\section*{O P P \\ | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

Combinatorial Optimization

Zdeněk Hanzálek
hanzalek@fel.cvut.cz
CTU FEE Department of Control Engineering

$$
\text { May 3, } 2013
$$

European Social Fund Prague \& EU: We invests in your future.

Scheduling

Zdeněk Hanzálek, Přemysl Šůcha
hanzalek@fel.cvut.cz
CTU FEE Department of Control Engineering

April 30, 2013

Table of Contents

(1) Basics notions
(2) Scheduling on One Resource

- Minimizing $C_{\text {max }}$
- Bratley's Algorithm for $1\left|r_{j}, \widetilde{d}_{j}\right| C_{\text {max }}$
- Minimizing $\sum w_{j} C_{j}$
- Branch\&Bound with LP for $1 \mid$ prec $\mid \sum w_{j} C_{j}$
(3) Scheduling on Parallel Identical Resources
- Minimizing $C_{\max }$
(4) Project Scheduling
- Temporal constraints
- Minimizing $C_{\text {max }}$
- ILP Formulation for PS1|temp| $C_{\text {max }}$ - One Resource
- ILP formulation for PSm, 1 |temp| $C_{\text {max }}$ - m Dedicated Resources
- Modeling with Temporal Constraints

Scheduling - Basic Terminology

- set of n tasks $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$
- set of m types of resources (processors, machines, employees,...) with capacities $R_{k}, \mathcal{P}=\left\{P_{1}^{1}, \ldots, P_{1}^{R_{1}}, P_{2}^{1}, \ldots, P_{2}^{R_{2}}, \ldots \ldots, P_{m}^{1}, \ldots, P_{m}^{R_{m}}\right\}$
- Scheduling is an assignment of a task to a resources in time
- Each task must be completed
- this differs from planning which decides which task will be scheduled and processed
- Set of tasks is known when executing the scheduling algorithm (this is called off-line scheduling)
- this differs from on-line scheduling - OS scheduler, for example, schedules new tasks using some policy (e.g. priority levels)
- A result is a schedule which determines which task is run on which resource and when. Often depicted as a Gantt chart.

General and Specific Constraints

General constraints:

- Each task is to be processed by at most one resource at a time (task is sequential)
- Each resource is capable of processing at most one task at a time Specific constraints:
- Task T_{i} has to be processed during time interval $\left\langle r_{i}, \tilde{d}_{i}\right\rangle$
- When the precedence constraint is defined between T_{i} and T_{j}, i.e. $T_{i} \prec T_{j}$, then the processing of task T_{j} can't start before task T_{i} was completed
- If scheduling is non-preemptive, a task cannot be stopped and completed later
- If scheduling is preemptive, the number of preemptions must be finite

Task Parameters and Variables

Parameters

- release time r_{j}
- processing time p_{j}
- due date d_{j}, time in which task T_{j} should be completed
- deadline \widetilde{d}_{j}, time in which task T_{j} has to be completed

Variables

- start time s_{j}
- completion time C_{j}
- waiting time $w_{j}=s_{j}-r_{j}$
- flow time $F_{j}=C_{j}-r_{j}$
- lateness $L_{j}=C_{j}-d_{j}$
- tardiness $D_{j}=\max \left\{C_{j}-d_{j}, 0\right\}$

Graham's Notation $\alpha|\beta| \gamma$

Classify scheduling problems by resources | tasks | criterion

Example: $P 2|\mathrm{pmtn}| C_{\max }$ represents scheduling on two parallel identical resources, and preemption is allowed. The optimization criterion is the completion time of the last task.

α - resources

- Parallel resources - a task can run on any resource (only one type of resource exists with capacity R, i.e. $\mathcal{P}=\left\{P^{1}, \ldots, P^{R}\right\}$).
- Dedicated resources - a task can run only on one resource (m resource types with unit capacity, i.e. $\left.\mathcal{P}=\left\{P_{1}, P_{2} \ldots, P_{m}\right\}\right)$.
- Project Scheduling - m resource types, each with capacity R_{k}, i.e.

$$
\mathcal{P}=\left\{P_{1}^{1}, \ldots, P_{1}^{R_{1}}, P_{2}^{1}, \ldots, P_{2}^{R_{2}}, \ldots \ldots, P_{m}^{1}, \ldots, P_{m}^{R_{m}}\right\}
$$

Resources Characteristics α_{1}, α_{2}

$\alpha_{1}=$	1	single resource
	P	parallel identical resources
	Q	parallel uniform resources, computation time is inversely related to resource speed
	R	parallel unrelated resources, computation times are given as a matrix (resources \times tasks)
	O	dedicated resources - open-shop - tasks are independent
	F	dedicated resources - flow-shop - tasks are grouped in the sequences (jobs) in the same order, each job visits each machine once
	J	dedicated resources - job-shop - order of tasks in jobs is arbitrary, resource can be used several times in a job
	PS	Project Scheduling - most general (several resource types with capacities, general precedence constraints)
$\alpha_{2}=$	\emptyset	arbitrary number of resources
	2	2 resources (or other specified number)
	m, R	m resource types with capacities R (Project Scheduling)

Task Characteristics $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}, \beta_{8}$

Optimality Criterion γ

```
\gamma = C Cmax minimize schedule length C Cmax }=\operatorname{max}{\mp@subsup{C}{j}{}
    (makespan, i.e. completion time of the last task)
\sumC}\mp@subsup{C}{j}{}\quad\mathrm{ minimize the sum of completion times
\sum w w C C minimize weighted completion time
L}\mp@subsup{L}{\mathrm{ max }}{}\quad\mathrm{ minimize max. lateness }\mp@subsup{L}{\mathrm{ max }}{}=\operatorname{max}{\mp@subsup{C}{j}{}-\mp@subsup{d}{j}{}
\emptyset
    decision problem
```

An Example: $P \| C_{\max }$ means:
Scheduling on an arbitrary number of parallel identical resources, no preemption, independent tasks (no precedence), tasks arrive to the system at time 0 , processing times are arbitrary, objective is to minimize the schedule length.

Scheduling on One Resource Minimizing Makespan (i.e. schedule length $C_{\text {max }}$)

- $1|p r e c| C_{\text {max }}$ - easy
- the tasks are processed in an arbitrary order that satisfies the precedence relation, $C_{\max }=\sum_{j=1}^{n} p_{j}$
- $1 \| C_{\text {max }}$ - easy
- $1\left|r_{j}\right| C_{\text {max }}$ - easy
- the tasks are processed in a non-descending order of r_{j} (T_{j} with the lowest r_{j} first)
- $1\left|\widetilde{d}_{j}\right| C_{\text {max }}$ - easy
- the tasks are processed in a non-descending order of \tilde{d}_{j}
- can be solved by EDF - Earliest Deadline First
- the feasible schedule doesn't have to exist
- $1\left|r_{j}, \widetilde{d}_{j}\right| C_{\text {max }}$ - NP-hard
- NP-hardness proved by the polynomial transformation from 3-Partition problem
- for $p_{j}=1$ there exists a polynomial algorithm

Bratley's Algorithm for $1\left|r_{j}, \widetilde{d}_{j}\right| C_{m a x}$

A branch and bound ($B \& B$) algorithm.
Branching - without bounding it is an enumerative method that creates a solution tree (some of the nodes are infeasible). Every node is labeled by: (the order of tasks)/(completion time of the last task).

Reduction of the Tree - Bounding

(i) eliminate the node exceeding the deadline (and all its "brothers")

- If there is a node which exceeds any deadline, all its descendants should be eliminated
- Critical task (here T_{3}) will have to be scheduled anyway therefore, all of its "brothers" should be eliminated as well

Tree Size Reduction - Decomposition

(ii) problem decomposition due to idle waiting - e.g. when the employee waits for the material, his work was optimal

- Consider node v on level k. If C_{i} of the last scheduled task is less than or equal to r_{i} of all unscheduled tasks, there is
 no need for backtrack above v
- v becomes a new root and there are $n-k$ levels ($n-k$ unscheduled tasks) to be scheduled

Optimality Test - Termination of Bratley's Algorithm

Definition: BRTP - Block with Release Time Property

BRTP is a set of k tasks that satisfy:

- first task $T_{[1]}$ starts at it's release time
- all tasks till the end of the schedule run without "idle waiting"
- $r_{[1]} \leq r_{[i]}$ for all $i=2 \ldots k$

Note: "till the end of the schedule" implies there is at most one BRTP

Lemma: sufficient condition of optimality

If BRTP exists, the schedule is optimal (the search is finished).

Proof:

 can not be completed earlier

- order of prec. tasks is not important - see (ii)
- no task from BRTP can be done before $r_{[1]}$
- there is no task after $C_{\max }$

BRTP is Sufficient and Necessary Condition of Optimality

Proposition - necessary condition of optimality

If the schedule for $1\left|r_{j}, \tilde{d}_{j}\right| C_{\text {max }}$ is optimal, it contains BRTP.
Proof by contradiction: we show that the schedule without BRTP is not optimal. There are two cases of the schedule without BRTP:
(1) the last block does not start at $r_{[1]}$:

- $r_{[1]}<S_{[1]}$
- $s_{[1]}<r_{[i]}<s_{[i]} \forall i=2 \ldots k$ (note that if $i=2 \ldots k$ such that $r_{[i]}=s_{[i]}$ exists, than BRTP exists from $T_{[i]}$)
- block can be moved left while maintaining actual order

(2) some task can be placed before $T_{[1]}$, i.e. there is $i=2 \ldots k$ such that $r_{[i]}<s_{[1]}$ exists
- schedule can be improved while moving $T_{[2]}$ before $T_{[1]}$

Bratley's Algorithm - Example

$$
r=[4,1,1,0], p=[2,1,2,2], \widetilde{d}=[8,5,6,4]
$$

Scheduling on One Resource Minimizing $\sum w_{j} C_{j}$

- $1 \| \sum C_{j}$ - easy
- SPT rule (Shortest Processing Time first) - schedule the tasks in a non-decreasing order of p_{j}
- $1 \| \sum w_{j} C_{j}$ - easy
- Weighted SPT - schedule the tasks in a non-decreasing order of $\frac{p_{j}}{w_{j}}$
- $1\left|r_{j}\right| \sum C_{j}$ - NP-hard
- $1 \mid$ pmtn, $r_{j} \mid \sum C_{j}$ - can be solved by modified SPT
- $1 \mid$ pmtn,$r_{j} \mid \sum w_{j} C_{j}$ - NP-hard
- $1\left|\widetilde{d}_{j}\right| \sum C_{j}$ - can be solved by modified SPT
- $1\left|\widetilde{d}_{j}\right| \sum w_{j} C_{j}$ - NP-hard
- $1 \mid$ prec $\mid \sum C_{j}$ - NP-hard

Branch and Bound with LP for $1 \mid$ prec $\mid \sum w_{j} C_{j}$

First, we formulate the problem as a ILP:

- we use variable $x_{i j} \in\{0,1\}$ such that $x_{i j}=1$ iff T_{i} precedes T_{j} or $i=j$
- we encode precedence relations into $e_{i j} \in\{0,1\}$ such that $e_{i j}=1$ iff there is a directed edge from T_{i} to T_{j} in the precedence graph G or $i=j$
- criterion - completion time of task T_{j} consists of p_{j} and the processing time of its predecessors:

$$
\begin{aligned}
C_{j} & =\sum_{i=1}^{n} p_{i} \cdot x_{i j} \\
w_{j} \cdot C_{j} & =\sum_{i=1}^{n} p_{i} \cdot x_{i j} \cdot w_{j} \\
J=\sum_{j=1}^{n} w_{j} \cdot C_{j} & =\sum_{j=1}^{n} \sum_{i=1}^{n} p_{i} \cdot x_{i j} \cdot w_{j}
\end{aligned}
$$

from all feasible schedules x we look for the one that minimizes $J(x)$, i.e. $\min _{x} J(x)$

ILP formulation for $1 \mid$ prec $\mid \sum w_{j} C_{j}$

$\min \quad \sum_{j=1}^{n} \sum_{i=1}^{n} p_{i} \cdot x_{i j} \cdot w_{j}$
subject to:

$$
\left.\begin{array}{lll}
x_{i, j} \geq e_{i, j} \quad i, j \in 1 . . n & \begin{array}{l}
\text { if } T_{i} \text { precedes } T_{j} \text { in } G, \\
\text { then it precedes } T_{j}
\end{array} \\
& \text { in the schedule }
\end{array}, \begin{array}{ll}
x_{i, j}+x_{j, i}=1 \quad i, j \in 1 . . n, i \neq j & \text { either } T_{i} \text { precedes } T_{j}, \\
\text { or vice versa }
\end{array}\right\} \begin{array}{ll}
& \begin{array}{l}
i, j, k \in 1 . . n, \\
i \neq j \neq k
\end{array} \\
\text { no cycle exists in the } \\
\text { digraph of } x
\end{array}
$$

parameters: $\quad p_{i \in 1 . . n} \in \mathbb{R}_{0}^{+} e_{i \in 1 . . n, j \in 1 . . n} \in\{0,1\}$
variables: $\quad x_{i \in 1 . . n, j \in 1 . . n} \in\{0,1\}$

Branch and Bound with LP Bounding

We relax on the integrality of variable x :

- $0 \leq x_{i j} \leq 1$ and $x_{i \in 1 . . n, j \in 1 . . n} \in \mathbb{R}$
- This does not give us the right solution, however we can use the $J^{L P}$ (remaining tasks) value of this LP formulation as a lower bound on the "amount of remaining work"
The Branch and Bound algorithm creates a similar tree as Bradley's algorithm.

- Let J_{1} be the value of the best solution known up to now
- We discard the partial solution of value J_{2} not only when $J_{2} \geq J_{1}$, but also when $J_{2}+J^{L P}($ remaining tasks $) \geq J_{1}$. Since the solution space of ILP is a subspace of LP we know:
J (remaining tasks) $\geq J^{L P}$ (remaining tasks).

Scheduling on Parallel Identical Resources Minimizing $C_{\text {max }}$

- $P 2 \| C_{\text {max }}$ - NP-hard
- schedule n non-preemptive tasks on two parallel identical resources minimizing makespan, i.e. the completion time of the last task
- the problem is NP-hard because the 2 partition problem (see ILP lecture) can be reduced to $P 2 \| C_{\max }$ while comparing the optimal $C_{\max }$ with the threshold of $0.5 * \sum_{i \in 1 . . n} p_{i}$.
- $P|\mathrm{pmtn}| C_{\text {max }}$ - easy
- can be solved by the McNaughton algorithm in $O(n)$
- $P \mid$ pmtn, $r_{j}, \widetilde{d}_{j} \mid C_{\text {max }}$ - easy
- can be formulated as a maximum flow problem (see the lecture on Flows)
- P |prec $\mid C_{\text {max }}$ - NP-hard
- LS - approximation algorithm with factor $r_{L S}=2-\frac{1}{R}$, where R is the number of parallel identical resources
- $P \| C_{\text {max }}$ - NP-hard
- LPT - approximation algorithm with factor $r_{L P T}=\frac{4}{3}-\frac{1}{3 R}$
- dynamic programming - Rothkopf's pseudopolynomial algorithm
- P |pmtn, prec $\mid C_{\text {max }}$ - NP-hard
- Muntz\&Coffman's level algorithm with factor $r_{M C}=2-\frac{2}{R}$

McNaughton's Algorithm for $P \mid$ pmtn $\mid C_{\text {max }}$

Input: R, number of parallel identical resources, n, number of preemptive tasks and computation times $\left[p_{1}, p_{2}, \ldots, p_{n}\right]$.
Output: n-element vectors $s^{1}, s^{2}, z^{1}, z^{2}$ where $s_{i}^{1}\left(\right.$ resp. $\left.s_{i}^{2}\right)$ is start time of the first (resp. second) part of task T_{i} and z_{i}^{1} (resp. z_{i}^{2}) is the resource ID on which the first (resp. second) part of task T_{i} will be executed.
$s_{i}^{1}=s_{i}^{2}=z_{i}^{1}=z_{i}^{2}:=0$ for all $i \in 1 \ldots n ;$
$t:=0 ; v:=1 ; i:=1$;
$C_{\text {max }}^{*}=\max \left\{\max _{i=1 \ldots n}\left\{p_{i}\right\}, \frac{1}{R} \sum_{1}^{n} p_{i}\right\}$;
while $i \leq n$ do
if $t+p_{i} \leq C_{\text {max }}^{*}$ then
$s_{i}^{1}:=t ; z_{i}^{1}:=v ; t:=t+p_{i} ; i:=i+1 ;$
else

$$
s_{i}^{2}:=t ; z_{i}^{2}:=v ; p_{i}:=p_{i}-\left(C_{\max }^{*}-t\right) ; t:=0 ; v:=v+1
$$

end
end

McNaughtnon's Algorithm for $P \mid$ pmtn $\mid C_{\max }$

The term $C_{\text {max }}^{*}=\max \left\{\max _{i=1 \ldots n}\left\{p_{i}\right\}, \frac{1}{R} \sum_{1}^{n} p_{i}\right\}$ should be interpreted as follows:

- component $\max _{i=1 \ldots n}\left\{p_{i}\right\}$ represents the sequential nature of each task - it's parts can be assigned to different resources, but these parts can not be run simultaneously. Note that each task can be divided into two parts at most.
- component $\frac{1}{R} \sum_{1}^{n} p_{i}$ represents a situation when all resources work without idle waiting

Example 1:
$p=[2,3,2,3,2], R=3$
compute $C_{\text {max }}^{*}=\max \left\{3, \frac{12}{3}\right\}=4$

Example 2:
$p=[10,8,4,14,1], R=3$
compute $C_{\max }^{*}=\max \left\{14, \frac{37}{3}\right\}=14$

List Scheduling - Approximation Alg. for $P \mid$ prec $\mid C_{\max }$

Input: R, number of parallel identical resources, n, number of non-preemptive tasks and computation times $\left[p_{1}, p_{2}, \ldots, p_{n}\right.$]. G, digraph of precedence constraints.
Output: n-element vectors s and z where s_{i} is the start time of T_{i} and z_{i} is the resource ID.
$t_{v}:=0$ for all $v \in 1 \ldots R ; \quad / /$ availability of resource $s_{i}=z_{i}:=0$ for all $i \in 1 \ldots n$;
Sort tasks in list L;
for count $:=1$ to n do
// for all tasks $k=\arg \min _{v=1 \ldots R}\left\{t_{v}\right\} ; / /$ choose res. with the lowest t_{v} Remove the first free task T_{i} from L; $s_{i}=\max \left\{t_{k}, \max _{j \in \operatorname{Pred}\left(T_{i}\right)}\left\{s_{j}+p_{j}\right\}\right\} ; z_{i}=k ; / / \operatorname{assign} T_{i}$ to P_{k} $t_{k}=s_{i}+p_{i} ; \quad / /$ update availability time of P_{k} end

Task T_{i} is free if its predecessors have been completed. $\operatorname{Pred}\left(T_{i}\right)$ is a set of the task IDs that are predecessors of T_{i}. Complexity is $O(n)$.

List Scheduling - Approximation algorithm for $P \mid$ prec $\mid C_{\max }$

List Scheduling (LS) is a general heuristic useful in many problems.

- We have a list (n-tuple) of tasks and when some resource is free, we assign the first free task from the list to this resource.
- The accuracy of LS depends on the criterion and sorting procedure.

Approximation factor of LS algorithm [Graham 1966]

For $P|\mathrm{prec}| C_{\max }$ (and also for $P \| C_{\max }$) and arbitrary (unsorted) list L , List Scheduling is an approximation algorithm with factor $r_{L S}=2-\frac{1}{R}$

An example illustrating the case when the factor is attained:
$n=(R-1) \cdot R+1$,
$p=[1,1, \ldots, 1, R]$,
\prec empty.
Illustration for $R=4$
$r_{L S}=2-\frac{1}{4}=\frac{7}{4}$

$$
L=\left[T_{n}, T_{1}, \ldots, T_{n-1}\right]
$$

$$
L^{\prime}=\left[T_{1}, T_{2}, \ldots, T_{n}\right]
$$

Anomalies of List Scheduling Algorithm

The LS algorithm depends not only on the order of tasks in L, but it exhibits anomalies ($C_{\text {max }}$ surprisingly increases when relaxing some constraints/parameters) caused by:
(1) the decrease of processing time p_{i}
(2) the removal of some precedence constraints
(3) the increase of the number of resources R

Example illustrating different anomalies for
$R=2, n=8, p=[3,4,2,4,4,2,13,2]$

Using list $L=\left[T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}\right]$, LS finds solution with $C_{\max }^{*}=17$.

List Scheduling Anomalies - Prolongation of $C_{m a x}$

Exchange position of T_{7} and T_{8} $L=\left[T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{8}, T_{7}\right]$.

Decrease p_{i} of all tasks by one.

Remove prec. constraint $T_{3} \prec T_{4}$.

Add resource ($R=3$).

LPT (Longest Processing Time First)

- Approximation Algorithm for $P \| C_{\text {max }}$

The approximation factor of the LS algorithm can be decreased using the Longest Processing Time first (LPT) strategy

- During initialization of LS, we sort list L in a non-increasing order of p_{i}

Approximation factor of LPT algorithm [Graham 1966]

LPT algorithm for $P \| C_{\text {max }}$ is an approximation algorithm with factor $r_{L P T}=\frac{4}{3}-\frac{1}{3 R}$

Time complexity of LPT algorithm is $O(n \cdot \log (n))$ due to the sorting.

LPT (Longest Processing Time First) - Approximation Algorithm for $P \| C_{\text {max }}$

An example illustrating the case when the factor is attained: $p=[2 R-1,2 R-1,2 R-2,2 R-2, \ldots, R+1, R+1, R, R, R]$ $n=2 \cdot R+1, \prec$ empty,
optimum:

Illustration for $R=3$

$$
r_{L P T}=\frac{4}{3}-\frac{1}{9}=\frac{11}{9}
$$

Factor of LPT algorithm

If the number of tasks is big, the factor can get better depending on k - the number of tasks assigned to the resource which finishes last: $r_{L P T}=1+\frac{1}{k}-\frac{1}{k R}$

Dynamic Programming for $P \| C_{\max }$ [Rothkopf]

Pseudopolynomial algorithm - the range of discreet values is limited by the upper bound. In some special cases there exists a polynomial algorithm for such a restricted problem.

- we add a binary variable $x_{i}\left(t_{1}, t_{2}, \ldots, t_{R}\right)$ where
- $i=1,2 \ldots n$ is the task index
- $v=1,2, \ldots R$ is the index of the resource
- $t_{v}=0,1,2, \ldots U B$ is the time variable associated to the resource v
- UB is upper bound on $C_{\text {max }}$
- $x_{i}\left(t_{1}, t_{2}, \ldots, t_{R}\right)=1$ iff tasks $T_{1}, T_{2}, \ldots, T_{i}$ can be assigned to the resource such that P_{v} is occupied during the time interval $\left\langle 0, t_{v}\right\rangle ; v=1,2, \ldots R$

Dynamic Programming for $P \| C_{\max }$ [Rothkopf]

Input: R, the number of parallel identical resources, n, the number of nonpreemptive tasks and their processing time $\left[p_{1}, p_{2}, \ldots, p_{n}\right]$.
Output: n-elements vectors s and z where s_{i} is the start time and z_{i} is the resource ID.
for $\left(t_{1}, t_{2}, \ldots, t_{R}\right) \in\{1,2, \ldots U B\}^{R}$ do $x_{0}\left(t_{1}, t_{2}, \ldots, t_{R}\right):=0$; $x_{0}(0,0, \ldots, 0):=1$;
for $i:=1$ to n do
// for all tasks for $\left(t_{1}, t_{2}, \ldots, t_{R}\right) \in\{0,1,2, \ldots U B\}^{R}$ do // in the whole space $x_{i}\left(t_{1}, t_{2}, \ldots, t_{R}\right):=\mathrm{OR}_{v=1}^{R} x_{i-1}\left(t_{1}, t_{2}, \ldots, t_{v}-p_{i}, \ldots t_{R}\right)$;
$/ / x_{i}()=1$ iff there existed
// $x_{i-1}()=1$ ''smaller'' by p_{i} in any direction end

end

$C_{\text {max }}^{*}=\min _{x_{n}\left(t_{1}, t_{2}, \ldots, t_{R}\right)=1}\left\{\max _{v=1,2, \ldots R}\left\{t_{v}\right\}\right\} ;$
Assign tasks $T_{n}, T_{n-1}, \ldots, T_{1}$ in the reverse direction;
Time complexity is $O\left(n \cdot U B^{R}\right)$. Example $\mathrm{n}=3, \mathrm{R}=2, \mathrm{p}=[2,1,2], \mathrm{C}=5$.

Muntz\&Coffman's Level Algorithm for $P \mid$ pmtn, prec $\mid C_{\max }$

Principle:

- tasks are picked from the list ordered by the level of tasks
- the level of task T_{j} - sum of p_{i} (including p_{j}) along the longest path from T_{j} to a terminal task (a task with no successor)
- when more tasks of the same level are assigned to less resources, each task gets part of the resource capacity β
- the algorithm moves forward to time τ when one of the tasks ends or the task with a lower level would be processed by a bigger capacity β than the tasks with a higher level
For $P 2 \mid$ pmtn, prec $\mid C_{m a x}$ and $P \mid$ pmtn, forest $\mid C_{\text {max }}$, the algorithm is exact. For $P \mid$ pmtn, prec $\mid C_{\max }$ approximation alg. with factor $r_{M C}=2-\frac{2}{R}$. Time complexity is $O\left(n^{2}\right)$.
Input: R, the number of parallel identical resources, n, the number of preemptive tasks and proc. times $\left[p_{1}, p_{2}, \ldots, p_{n}\right]$. Prec. graph G.
Output: n-elements vectors s and z where s_{i} is the start time and z_{i} is the resource ID.

Muntz\&Coffman's Level Algorithm for $P \mid$ pmtn, prec $\mid C_{\max }$

compute the level of all tasks ; $\mathrm{t}:=0 ; \mathrm{h}:=\mathrm{R} ; / / \mathrm{h}$ represents free res while unfinished tasks exists do
construct \mathcal{Z}; // subset \mathcal{T} of free tasks in time t while $h>0$ and $|\mathcal{Z}|>0$ do // free resources and free tasks construct $\mathcal{S} ; / /$ subset \mathcal{Z} of tasks of the highest level if $|\mathcal{S}|>h$ then $\quad / /$ more tasks than resources assign part of capacity $\beta:=\frac{h}{|\mathcal{S}|}$ to tasks in $\mathcal{S} ; h:=0$; else
assign one resource to each task in $\mathcal{S} ; \beta:=1 ; h:=h-|\mathcal{S}|$; end $\mathcal{Z}:=\mathcal{Z} \backslash \mathcal{S} ;$

end

compute τ; // time when one of the tasks is finished decrease level of tasks by $(\tau-t) \cdot \beta ; \quad / /$ finished part of task $t:=\tau ; h:=R ;$

end

Use McNaughton's alg. to re-schedule parts with more tasks on less res.:
S. Hanzálek (CTU FEE)

Project Scheduling with Temporal Constraints

- Set of non-preemptive tasks $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ is represented by the nodes of the directed graph G.
- Processing time p_{i} is assigned to each task.

- The edges represent temporal constraints. Each edge from T_{i} to T_{j} has the length $l_{i j}$.
- Each temporal constraint is characterized by one inequality

$$
s_{i}+l_{i j} \leq s_{j}
$$

Temporal Constraints $s_{i}+I_{i j} \leq s_{j}$ with Positive $I_{i j}$

Temporal Constraints (also called a generalized precedence constraint or a positive-negative time lag)

- the start time of one task depends on the start time of another task
a) $l_{i j}=p_{i}$
- "normal" precedence relation
- the second task can start when the previous task is finished

b) $l_{i j}>p_{i}$
- the second task can start some time after the completion of previous task
- b.1) example of a dry operation performed in sufficiently large
 space

Temporal Constraints $s_{i}+I_{i j} \leq s_{j}$ with Positive $I_{i j}$

b.2) another example with $l_{i j}>p_{i}$ - pipe-lined ALU

- We assume the processing time to be equal in all stages
- Result is available $I_{1 f}$ tics after stage 1 reads operands
- Stage 1 reads new operands each p_{1} tics
- Stages 2 and 3 are not modeled since we have enough of these resources and they are synchronized with stage 1

Temporal Constraints $s_{i}+I_{i j} \leq s_{j}$ with Positive $I_{i j}$

c) $0<l_{i j}<p_{i}$

Partial results of the previous task may be used to start the execution of the following task.
E.g. the cut-through mechanism, where the switch starts transmission on the output port earlier than it receives the complete message on the input port.

- time-triggered protocol
- resources are communication links
- $l_{a b}$ represents the processing (of one bit) in the switch
- different parts of the same message are transmitted by several communication links at the same time

Temporal Constraints $s_{i}+I_{i j} \leq s_{j}$ with Zero or Negative $I_{i j}$

d) $\iota_{i j}=0$

- Task T_{i} has to start earlier or at the same time as T_{j}

e) $l_{i j}<0$
- Task T_{i} has to start earlier or at most $\left|I_{i j}\right|$ later than T_{j}
- It loses the sense of "normal " precedence relation, since T_{i} does not have to precede T_{j}

- It represents the relative deadline of T_{i} related to the start-time of T_{j}

Cycles and Relative Time Windows

- Absence of a positive cycle in graph G
- it is a necessary condition for schedulability
- it is a necessary and sufficient condition for schedulability of the instance with unlimited resources capacity (the schedule is restricted only by the temporal constraints - can be computed easily by LP)
- For G we can create a complete digraph G^{\prime} where weight $l_{i j}$ is the length of the longest oriented path from T_{i} to T_{j} in G (if no oriented edge exists in G or G^{\prime}, the weight is $\left.I_{i j}=-\infty\right)$. In the following text, we think of $I_{i j}$ as an edge in complete graph G^{\prime} of the longest paths.
- $s_{j} \geq \max _{\forall i \in 1 \ldots n} l_{i j}$, - start time of T_{j} is lower bounded by the longest path from arbitrary node.
Example - relative time window
If $I_{i j} \geq 0$ and $l_{j i}<0$ exists, tasks T_{i} and T_{j} are constrained by the relative time window.
- the length of the negative cycle determines the "clearance" of the time window
- e.g. applying a catalyst to the chemical process

Project Scheduling Minimizing $C_{\text {max }}$

- PS1 |temp| $C_{\text {max }}$ - NP-hard
- Input: The number of non-preemptive tasks n and processing times [$p_{1}, p_{2}, \ldots, p_{n}$]. The temporal constraints defined by digraph G.
- Output: n-element vector s, where s_{i} is the start time of T_{i}
- We will show Time-indexed and Relative-order ILP formulations
- PSm, 1 |temp| $C_{\text {max }}$ - NP-hard
- Input: The number of non-preemptive tasks n and processing times $\left[p_{1}, p_{2}, \ldots, p_{n}\right]$. The temporal constraints defined by digraph G. The number of dedicated resources m and the assignment of the tasks to the resources $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, where a_{i} is the index of the resource on which task T_{i} will be executed.
- Output: n-element vector s, where s_{i} is the start time of T_{i}
- We show the Relative-order ILP formulation

ILP formulation of $P S 1 \mid$ temp $C_{\text {max }}$

Task can be represented in two ways:

- Time-indexed - ILP model is based on variable $x_{i t}$, which is equal to 1 iff $s_{i}=t$. Otherwise, it is equal to zero. Processing times are positive integers.
- Relative-order - ILP model is based on the relative order of tasks given by variable $x_{i j}$, which is equal to 1 iff task T_{i} precedes task T_{j}. Otherwise, it is equal to zero. The processing times are nonnegative real numbers.

Both models contain two types of constraints:

- precedence constraints
- resource constraints - prevent overlapping of tasks

Time-indexed Model for PS1|temp| $C_{\max }$

$\min C_{\text {max }}$

$\sum_{t=0}^{U B-1}\left(t \cdot x_{i t}\right)+l_{i j} \leq \sum_{t=0}^{U B-1}\left(t \cdot x_{j t}\right) \quad \forall I_{i j} \neq-\infty$ a $i \neq j$ (prec. const.)
$\sum_{i=1}^{n}\left(\sum_{k=\max \left(0, t-p_{i}+1\right)}^{t} x_{i k}\right) \leq 1 \quad \forall t \in\{0, \ldots U B-1\}$ (resource)
$\begin{array}{ll}\sum_{t=0}^{U B-1} x_{i t}=1 & \forall i \in\{1, \ldots n\} \\ \sum_{t=0}^{U B-1}\left(t \cdot x_{i t}\right)+p_{i} \leq C_{\text {max }} & \forall i \in\{1, \ldots n\}\end{array}$
variables: $x_{i t} \in\{0,1\}, C_{\max } \in\{0, \ldots U B\}$
$U B$ - upper bound of $C_{\max }$ (e.g. $U B=\sum_{i=1}^{n} \max \left\{p_{i}, \max _{i, j \in\{1, \ldots, n\}} l_{i j}\right\}$).
Start time of T_{i} is $s_{i}=\sum_{t=0}^{U B-1}\left(t \cdot x_{i t}\right)$.
Model contains $n \cdot U B+1$ variables and $|E|+U B+2 n$ constraints. Constant $|E|$ represents the number of temporal constraints (edges in G).

Time-indexed Model for PS1|temp| $C_{\max }$

$$
\mathcal{T}=\left\{T_{1}, T_{2}, T_{3}\right\}, p=[1,2,1], U B=5
$$

T_{1} is scheduled:

Resource constr. at time 2:

	0	1	2	3	4
T_{1}	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}
T_{2}	x_{20}	x_{21}	${ }_{22}$	${ }_{23}$	x_{24}
T_{3}	x_{30}	x_{31}	x_{32}	x_{33}	$x_{3,}$

Relative-order Model for PS1|temp| $C_{\max }$

Resource constraint for couple of tasks:
$p_{j} \leq s_{i}-s_{j}+U B \cdot x_{i j} \leq U B-p_{i}$
The constraint uses "big M " (here $U B$ - upper bound on $C_{\text {max }}$).
If $x_{i j}=1, T_{i}$ precedes task T_{j} and If $x_{i j}=0, T_{i}$ follows task T_{j} and the the constraint is formulated as constraint is formulated as
$s_{i}+p_{i} \leq s_{j}$. $s_{j}+p_{j} \leq s_{i}$.

Relative-order Model for PS1|temp| $C_{\text {max }}$

An example of a polytope which is determined by the resource constraint for a pair of tasks T_{i} and T_{j} with $p_{i}=2$ and $p_{j}=3$. There are no precedence constraints among the tasks and $U B=8$.

Relative-order Model for PS1|temp| $C_{\text {max }}$

$\min C_{\text {max }}$
$s_{i}+l_{i j} \leq s_{j}$
$\forall l_{i j} \neq-\infty$ a $i \neq j$
(temporal constraint)
$p_{j} \leq s_{i}-s_{j}+U B \cdot x_{i j} \leq U B-p_{i} \quad \forall i, j \in\{1, \ldots, n\}$ a $i<j$
(resource constraint)
$s_{i}+p_{i} \leq C_{\max }$
$\forall i \in\{1, \ldots, n\}$
variables: $x_{i j} \in\{0,1\}, C_{\text {max }} \in\langle 0, U B\rangle, s_{i} \in\langle 0, U B\rangle$

The model contains $n+\left(n^{2}-n\right) / 2+1$ variables and $|E|+\left(n^{2}-n\right)+n$ constraints. $|E|$ is a number of temporal constraints (edges in G).

Comparison of the Two Models

Each model is suitable for different types of tasks:
Time-indexed model:

- (+) Can be easily extended for parallel identical processors.
- (+) ILP formulation does not need many constraints.
- (-) The size of the model grows with the size of $U B$.

Relative-order model:

- (+) The size of ILP model does not depend on UB.
- (-) Requires a big number of constraints.

Feasibility Test for Heuristic Algorithms

If the partial schedule (found for example by a greedy algorithm which inserts tasks in a topological order, or the partial result during the Branch and Bound algorithm) violates some time constraints, the order of tasks does not need to be infeasible.

When the optimal order of the tasks in the schedule is known (variables $x_{i j}$ are constants), it is easy to find the start time of the tasks (for example by LP formulation involving time constraints only).

Relative-order Model for PSm, $1 \mid$ temp| $C_{\max }$

Part of the input parameters are the number of resources m and assignment of the tasks to the resources $\left[a_{1}, \ldots, a_{i}, \ldots, a_{n}\right]$, where a_{i} is index of the resource on which task T_{i} will be running.

$$
\begin{array}{ll}
\min C_{\max } & \\
s_{i}+l_{i j} \leq s_{j} & \forall l_{i j} \neq-\infty \text { and } i \neq j \\
p_{j} \leq s_{i}-s_{j}+U B \cdot x_{i j} \leq U B-p_{i} & \begin{array}{l}
\text { temporal constraints) } \\
\\
s_{i}+p_{i} \leq C_{\max }
\end{array} \\
\begin{array}{l}
\text { (independent on each resource) } \\
\\
\forall i \in\{1, \ldots, n\}
\end{array}
\end{array}
$$

variables: $x_{i j} \in\{0,1\}, C_{\max } \in\langle 0, U B\rangle, s_{i} \in\langle 0, U B\rangle$
Model consists of less than $n+\left(n^{2}-n\right) / 2+1$ variables (exact number depends on the number of tasks scheduled on each resource).

Modeling with Temporal Constraints

Using $P S 1 \mid$ temp $\mid C_{\text {max }}$ we will model:

- $1\left|r_{j}, \widetilde{d}_{j}\right| C_{\text {max }}$
- scheduling on dedicated resources $P S m, 1 \mid$ temp $\mid C_{\text {max }}$

Using $P S m, 1 \mid$ temp $\mid C_{m a x}$ we will model:

- scheduling of multiprocessor tasks - task needs more than one resource type at a given moment
- scheduling with setup times - two subsequent tasks executed on one resource need to be separated by idle waiting, for example to change the tool.

Reduction from $1\left|r_{j}, \widetilde{d}_{j}\right| C_{\text {max }}$ to $P S 1 \mid$ temp $\mid C_{\text {max }}$

This polynomial reduction proves that $P S 1 \mid$ temp $\mid C_{m a x}$ is NP-hard, since Bratley's problem is NP-hard.

Instance $1\left|r_{j}, \tilde{d}_{j}\right| C_{\max }$
$r=\left[r_{1}, r_{2}, \ldots, r_{n}\right]$
$\underset{\sim}{p}=\left[{\underset{\sim}{p}}_{1},{\underset{\sim}{2}}_{2}, \ldots,{\underset{\sim}{n}}^{\prime}\right]$
$\widetilde{d}=\left[\widetilde{d}_{1}, \widetilde{d}_{2}, \ldots, \widetilde{d}_{n}\right]$

Reduction from PSm, 1 |temp| $C_{\text {max }}$ to $P S 1 \mid$ temp $\mid C_{\text {max }}$

Reduction from $P S m, 1 \mid$ temp $\mid C_{\text {max }}$ to $P S 1 \mid$ temp $\mid C_{\text {max }}$ is based on the projection of each resource to the independent time window. In other words, the schedule of tasks on P_{j} is projected into interval $\langle(j-1) \cdot U B, j \cdot U B\rangle$

Transformation consists of two steps:

- Add dummy tasks T_{0} and T_{n+1} with $p_{0}=p_{n+1}=0$.
- Task T_{0}, processed on P_{1}, precedes all tasks $T_{i} \in \mathcal{T}$, ie. $s_{0} \leq s_{i}$.
- Task T_{n+1}, processed on P_{m}, follows all task $T_{i} \in \mathcal{T}$, tj. $s_{i}+p_{i} \leq s_{n+1}$.
- Transform the original temporal constraints to

$$
I_{i j}^{\prime}=I_{i j}+\left(a_{j}-a_{i}\right) \cdot U B .
$$

Reduction from $P S m, 1 \mid$ temp $\mid C_{\text {max }}$ to $P S 1 \mid$ temp $\mid C_{\text {max }}$

The new start time s_{i}^{\prime} of each task on processor a_{i} is:
$s_{i}^{\prime}=s_{i}+\left(a_{i}-1\right) \cdot U B$.
Temporal constraints $s_{i}+l_{i j} \leq s_{j}$ are transformed to:

$$
\begin{gathered}
s_{i}^{\prime}-\left(a_{i}-1\right) \cdot U B+l_{i j} \leq s_{j}^{\prime}-\left(a_{j}-1\right) \cdot U B \\
s_{i}^{\prime}+l_{i j}+\left(a_{j}-a_{i}\right) \cdot U B \leq s_{j}^{\prime}
\end{gathered}
$$

The transformed temporal constraint will look like $s_{i}^{\prime}+l_{i j}^{\prime} \leq s_{j}^{\prime}$, where:

$$
l_{i j}^{\prime}=l_{i j}+\left(a_{j}-a_{i}\right) \cdot U B
$$

Reduction from $P S m, 1 \mid$ temp $\mid C_{\text {max }}$ to $P S 1 \mid$ temp $\mid C_{\text {max }}$

two dedicated resources
one resource
While minimizing the completion time of T_{n+1}, we push tasks T_{1}, T_{2} and T_{3} "to the left" due to the edges entering T_{n+1}

Multiprocessors Tasks

Transformation of multiprocessor tasks to $P S m, 1 \mid$ temp $\mid C_{\text {max }}$

- create as many virtual tasks as there are processors needed to execute the physical tasks
- ensure that the virtual tasks of the given physical task start at the same time - this is done by two edges with weight $l_{i j}=l_{j i}=0$. Consequently $s_{i} \leq s_{j}$ and $s_{j} \leq s_{i}$.

Example: Task T_{i} needs resources $\left[P_{1}, P_{2}, P_{3}\right]$.

Changeover Time (i.e. Sequence Dependent Set-up Time)

The set-up time $o_{i j}$ is a time needed to separate task T_{i} from T_{j}. It is used for example to change the tool in the machine. Since the order of tasks is unknown in advance, we can not determine which set-up time will be used.

Reduction of the scheduling problem with the set-up time to PSm, 1 |temp| $C_{\text {max }}$

- for each pair of set-up constrained tasks add the virtual resource and a pair of extended virtual tasks
- ensure that the virtual task and the physical task start at the same time

Changeover Time (i.e. Sequence Dependent Set-up Time)

For each pair of tasks such that the set up time $o_{i j}>0$ or $o_{j i}>0$, the virtual resource $P_{i j}$ and the corresponding virtual tasks T_{i}^{\prime} and T_{j}^{\prime} are added.

- Task T_{i}^{\prime} has $p_{i}^{\prime}=p_{i}+o_{i j}$ and task T_{j}^{\prime} has $p_{j}^{\prime}=p_{j}+o_{j i}$.
- Both tasks run on one virtual resource $P_{i j}$.
- Task $T_{i}^{\prime}\left(\right.$ resp. $\left.T_{j}^{\prime}\right)$ is synchronized with the original task by:

$$
s_{i} \leq s_{i}^{\prime} \quad s_{i}^{\prime} \leq s_{i} \quad \text { resp. } \quad s_{j} \leq s_{j}^{\prime} \quad s_{j}^{\prime} \leq s_{j}
$$

References

© J. Błażewicz, K. Ecker, G. Schmidt, and J. Wẹglarz. Scheduling Computer and Manufacturing Processes. Springer, second edition, 2001.

围 Klaus Neumann, Christoph Schwindt, and Jürgen Zimmermann. Project Scheduling with Time Windows and Scarce Resources. Springer, 2003.

嗇 Sigrid Knust Peter Brucker.
Complexity results for scheduling problems. http://www.ict.kth.se/courses/ID2204/index.html.

\section*{O P P
 | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

