacker's action: Reporting the detected action of the attacker


> **SSHscan** Portscan **Bruteforce** Webtraffic

Alerts

Opponent Plans

Game Model Assumptions

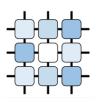
Realistic assumptions

Both players, the attacker and the defender, are rational

The defender can use only one classier at a time

The quality of the classifiers does not change

Both players know the full **plan library** of the attacker


The available classifiers and their quality are known to both

Simplifying assumptions

Everybody knows when the game starts

All actions of the attacker have equal length

Adversarial Plan Recognition Game

Actions

Attacker: One action per stage from an attack plan

Defender: One of the classifiers in each stage

Information

Attacker: Does not gain any information during the game

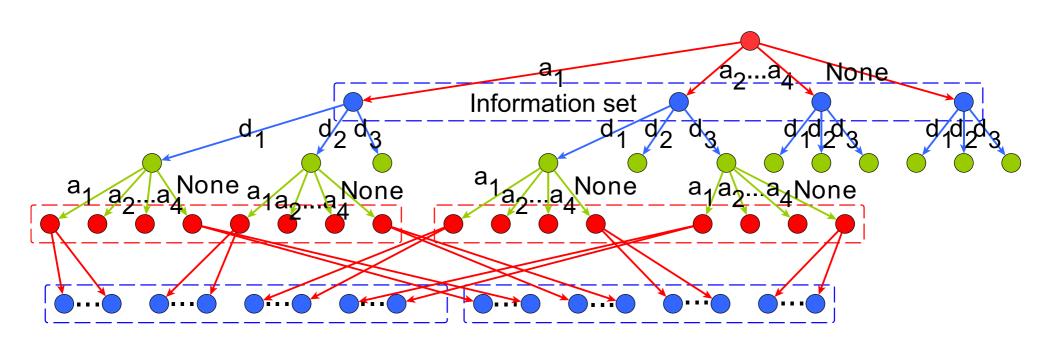
Defender: Noisy observations of the attacker's action in each stage

Utilities

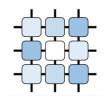
Zero-sum: The attacker wants to execute the most dangerous plan unobserved

$$u_A(a_1 \dots a_h, d_1 \dots d_h, o_1 \dots o_h) = \frac{g(a_1 \dots a_h)}{1 + \sum_{i \in \{1 \dots h\}; o_i = a_i} 1}$$

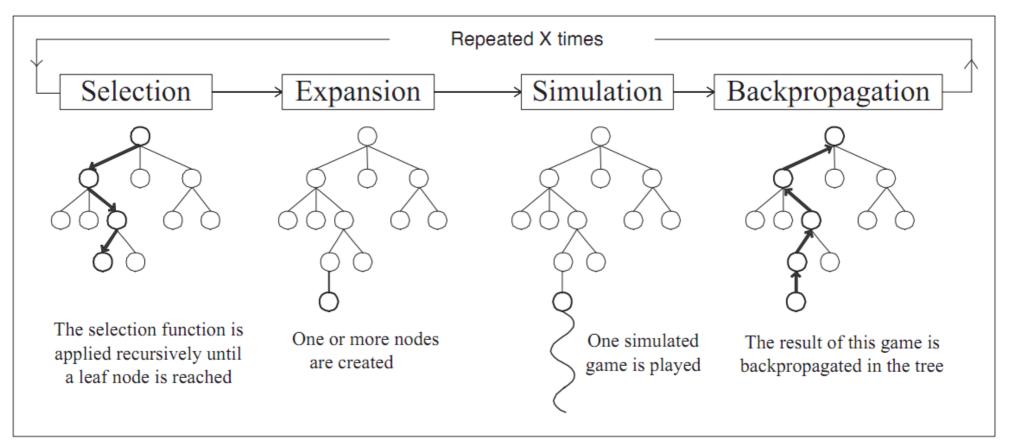
Solution

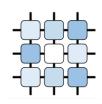

Action selection: Nash equilibrium

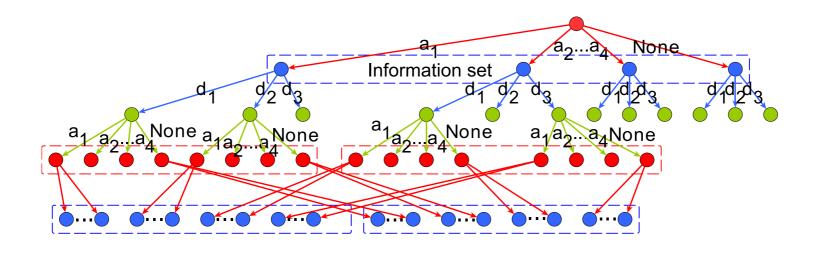
Plan recognition: The most likely plan of the attacker


Extensive Form Game Tree

Attacker, Defender, Chance


Monte-Carlo Tree Search


Designed for full information alternating moves games


Very successful in GO

Applied to Amazons, Hex, Arimaa, and many other games

Concurrent MCTS for APRG

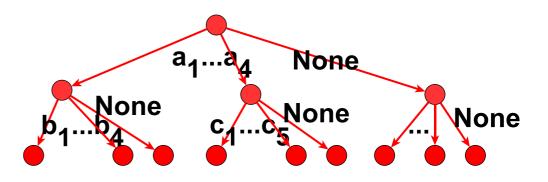
Defender's signal tree

d₁ d₂ d₃

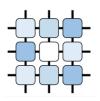
a₁...a₄ None

d₁ d₂ d₃

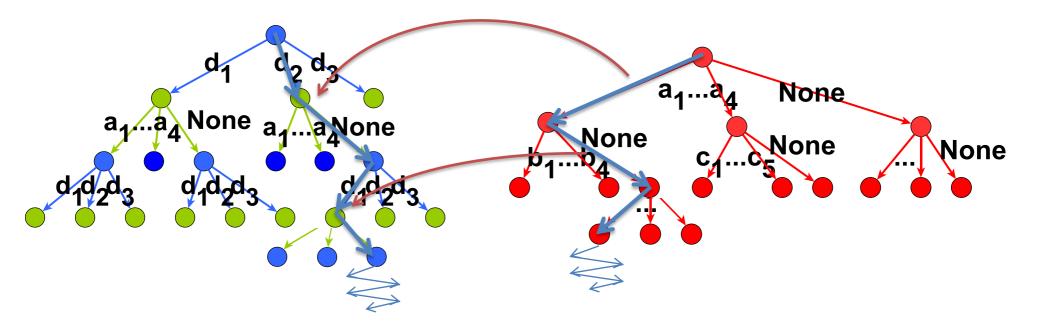
d₁ d₂ d₃

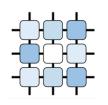

d₁ d₂ d₃

d₁ d₂ d₃


d₂ d₃

d₃ d₄ d₂ d₃


Attacker's signal tree

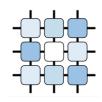

Concurrent MCTS for APRG

- 1. Select a plan in the attacker's tree using MCTS
- 2. Select a "plan" in the defender's tree with observation based on the attacker's plan
- 3. Compute the utility of the pair of plans
- 4. Back-propagate the value in both trees

Selection Strategy for MCTS in APRG

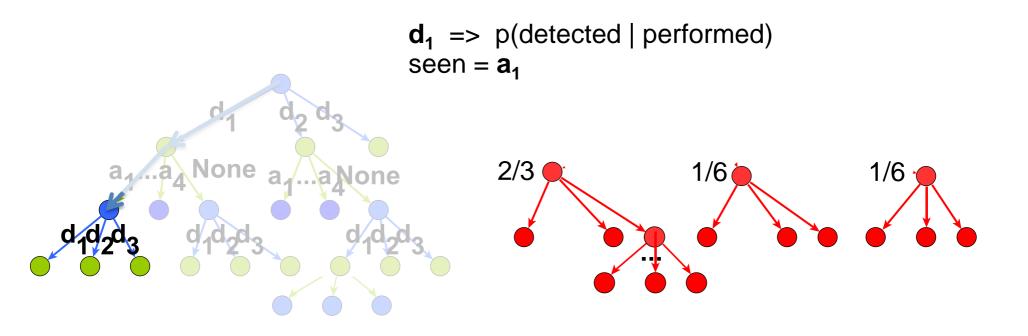
UCT: Standard selection strategy for perfect information games

Does not converge to a good solution with simultaneous moves

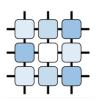

 $c_{t,s} = 2C_p \sqrt{\frac{\ln t}{s}}$

Exp3.1: No regret strategy non-stochastic bandit problem

Empirical frequencies guaranteed to converge to NE if used by both players in unknown game setting


for
$$t = 1, 2, ...$$
 do
Draw action a from distribution p
 $f_a = f_a + 1$
 $G_a = G_a + \frac{g_a}{p_a}$
 $p_i = (1 - \gamma) \frac{\exp(\frac{\gamma}{K}G_i)}{\sum_{k=1}^K \exp(\frac{\gamma}{K}G_k)} + \frac{\gamma}{K}$
end for

Continuous Reasoning of Observer


What happens in the progress of the game?

Transition using observations and Bayesian update

The probability of a root is probability of the plan from beginning

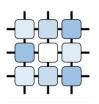
Syntetic Experiment Results

The executed plan was

- most likely: 38.6%
- median position: 5


WR – ex post worst selection of classifiers

RR – random classifiers selection


H,M,L – constant selection of one classifier

GT – the proposed approach (200 runs)

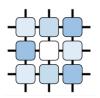
BR – ex post best selection of classifiers

Real World Data Experiments

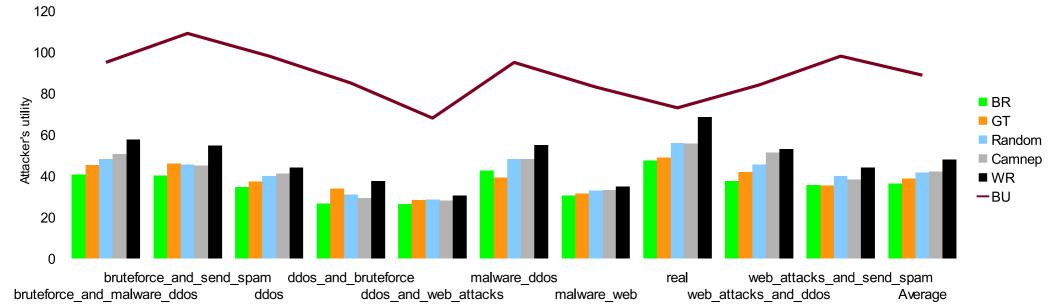
5 minutes long stages

stages with attacker's actions are marked for the experiment

22 defender's classifiers (+ clustering)


0.6817	0.0023	0.2912	0.0	0.0	0.0	0.0	0.0113	0.0113	0.0	0.0	0.0023	0.0
0.0	0.3923	0.2152	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3923	0.0002
0.0	0.25	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.25	0.0
0.0	0.0426	0.0426	0.0091	0.0091	0.8507	0.0	0.0033	0.0	0.0	0.0	0.0426	0.0
0.0	0.0426	0.0426	0.0091	0.0091	0.8507	0.0	0.0033	0.0	0.0	0.0	0.0426	0.0
0.0	0.0426	0.0426	0.0091	0.0091	0.8507	0.0	0.0033	0.0	0.0	0.0	0.0426	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.5	0.0	0.0	0.0
0.0273	0.0023	0.0343	0.0	0.0	0.0	0.0433	0.4788	0.3662	0.0433	0.0	0.0023	0.0023
0.0307	0.0026	0.0387	0.0	0.0	0.0	0.0488	0.4127	0.4127	0.0488	0.0	0.0026	0.0026
0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.5	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	0.0	0.0
0.0	0.333	0.1826	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4842	0.0002
0.0	0.0048	0.0027	0.0	0.0	0.0	0.0011	0.0016	0.0016	0.0011	0.0	0.0048	0.9822

13 basic attacker's actions with preconditions (PDDL)


DNS requests, Horizontal scan, Port scan, DDOS to specific service, etc.

One real and 10 simulated attacks in the data

Experiment Results

Mean	Classifier selection method
36.17	BR – ex post optimal selection of the classifiers
38.68	GT – the proposed approach (limited number of samples)
41.48	Random – selection of random classifier
41.99	Camnep – original IDS without strategic reasoning
47.88	WR – ex post worst selection of classifiers
95.00	BU – the utility of attacker's plan if it has not been observed

