
Combinatorial Optimization

Zdeněk Hanzálek
hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

May 3, 2013

European Social Fund Prague & EU: We invests in your future.

Z. Hanzálek (CTU FEE) Combinatorial Optimization May 3, 2013 1 / 1

Scheduling

Zdeněk Hanzálek, Přemysl Šůcha
hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

April 30, 2013

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 1 / 58

Table of Contents

1 Basics notions

2 Scheduling on One Resource
Minimizing Cmax

Bratley’s Algorithm for 1
∣∣∣rj , d̃j

∣∣∣Cmax

Minimizing
∑

wjCj

Branch&Bound with LP for 1 |prec|
∑

wjCj

3 Scheduling on Parallel Identical Resources
Minimizing Cmax

4 Project Scheduling
Temporal constraints
Minimizing Cmax

ILP Formulation for PS1 |temp|Cmax - One Resource

ILP formulation for PSm, 1 |temp|Cmax - m Dedicated Resources

Modeling with Temporal Constraints

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 2 / 58

Scheduling - Basic Terminology

set of n tasks T = {T1,T2, . . . ,Tn}

set of m types of resources (processors, machines, employees,...) with

capacities Rk , P =
{
P1
1 , . . . ,P

R1
1 ,P1

2 , . . . ,P
R2
2 , ,P1

m, . . . ,P
Rm
m

}

Scheduling is an assignment of a task to a resources in time

Each task must be completed

this differs from planning which decides which task will be scheduled
and processed

Set of tasks is known when executing the scheduling algorithm (this is
called off-line scheduling)

this differs from on-line scheduling - OS scheduler, for example,
schedules new tasks using some policy (e.g. priority levels)

A result is a schedule which determines which task is run on which
resource and when. Often depicted as a Gantt chart.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 3 / 58

General and Specific Constraints

General constraints:

Each task is to be processed by at most one resource at a time
(task is sequential)

Each resource is capable of processing at most one task at a time

Specific constraints:

Task Ti has to be processed during time interval
〈
ri , d̃i

〉

When the precedence constraint is defined between Ti and Tj , i.e.
Ti ≺ Tj , then the processing of task Tj can’t start before task Ti was
completed

If scheduling is non-preemptive, a task cannot be stopped and
completed later

If scheduling is preemptive, the number of preemptions must be finite

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 4 / 58

Task Parameters and Variables

Parameters

release time rj

processing time pj

due date dj , time in which task
Tj should be completed

deadline d̃j , time in which task
Tj has to be completed

Variables

start time sj

completion time Cj

waiting time wj = sj − rj

flow time Fj = Cj − rj

lateness Lj = Cj − dj

tardiness Dj = max{Cj − dj , 0}

Tj

0 rj sj dj d̃jcj

Dj

Lj

pjwj

Fj +−

t

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 5 / 58

Graham’s Notation α |β| γ

Classify scheduling problems by
resources | tasks | criterion

Example: P2 |pmtn|Cmax represents scheduling on two parallel identical
resources, and preemption is allowed. The optimization criterion is the
completion time of the last task.

α - resources

Parallel resources - a task can run on any resource (only one type of
resource exists with capacity R , i.e. P =

{
P1, . . . ,PR

}
).

Dedicated resources - a task can run only on one resource (m
resource types with unit capacity, i.e. P = {P1,P2 . . . ,Pm}).

Project Scheduling - m resource types, each with capacity Rk , i.e.

P =
{
P1
1 , . . . ,P

R1
1 ,P1

2 , . . . ,P
R2
2 , ,P1

m, . . . ,P
Rm
m

}
.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 6 / 58

Resources Characteristics α1, α2

α1 = 1 single resource
P parallel identical resources
Q parallel uniform resources, computation time is inversely

related to resource speed
R parallel unrelated resources, computation times are

given as a matrix (resources x tasks)
O dedicated resources - open-shop - tasks are independent
F dedicated resources - flow-shop - tasks are grouped in

the sequences (jobs) in the same order, each job visits
each machine once

J dedicated resources - job-shop - order of tasks in jobs is
arbitrary, resource can be used several times in a job

PS Project Scheduling - most general (several resource
types with capacities, general precedence constraints)

α2 = ∅ arbitrary number of resources
2 2 resources (or other specified number)
m,R m resource types with capacities R (Project Scheduling)

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 7 / 58

Task Characteristics β1, β2, β3, β4, β5, β6, β7, β8

β1 = pmtn preemption is allowed

∅ preemption is not allowed

β2 = prec precedence constraints
in-tree,out-tree tree constraints
chain chain constraints
tmpn temporal constraints (for Project Sched.)
∅ independent tasks

β3 = rj release time

β4 = pj = k uniform processing time
pL ≤ pj ≤ pU restricted processing time
∅ arbitrary processing time

β5 = d̃j , dj deadline, due-date

β6 = nj ≤ k maximal number of tasks in a job

β7 = no-wait buffers of zero capacity

β8 = set-up time for resource reconfiguration

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 8 / 58

Optimality Criterion γ

γ = Cmax minimize schedule length Cmax = max {Cj}
(makespan, i.e. completion time of the last task)∑

Cj minimize the sum of completion times∑
wjCj minimize weighted completion time

Lmax minimize max. lateness Lmax = max {Cj − dj}
∅ decision problem
· · ·

An Example: P ||Cmax means:
Scheduling on an arbitrary number of parallel identical resources, no
preemption, independent tasks (no precedence), tasks arrive to the system
at time 0, processing times are arbitrary, objective is to minimize the
schedule length.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 9 / 58

Scheduling on One Resource

Minimizing Makespan (i.e. schedule length Cmax)

1 |prec |Cmax - easy
the tasks are processed in an arbitrary order that satisfies the
precedence relation, Cmax =

∑n
j=1 pj

1 ||Cmax - easy
1 |rj |Cmax - easy

the tasks are processed in a non-descending order of rj (Tj with the
lowest rj first)

1
∣∣∣d̃j

∣∣∣Cmax - easy

the tasks are processed in a non-descending order of d̃j
can be solved by EDF - Earliest Deadline First
the feasible schedule doesn’t have to exist

1
∣∣∣rj , d̃j

∣∣∣Cmax - NP-hard

NP-hardness proved by the polynomial transformation from 3-Partition
problem
for pj = 1 there exists a polynomial algorithm

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 10 / 58

Bratley’s Algorithm for 1
∣∣∣rj , d̃j

∣∣∣Cmax

A branch and bound (B&B) algorithm.
Branching - without bounding it is an enumerative method that creates
a solution tree (some of the nodes are infeasible). Every node is labeled by:
(the order of tasks)/(completion time of the last task).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 11 / 58

Reduction of the Tree - Bounding

(i) eliminate the node exceeding the deadline (and all its “brothers”)

If there is a node which exceeds
any deadline, all its descendants
should be eliminated

Critical task (here T3) will have
to be scheduled anyway -
therefore, all of its “brothers”
should be eliminated as well

T

d
1

1

T2

2
d

T1 T
1 4

T

d
4

T T
1 3

d
3

due to this node we can
eliminate its others„br ”

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 12 / 58

Tree Size Reduction - Decomposition

(ii) problem decomposition due to idle waiting - e.g. when the employee
waits for the material, his work was optimal

Consider node v on level k . If Ci of the
last scheduled task is less than or equal
to ri of all unscheduled tasks, there is
no need for backtrack above v

v becomes a new root and there are
n − k levels (n − k unscheduled tasks)
to be scheduled

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 13 / 58

Optimality Test - Termination of Bratley’s Algorithm

Definition: BRTP - Block with Release Time Property

BRTP is a set of k tasks that satisfy:

first task T[1] starts at it’s release time

all tasks till the end of the schedule run without “idle waiting”

r[1] ≤ r[i] for all i = 2 . . . k

Note: “till the end of the schedule” implies there is at most one BRTP

Lemma: sufficient condition of optimality

If BRTP exists, the schedule is optimal (the search is finished).

t

T[k]k = 1

r[k] Cmax

T[2]

r[i] ≥ r[1] ∀ i = 2 · · · k
t

T[3] · · · T[k]T[1]

r[1] Cmax

Proof:

this schedule is optimal since the last task T[k]

can not be completed earlier

order of prec. tasks is not important - see (ii)

no task from BRTP can be done before r[1]

there is no task after Cmax

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 14 / 58

BRTP is Sufficient and Necessary Condition of Optimality

Proposition - necessary condition of optimality

If the schedule for 1
∣∣∣rj , d̃j

∣∣∣Cmax is optimal, it contains BRTP.

Proof by contradiction: we show that the schedule without BRTP is not
optimal. There are two cases of the schedule without BRTP:

T[2]

r[3]
t

T[3] · · · T[k]T[1]

r[4] r[k]r[1] r[2] Cmax

T[2]
t

T[1]
r[1]r[2] Cmax

1 the last block does not start at r[1]:

r[1] < s[1]
s[1] < r[i] < s[i] ∀i = 2 . . . k (note that if
i = 2 . . . k such that r[i] = s[i] exists, than
BRTP exists from T[i])
block can be moved left while maintaining
actual order

2 some task can be placed before T[1], i.e. there
is i = 2 . . . k such that r[i] < s[1] exists

schedule can be improved while moving T[2]

before T[1]

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 15 / 58

Bratley’s Algorithm - Example

r =[4,1,1,0], p =[2,1,2,2], d̃ =[8,5,6,4]

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 16 / 58

Scheduling on One Resource

Minimizing
∑

wjCj

1 ||
∑

Cj - easy
SPT rule (Shortest Processing Time first) - schedule the tasks in a
non-decreasing order of pj

1 ||
∑

wjCj - easy
Weighted SPT - schedule the tasks in a non-decreasing order of

pj
wj

1 |rj |
∑

Cj - NP-hard

1 |pmtn, rj |
∑

Cj - can be solved by modified SPT

1 |pmtn, rj |
∑

wjCj - NP-hard

1
∣∣∣d̃j

∣∣∣
∑

Cj - can be solved by modified SPT

1
∣∣∣d̃j

∣∣∣
∑

wjCj - NP-hard

1 |prec|
∑

Cj - NP-hard

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 17 / 58

Branch and Bound with LP for 1 |prec|
∑

wjCj

First, we formulate the problem as a ILP:

we use variable xij ∈ {0, 1} such that xij = 1 iff Ti precedes Tj or
i = j

we encode precedence relations into eij ∈ {0, 1} such that eij = 1 iff
there is a directed edge from Ti to Tj in the precedence graph G or
i = j

criterion - completion time of task Tj consists of pj and the
processing time of its predecessors:

Cj =
∑n

i=1 pi · xij
wj · Cj =

∑n
i=1 pi · xij · wj

J =
∑n

j=1 wj · Cj =
∑n

j=1

∑n
i=1 pi · xij · wj

from all feasible schedules x we look for the one that minimizes J(x),
i.e. minx J(x)

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 18 / 58

ILP formulation for 1 |prec|
∑

wjCj

min
∑n

j=1

∑n
i=1 pi · xij · wj

subject to:

xi ,j ≥ ei ,j i , j ∈ 1..n if Ti precedes Tj in G ,
then it precedes Tj

in the schedule
xi ,j + xj ,i = 1 i , j ∈ 1..n, i 6= j eitherTi precedesTj ,

or vice versa
1 ≤ xi ,j + xj ,k + xk,i ≤ 2 i , j , k ∈ 1..n, no cycle exists in the

i 6= j 6= k digraph of x
xi ,i = 1 i ∈ 1..n

parameters: pi∈1..n ∈ R
+
0 ei∈1..n,j∈1..n ∈ {0, 1}

variables: xi∈1..n,j∈1..n ∈ {0, 1}

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 19 / 58

Branch and Bound with LP Bounding

We relax on the integrality of variable x :

0 ≤ xij ≤ 1 and xi∈1..n,j∈1..n ∈ R

This does not give us the right solution, however we can use the
JLP(remaining tasks) value of this LP formulation as a lower bound
on the “amount of remaining work”

The Branch and Bound algorithm creates a similar tree as Bradley’s
algorithm.

root

(T)/w c
1 11

(T ,T)/w c + w c
1 2 21 1 2

. . .

.

.

.

(T ,T)/J =w c + w c
1 n 11 n n

(T ,...,T)/J = w cS
1 n 1n jj

2

J(remaining tasks)

Let J1 be the value of the best solution known
up to now

We discard the partial solution of value J2 not
only when J2 ≥ J1, but also when
J2 + JLP(remaining tasks) ≥ J1.
Since the solution space of ILP is a subspace of
LP we know:
J(remaining tasks) ≥ JLP(remaining tasks).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 20 / 58

Scheduling on Parallel Identical Resources

Minimizing Cmax

P2 ||Cmax - NP-hard

schedule n non-preemptive tasks on two parallel identical resources
minimizing makespan, i.e. the completion time of the last task
the problem is NP-hard because the 2 partition problem (see ILP lecture)
can be reduced to P2 ||Cmax while comparing the optimal Cmax with the
threshold of 0.5 ∗

∑
i∈1..n pi .

P |pmtn|Cmax - easy

can be solved by the McNaughton algorithm in O(n)

P
∣∣∣pmtn, rj , d̃j

∣∣∣Cmax - easy

can be formulated as a maximum flow problem (see the lecture on Flows)

P |prec|Cmax - NP-hard

LS - approximation algorithm with factor rLS = 2 − 1
R

, where R is the
number of parallel identical resources

P ||Cmax - NP-hard

LPT - approximation algorithm with factor rLPT = 4
3 −

1
3R

dynamic programming - Rothkopf’s pseudopolynomial algorithm

P |pmtn, prec|Cmax - NP-hard

Muntz&Coffman’s level algorithm with factor rMC = 2 − 2
R

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 21 / 58

McNaughton’s Algorithm for P |pmtn|Cmax

Input: R , number of parallel identical resources, n, number of
preemptive tasks and computation times [p1, p2, ..., pn].

Output: n-element vectors s1, s2, z1, z2 where s1i (resp. s2i) is start
time of the first (resp. second) part of task Ti and z1i (resp.
z2i) is the resource ID on which the first (resp. second) part of
task Ti will be executed.

s1i = s2i = z1i = z2i := 0 for all i ∈ 1 . . . n;
t := 0; v := 1; i := 1;

C ∗
max = max

{
maxi=1...n {pi} ,

1
R

∑n
1 pi

}
;

while i ≤ n do

if t + pi ≤ C ∗
max then

s1i := t; z1i := v ; t := t + pi ; i := i + 1;
else

s2i := t; z2i := v ; pi := pi − (C ∗
max − t); t := 0; v := v + 1;

end

end

Time complexity is O(n).Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 22 / 58

McNaughtnon’s Algorithm for P |pmtn|Cmax

The term C ∗
max = max

{
maxi=1...n {pi} ,

1
R

∑n
1 pi

}
should be interpreted as

follows:

component maxi=1...n {pi} represents the sequential nature of each
task - it’s parts can be assigned to different resources, but these parts
can not be run simultaneously. Note that each task can be divided
into two parts at most.
component 1

R

∑n
1 pi represents a situation when all resources work

without idle waiting

Example 1:
p = [2, 3, 2, 3, 2],R = 3
compute C ∗

max = max
{

3, 123
}

= 4

Example 2:
p = [10, 8, 4, 14, 1],R = 3
compute C ∗

max = max
{

14, 373
}

= 14

t

T1
2

2 4 = C ∗

max30 1

P1

P3

P2 T1
3 T2

4

T1
4 T1

5

T1
1 T2

2

t

T1
2

2 14 = C ∗

max100 4

P1

P3

P2 T1
3 T2

4

T1
4 T1

5

T1
1 T2

2

1266 8

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 23 / 58

List Scheduling - Approximation Alg. for P |prec|Cmax

Input: R , number of parallel identical resources, n, number of
non-preemptive tasks and computation times [p1, p2, ..., pn]. G,
digraph of precedence constraints.

Output: n-element vectors s and z where si is the start time of Ti and
zi is the resource ID.

tv := 0 for all v ∈ 1 . . .R ; // availability of resource

si = zi := 0 for all i ∈ 1 . . . n;
Sort tasks in list L;
for count := 1 to n do // for all tasks

k = arg minv=1...R {tv}; // choose res. with the lowest tv
Remove the first free task Ti from L ;
si = max{tk ,maxj∈Pred(Ti){sj + pj}}; zi = k ; // assign Ti to Pk

tk = si + pi ; // update availability time of Pk

end

Task Ti is free if its predecessors have been completed. Pred(Ti) is a set
of the task IDs that are predecessors of Ti . Complexity is O(n).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 24 / 58

List Scheduling - Approximation algorithm for P |prec|Cmax

List Scheduling (LS) is a general heuristic useful in many problems.

We have a list (n-tuple) of tasks and when some resource is free, we
assign the first free task from the list to this resource.

The accuracy of LS depends on the criterion and sorting procedure.

Approximation factor of LS algorithm [Graham 1966]

For P |prec|Cmax (and also for P ||Cmax) and arbitrary (unsorted) list L,
List Scheduling is an approximation algorithm with factor rLS = 2 − 1

R

An example illustrating the case when the factor is attained:

n = (R − 1) · R + 1,
p = [1, 1, . . . , 1,R],
≺ empty.
Illustration for R = 4
rLS = 2 − 1

4 = 7
4

t
2 4 = C ∗

max30 1

P1

P3

P2
T1

T13

P4

T5

T7T10

T11T8

T4

T2

T3 T6 T9T12

L = [Tn,T1, . . . ,Tn−1]

t
2 430 1

P1

P3

P2

T1 T13

P4

T5

T7

T10

T11

T8T4

T2

T3

T6

T9

T12

6 75

L′ = [T1,T2, . . . ,Tn]
Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 25 / 58

Anomalies of List Scheduling Algorithm

The LS algorithm depends not only on the order of tasks in L, but it
exhibits anomalies (Cmax surprisingly increases when relaxing some
constraints/parameters) caused by:

1 the decrease of processing time pi
2 the removal of some precedence constraints
3 the increase of the number of resources R

Example illustrating different anomalies for
R = 2, n = 8, p = [3, 4, 2, 4, 4, 2, 13, 2]

Using list L = [T1,T2,T3,T4,T5,T6,T7,T8],
LS finds solution with C ∗

max = 17.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 26 / 58

List Scheduling Anomalies - Prolongation of Cmax

Exchange position of T7 and T8

L = [T1,T2,T3,T4,T5,T6,T8,T7].

Decrease pi of all tasks by one.

Remove prec. constraint T3 ≺ T4.

Add resource (R = 3).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 27 / 58

LPT (Longest Processing Time First)

- Approximation Algorithm for P ||Cmax

The approximation factor of the LS algorithm can be decreased using the
Longest Processing Time first (LPT) strategy

During initialization of LS, we sort list L in a non-increasing order of
pi

Approximation factor of LPT algorithm [Graham 1966]

LPT algorithm for P ||Cmax is an approximation algorithm with factor
rLPT = 4

3 −
1
3R

Time complexity of LPT algorithm is O(n · log(n)) due to the sorting.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 28 / 58

LPT (Longest Processing Time First)

- Approximation Algorithm for P ||Cmax

An example illustrating the case when the factor is attained:
p = [2R − 1, 2R − 1, 2R − 2, 2R − 2, . . . ,R + 1,R + 1,R ,R ,R]
n = 2 · R + 1,≺ empty,

Illustration for R = 3

optimum:

t

2 9 = C ∗

max60 4

P1

P3

P2

T1

T5 T7

T4T2

T3

T6

8

LPT:

t

2 60 4

P1

P3

P2

T1 T5 T7

T4

T2

T3

T6

8 1110

rLPT = 4
3 −

1
9 = 11

9

Factor of LPT algorithm

If the number of tasks is big, the factor can get better depending on
k - the number of tasks assigned to the resource which finishes last:
rLPT = 1 + 1

k
− 1

kR

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 29 / 58

Dynamic Programming for P ||Cmax [Rothkopf]

Pseudopolynomial algorithm - the range of discreet values is limited by the
upper bound. In some special cases there exists a polynomial algorithm for
such a restricted problem.

we add a binary variable xi(t1, t2, . . . , tR) where

i = 1, 2 . . . n is the task index
v = 1, 2, . . .R is the index of the resource
tv = 0, 1, 2, . . .UB is the time variable associated to the resource v

UB is upper bound on Cmax

xi(t1, t2, . . . , tR) = 1 iff tasks T1,T2, . . . ,Ti can be assigned to the
resource such that Pv is occupied during the time interval
〈0, tv 〉 ; v = 1, 2, . . . R

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 30 / 58

Dynamic Programming for P ||Cmax [Rothkopf]

Input: R , the number of parallel identical resources, n, the number of
nonpreemptive tasks and their processing time [p1, p2, ..., pn].

Output: n-elements vectors s and z where si is the start time and zi is
the resource ID.

for (t1, t2, . . . , tR) ∈ {1, 2, . . .UB}R do x0(t1, t2, . . . , tR) := 0;
x0(0, 0, . . . , 0) := 1;
for i := 1 to n do // for all tasks

for (t1, t2, . . . , tR) ∈ {0, 1, 2, . . . UB}R do // in the whole space

xi(t1, t2, . . . , tR) := ORR
v=1xi−1(t1, t2, . . . , tv − pi , . . . tR);

// xi() = 1 iff there existed

// xi−1() = 1 ‘‘smaller’’ by pi in any direction

end

end

C ∗
max = minxn(t1,t2,...,tR)=1 {maxv=1,2,...R {tv}};

Assign tasks Tn,Tn−1, . . . ,T1 in the reverse direction;

Time complexity is O(n · UBR). Example n=3, R=2, p=[2,1,2], C=5.
Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 31 / 58

Muntz&Coffman’s Level Algorithm for P |pmtn, prec|Cmax

Principle:

tasks are picked from the list ordered by the level of tasks

the level of task Tj - sum of pi (including pj) along the longest

path from Tj to a terminal task (a task with no successor)

when more tasks of the same level are assigned to less resources, each
task gets part of the resource capacity β

the algorithm moves forward to time τ when one of the tasks ends

or the task with a lower level would be processed by a bigger capacity
β than the tasks with a higher level

For P2 |pmtn, prec|Cmax and P |pmtn, forest|Cmax , the algorithm is exact.
For P |pmtn, prec|Cmax approximation alg. with factor rMC = 2 − 2

R
.

Time complexity is O(n2).

Input: R , the number of parallel identical resources, n, the number of
preemptive tasks and proc. times [p1, p2, ..., pn]. Prec. graph G .

Output: n-elements vectors s and z where si is the start time and zi is
the resource ID.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 32 / 58

Muntz&Coffman’s Level Algorithm for P |pmtn, prec|Cmax

compute the level of all tasks ; t:=0; h:=R; // h represents free res

while unfinished tasks exists do

construct Z; // subset T of free tasks in time t

while h > 0 and |Z| > 0 do // free resources and free tasks

construct S; // subset Z of tasks of the highest level

if |S| > h then // more tasks than resources

assign part of capacity β := h
|S| to tasks in S; h := 0;

else

assign one resource to each task in S; β := 1; h := h − |S|;
end

Z := Z \ S;

end

compute τ ; // time when one of the tasks is finished

decrease level of tasks by (τ − t) · β; // finished part of task

t := τ ;h := R ;

end

Use McNaughton’s alg. to re-schedule parts with more tasks on less res.;
Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 33 / 58

Project Scheduling with Temporal Constraints

Set of non-preemptive tasks T = {T1,T2, ...,Tn} is represented by
the nodes of the directed graph G .

Processing time pi is assigned to each task.

The edges represent temporal
constraints. Each edge from Ti to Tj

has the length lij .

Each temporal constraint is
characterized by one inequality
si + lij ≤ sj .

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 34 / 58

Temporal Constraints si + lij ≤ sj with Positive lij

Temporal Constraints (also called a generalized precedence constraint

or a positive-negative time lag)
- the start time of one task depends on the start time of another task

a) lij = pi

“normal” precedence relation

the second task can start when
the previous task is finished

Tj

l ij

Ti

pi

Tj
l ij

t

Ti

b) lij > pi

the second task can start some
time after the completion of
previous task

b.1) example of a dry operation
performed in sufficiently large
space

Tj

l ij

Ti

packpaint dry

Ti Tj
l ij

t

pi

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 35 / 58

Temporal Constraints si + lij ≤ sj with Positive lij

b.2) another example with lij > pi - pipe-lined ALU

We assume the processing time
to be equal in all stages

Result is available l1f tics
after stage 1 reads operands

Stage 1 reads new operands

each p1 tics

Stages 2 and 3 are not

modeled since we have enough
of these resources and they are
synchronized with stage 1

l1f

delay1

stage 3

res

op1
1

stage 1

stage 2

T21

following
proc T1f

op2
1

...

op1
2

op2
2

...

T11

T12

T23

T22

T13

in st.2&3in st.1

. . .

. . .

. . .

T11 T1f

l1f

t
delay1

p1

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 36 / 58

Temporal Constraints si + lij ≤ sj with Positive lij

c) 0 < lij < pi

Partial results of the previous task may be used to start the execution
of the following task.
E.g. the cut-through mechanism, where the switch starts transmission on
the output port earlier than it receives the complete message on the input
port.

time-triggered protocol

resources are communication
links

lab represents the processing

(of one bit) in the switch

different parts of the same
message are transmitted by
several communication links at
the same time

lab

processingswitch 3

line a

message1
b

in switch 2

switch 1

switch 2

line b

message1
a

T1a T1b

lab

t

pa

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 37 / 58

Temporal Constraints si + lij ≤ sj with Zero or Negative lij

d) lij = 0

Task Ti has to start earlier or at
the same time as Tj Tj

Ti

Ti Tj
l ij = 0

t

pi

e) lij < 0

Task Ti has to start earlier or at

most |lij | later than Tj

It loses the sense of “normal ”
precedence relation, since Ti

does not have to precede Tj

It represents the relative

deadline of Ti related to the
start-time of Tj

Tj

Ti

Ti Tj

l ij

t

l ij < 0

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 38 / 58

Cycles and Relative Time Windows

Absence of a positive cycle in graph G
it is a necessary condition for schedulability
it is a necessary and sufficient condition for schedulability of the
instance with unlimited resources capacity (the schedule is restricted
only by the temporal constraints - can be computed easily by LP)

For G we can create a complete digraph G ′ where weight lij is the
length of the longest oriented path from Ti to Tj in G (if no oriented
edge exists in G or G ′, the weight is lij = −∞). In the following text,
we think of lij as an edge in complete graph G ′ of the longest paths.

sj ≥ max∀i∈1...n lij , - start time of Tj is lower bounded by the longest
path from arbitrary node.

Example - relative time window
If lij ≥ 0 and lji < 0 exists, tasks Ti and Tj are
constrained by the relative time window.

the length of the negative cycle determines the
“clearance” of the time window

e.g. applying a catalyst to the chemical process

T1

T2

T1 T2

l21

t

2

-3

l12

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 39 / 58

Project Scheduling

Minimizing Cmax

PS1 |temp|Cmax - NP-hard

Input: The number of non-preemptive tasks n and processing times
[p1, p2, ..., pn]. The temporal constraints defined by digraph G .
Output: n-element vector s, where si is the start time of Ti

We will show Time-indexed and Relative-order ILP formulations

PSm, 1 |temp|Cmax - NP-hard

Input: The number of non-preemptive tasks n and processing times
[p1, p2, ..., pn]. The temporal constraints defined by digraph G .
The number of dedicated resources m and the assignment of the tasks
to the resources [a1, a2, ..., an], where ai is the index of the resource on
which task Ti will be executed.
Output: n-element vector s, where si is the start time of Ti

We show the Relative-order ILP formulation

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 40 / 58

ILP formulation of PS1 |temp|Cmax

Task can be represented in two ways:

Time-indexed - ILP model is based on variable xit , which is equal to
1 iff si = t. Otherwise, it is equal to zero. Processing times are
positive integers.

Relative-order - ILP model is based on the relative order of tasks
given by variable xij , which is equal to 1 iff task Ti precedes task Tj .
Otherwise, it is equal to zero. The processing times are nonnegative
real numbers.

Both models contain two types of constraints:

precedence constraints

resource constraints - prevent overlapping of tasks

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 41 / 58

Time-indexed Model for PS1 |temp|Cmax

minCmax

∑UB−1
t=0 (t · xit) + lij ≤

∑UB−1
t=0 (t · xjt) ∀lij 6= −∞ a i 6= j (prec. const.)

∑n
i=1

(∑t
k=max(0,t−pi+1) xik

)
≤ 1 ∀t ∈ {0, . . .UB − 1} (resource)

∑UB−1
t=0 xit = 1 ∀i ∈ {1, . . . n} (Ti is scheduled)∑UB−1
t=0 (t · xit) + pi ≤ Cmax ∀i ∈ {1, . . . n}

variables: xit ∈ {0, 1}, Cmax ∈ {0, . . .UB}

UB - upper bound of Cmax (e.g. UB =
∑n

i=1 max
{
pi ,maxi ,j∈{1,...,n} lij

}
).

Start time of Ti is si =
∑UB−1

t=0 (t · xit).

Model contains n · UB + 1 variables and |E | + UB + 2n constraints.
Constant |E | represents the number of temporal constraints (edges in G).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 42 / 58

Time-indexed Model for PS1 |temp|Cmax

T = {T1,T2,T3}, p = [1, 2, 1], UB = 5

T1 is scheduled:

Resource constr. at time 2:

T1

T2

T3

x10 x11
x12 x13 x14

x20 x21
x22 x23 x24

x30 x31
x32 x33 x34

T1

T2

T3

x10 x11
x12 x13 x14

x20 x21
x22 x23 x24

x30 x31
x32 x33 x34

S = 1

S 1£

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 43 / 58

Relative-order Model for PS1 |temp|Cmax

Resource constraint for couple of tasks:
pj ≤ si − sj + UB · xij ≤ UB − pi

The constraint uses “big M” (here UB - upper bound on Cmax).

If xij = 1, Ti precedes task Tj and
the constraint is formulated as
si + pi ≤ sj .

If xij = 0, Ti follows task Tj and the
constraint is formulated as
sj + pj ≤ si .

Ti Tj

t

C

si sj

Ti Tj

t

UB

si sj

Tj Ti

t

UB

si sj

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 44 / 58

Relative-order Model for PS1 |temp|Cmax

An example of a polytope which is determined by the resource constraint
for a pair of tasks Ti and Tj with pi = 2 and pj = 3. There are no
precedence constraints among the tasks and UB = 8.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

s
j

s
i

x
ij
=1

x
ij

=0

^

^

^

^

0
1

2
3

4
5

6
7

0

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

x
ij

sj
s
i

^

^

^

x=1
ij
^

x=0
ij
^

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 45 / 58

Relative-order Model for PS1 |temp|Cmax

minCmax

si + lij ≤ sj ∀lij 6= −∞ a i 6= j

(temporal constraint)

pj ≤ si − sj + UB · xij ≤ UB − pi ∀i , j ∈ {1, . . . , n} a i < j

(resource constraint)

si + pi ≤ Cmax ∀i ∈ {1, . . . , n}

variables: xij ∈ {0, 1}, Cmax ∈ 〈0,UB〉, si ∈ 〈0,UB〉

The model contains n +
(
n2 − n

)
/2 + 1 variables and |E | +

(
n2 − n

)
+ n

constraints. |E | is a number of temporal constraints (edges in G).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 46 / 58

Comparison of the Two Models

Each model is suitable for different types of tasks:

Time-indexed model:

(+) Can be easily extended for parallel identical processors.

(+) ILP formulation does not need many constraints.

(-) The size of the model grows with the size of UB .

Relative-order model:

(+) The size of ILP model does not depend on UB .

(-) Requires a big number of constraints.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 47 / 58

Feasibility Test for Heuristic Algorithms

If the partial schedule (found for example by a greedy algorithm which
inserts tasks in a topological order, or the partial result during the Branch
and Bound algorithm) violates some time constraints, the order of tasks
does not need to be infeasible.

T1

1

T1

1

T2

1

T2

1

T3

1

T3

1

1 1

-1

3 T1 T2 T3

t0 1 2 3 4 5

l
32

> -1

T1 T3

t0 1 2 3 4 5

T2

l
32

= -1

Feasible

Infeasible

When the optimal order of the tasks in the schedule is known (variables xij
are constants), it is easy to find the start time of the tasks (for example by
LP formulation involving time constraints only).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 48 / 58

Relative-order Model for PSm, 1 |temp|Cmax

Part of the input parameters are the number of resources m and
assignment of the tasks to the resources [a1, ..., ai , ..., an], where ai is
index of the resource on which task Ti will be running.

minCmax

si + lij ≤ sj ∀lij 6= −∞ and i 6= j

(temporal constraints)
pj ≤ si − sj + UB · xij ≤ UB − pi ∀i , j ∈ {1, . . . , n}, i < j and ai = aj

(independent on each resource)
si + pi ≤ Cmax ∀i ∈ {1, . . . , n}

variables: xij ∈ {0, 1}, Cmax ∈ 〈0,UB〉, si ∈ 〈0,UB〉

Model consists of less than n +
(
n2 − n

)
/2 + 1 variables (exact number

depends on the number of tasks scheduled on each resource).

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 49 / 58

Modeling with Temporal Constraints

Using PS1 |temp|Cmax we will model:

1
∣∣∣rj , d̃j

∣∣∣Cmax

scheduling on dedicated resources PSm, 1 |temp|Cmax

Using PSm, 1 |temp|Cmax we will model:

scheduling of multiprocessor tasks - task needs more than one
resource type at a given moment

scheduling with setup times - two subsequent tasks executed on one
resource need to be separated by idle waiting, for example to change
the tool.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 50 / 58

Reduction from 1
∣∣∣rj , d̃j

∣∣∣Cmax to PS1 |temp|Cmax

This polynomial reduction proves that PS1 |temp|Cmax is NP-hard, since
Bratley’s problem is NP-hard.

Instance 1
∣∣∣rj , d̃j

∣∣∣Cmax

r = [r1, r2, . . . , rn]
p = [p1, p2, . . . , pn]
d̃ = [d̃1, d̃2, . . . , d̃n]

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 51 / 58

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax is based on the
projection of each resource to the independent time window. In other
words, the schedule of tasks on Pj is projected into interval
〈(j − 1) · UB , j · UB〉

Transformation consists of two steps:

Add dummy tasks T0 and Tn+1 with p0 = pn+1 = 0.

Task T0, processed on P1, precedes all tasks Ti ∈ T , ie. s0 ≤ si .
Task Tn+1, processed on Pm, follows all task Ti ∈ T , tj. si + pi ≤ sn+1.

Transform the original temporal constraints to
l ′ij = lij + (aj − ai) · UB .

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 52 / 58

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

The new start time s ′i of each task on processor ai is:
s ′i = si + (ai − 1) · UB .

Temporal constraints si + lij ≤ sj are transformed to:

s ′i − (ai − 1) · UB + lij ≤ s ′j − (aj − 1) · UB
s ′i + lij + (aj − ai) · UB ≤ s ′j

The transformed temporal constraint will look like s ′i + l ′ij ≤ s ′j , where:

l ′ij = lij + (aj − ai) · UB

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 53 / 58

Reduction from PSm, 1 |temp|Cmax to PS1 |temp|Cmax

T1

2

T1

2

T2

3

T2

3

T3

4

T3

4

3

2

-4

T1

2

T1

2

T2

3

T2

3

T3

4

T3

4

3+10

2+10

-4-10

T0

0

T0

0

Tn+1

0

Tn+1

0

2+10

3

4

0

10

10

two cated resourcesdedi one resource

-20+3

-20+4

-10+2

While minimizing the completion time of Tn+1, we push tasks T1,T2 and
T3 “to the left” due to the edges entering Tn+1

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 54 / 58

Multiprocessors Tasks

Transformation of multiprocessor tasks to PSm, 1 |temp|Cmax

create as many virtual tasks as there are processors needed to execute
the physical tasks

ensure that the virtual tasks of the given physical task start at the
same time - this is done by two edges with weight lij = lji = 0.
Consequently si ≤ sj and sj ≤ si .

Example: Task Ti needs resources [P1,P2,P3].

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 55 / 58

Changeover Time (i.e. Sequence Dependent Set-up Time)

The set-up time oij is a time needed to separate task Ti from Tj . It is
used for example to change the tool in the machine.
Since the order of tasks is unknown in advance, we can not determine
which set-up time will be used.

Reduction of the scheduling problem with the set-up time to
PSm, 1 |temp|Cmax

for each pair of set-up constrained tasks add the virtual resource and
a pair of extended virtual tasks

ensure that the virtual task and the physical task start at the same
time

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 56 / 58

Changeover Time (i.e. Sequence Dependent Set-up Time)

For each pair of tasks such that the set up time oij > 0 or oji > 0, the
virtual resource Pij and the corresponding virtual tasks T ′

i and T ′
j are

added.

Task T ′
i has p′i = pi + oij and task T ′

j has p′j = pj + oji .

Both tasks run on one virtual resource Pij .

Task T ′
i (resp. T ′

j) is synchronized with the original task by:

si ≤ s ′i s ′i ≤ si resp. sj ≤ s ′j s ′j ≤ sj

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 57 / 58

References

J. B lażewicz, K. Ecker, G. Schmidt, and J. Wȩglarz.
Scheduling Computer and Manufacturing Processes.
Springer, second edition, 2001.

Klaus Neumann, Christoph Schwindt, and Jürgen Zimmermann.
Project Scheduling with Time Windows and Scarce Resources.
Springer, 2003.

Sigrid Knust Peter Brucker.
Complexity results for scheduling problems.
http://www.ict.kth.se/courses/ID2204/index.html.

Z. Hanzálek (CTU FEE) Scheduling April 30, 2013 58 / 58

http://www.ict.kth.se/courses/ID2204/index.html

	prvni
	sched_e
	Basics notions
	Scheduling on One Resource
	Minimizing Cmax
	Minimizing wjCj

	Scheduling on Parallel Identical Resources
	Minimizing Cmax

	Project Scheduling
	Temporal constraints
	Minimizing Cmax
	Modeling with Temporal Constraints

