
Combinatorial Optimization

Zdeněk Hanzálek
hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

May 3, 2013

European Social Fund Prague & EU: We invests in your future.

Z. Hanzálek (CTU FEE) Combinatorial Optimization May 3, 2013 1 / 1



Knapsack Problem

Zdeněk Hanzálek
hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

April 9, 2013

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 1 / 15



Table of contents

1 Problem formulation
Knapsack Problem
Fractional Knapsack Problem

2 Solutions and Algorithms
Simple Solution to Fractional Knapsack Problem
2-Approximation Algorithm
Dynamic programming
Approximation Scheme for Knapsack

3 Summary

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 2 / 15



Problem Formulation

Knapsack problem

Instance: Nonnegative integers n, c1, . . . , cn,w1, . . . ,wn,W , where n

represents the number of items, c1, . . . , cn represents the cost of each
item, w1, . . . ,wn represents the weight of each item and W is the
maximum weight to be carried in the knapsack.

Goal: Find a subset S ⊆ {1, . . . , n} such that
∑

j∈S wj ≤ W and
∑

j∈S cj is the maximum.

It is one of the ”easiest” NP-hard problems.

Sometimes it is called 0/1 Knapsack problem.

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 3 / 15



Fractional Knapsack Problem

While relaxing on the indivisibility of each item, we formulate a new
problem:

Fractional Knapsack problem

Instance: Nonnegative integers n, c1, . . . , cn,w1, . . . ,wn,W , where n

represents the number of items, c1, . . . , cn represents the cost of each
item, w1, . . . ,wn represents the weight of each item and W is the
maximum weight to be carried in the knapsack.

Goal: Find the rational numbers x1, . . . , xj , . . . , xn such that
0 ≤ xj ≤ 1 and

∑n
j=1 xj · wj ≤ W and

∑n
j=1 xj · cj is the maximum.

Since the items can be divided (continuous variable xj), we can solve
this problem in polynomial time.

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 4 / 15



Solution of Fractional Knapsack Problem - Dantzing [1957]

if
∑n

j=1 wj > W (otherwise it has a trivial solution)

order and re-index the items by their relative cost:
c1
w1

≥ c2
w2

≥ . . . ≥ cn
wn

in the ordered sequence find the first item which does not fit in the

knapsack (h := min
{

j ∈ {1, . . . , n} :
∑j

i=1wi > W
}

)

in order to find the optimal solution, we cut off a part of h-th item, so
that this part fits in the knapsack:

xj := 1 for j = 1, . . . , h − 1

xh :=
W−

∑h−1
i=1 wi

wh

xj := 0 for j = h + 1, . . . , n

sorting of the items takes O(nlogn), computing h can be done in
O(n) by simple linear scanning, so this algorithm solves the
Fractional Knapsack problem in O(nlogn)

there is an even faster algorithm ([1] page 440) which can solve this
problem in O(n) by reduction to the Weighted Median problem

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 5 / 15



2-Approximation Algorithm for Knapsack

r-approximation algorithm for maximization

Algorithm A for objective function J maximization is called
r-approximation if there exists a number r ≥ 1 such that JA(I ) ≥ 1

r
J∗(I )

for all instances I of this problem.

Theorem

Let n, c1, . . . , cn,w1, . . . ,wn,W , h are nonnegative integers that satisfy:

wj ≤ W pro j = 1, . . . , n
∑n

i=1 wi > W
c1
w1

≥ c2
w2

≥ . . . ≥ cn
wn

h = min
{

j ∈ {1, . . . , n} :
∑j

i=1 wi > W
}

Then choosing the better of the two solutions {1, . . . , h − 1} or {h} is
2-approximation algorithm for the Knapsack problem with the time
complexity O(n).

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 6 / 15



2-Approximation Algorithm for Knapsack

Proof:

Given any instance of the Knapsack problem, we can omit all items
whose weight is bigger than the knapsack maximum load.

If
∑n

i=1 wi ≤ W then the whole set of items is an optimal solution.

Since
∑h

i=1 ci is an upper bound on the optimum value, the better of
two solutions {1, . . . , h − 1} and {h} achieves at least half of the
optimum value.

Note about approximation algorithms:

An approximation algorithm guarantees, that even in the worst case,
the value of the objective function will be proportional to the
optimum value. The frequency of the worst case is not considered by
the approximation algorithm.

ǫ, the relative deviation from the optimum, is sometimes used instead
of the asymptotic performance ratio r , so that r = 1 + ǫ.

In this case, it is meaningless to state the absolute error. Why?

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 7 / 15



Dynamic Programming (Integer Costs) for Knapsack

Input: Costs c1, . . . , cn ∈ Z
+
0 , weights w1, . . . ,wn,W ∈ R

+
0 .

Output: S ⊆ {1, . . . , n};
∑

j∈S wj ≤ W and
∑

j∈S cj is maximum.

Let C be the arbitrary upper bound of the solution, e.g. C =
∑n

j=1 cj ;

x00 := 0; x0k := ∞ for k = 1, . . . ,C ;
for j := 1 to n do

for k := 0 to C do s
j
k := 0; x jk := x

j−1
k ;

for k := cj to C do

if x
j−1
k−cj

+ wj ≤ min{W , x j−1
k } then

s
j
k := 1; x jk := x

j−1
k−cj

+ wj ;

end

end

end

i := max{k ∈ {0, . . . ,C} : xnk < ∞}; S := ⊘;
for j := n downto 1 do

if s
j
i = 1 then S := S ∪ {j}; i := i − cj ;

end
Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 8 / 15



Dynamic Programming (Integer Costs) for Knapsack

Pseudopolynomial algorithm with time complexity O(nC ).

Variable x
j
k represents the minimum weight with cost k which can

be achieved as a selection of items from set {1, . . . , j}

(*) Item j is added to the selection of items from 1, . . . , j if for the
given price k this set reaches the lower or equal weight as set

1, . . . , j − 1.
The algorithm computes these values using the recursion formula:

x
j
k =











x
j−1
k−cj

+ wj if item j was added;

x
j−1
k if item j wasn’t added.

In variable s
j
k we memorize which of the two possible cases has

happened. It is later used to reconstruct the selection.

Blackboard example (integer costs):
n = 4,w = (21, 35, 52, 17), c = (10, 20, 30, 10),W = 100

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 9 / 15



Dynamic programming for Knapsack

Dynamic programming overview

Pseudopolynomial Algorithm

State space (may be represented by a graph) is constructed due to
integer weights or costs of items.

Optimal solution may be constructed by the recursion.

State space is not the tree, it contains diamonds, places in the state
space where we keep only the better of two possible solutions - refer
to item (*) - prevents exponential growth of the state space size

If the weights are integers, we can solve the problem by dynamic
programming while selecting the solution having the higher cost for given
weight (*).

Blackboard example with integer costs and integer weights (see example in
SPT).

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 10 / 15



Complexity Reduction by Rounding Data

The time complexity of the dynamic programming algorithm for knapsack
depends on C .

Idea

Divide all costs c1, . . . , cn by 2 and round them down.

The algorithm becomes faster, but we can obtain a suboptimal solution.
This allows us to find a tradeoff between the speed and desired optimality.
By

c̄j :=
⌊cj

t

⌋

for j = 1, . . . , n

the time complexity of the Dynamic programming algorithm for Knapsack
is reduced t-times.

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 11 / 15



Approximation Scheme for Knapsack

Input: Nonnegative integer numbers n, c1, . . . , cn,w1, . . . ,wn,W . Number
ǫ > 0.

Output: Subset S ⊆ {1, . . . , n} such that
∑

j∈S wj ≤ W and
∑

j∈S cj ≥
1

1+ǫ

∑

j∈U cj for all U ⊆ {1, . . . , n} satisfying
∑

j∈U wj ≤ W .
1 run 2-approximation algorithm for Knapsack;

label the solution as S1 with cost c(S1) =
∑

j∈S1
cj ;

2 t := max{1, ǫc(S1)
n

};
c ′j :=

⌊ cj
t

⌋

for j = 1, . . . , n;

3 Run the Dynamic programming algorithm for Knapsack with
instance (n, c ′1, . . . , c

′

n,w1, . . . ,wn,W ) using the upper bound

C := 2c(S1)
t

;
label the solution as S2 with cost c(S2) =

∑

j∈S2
cj ;

4 if c(S1) > c(S2) then S := S1 else S := S2

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 12 / 15



Approximation Scheme for Knapsack

Knapsack is one of a few problems whose approximation algorithm
can have an arbitrary small ǫ, i.e. relative deviation form the
optimum.

The choice of t := ǫc(S1)
n

leads to (1 + ǫ)-approximation algorithm, but
we do not show the proof of this statement.
If ǫ is to small, i.e. ǫ ≤ n

c(S1)
, then t = 1, i.e. we find optimal solution

while using the Dynamic programming algorithm for Knapsack with
the upper bound from the 2-approximation algorithm for Knapsack.

Time complexity is O(nC ) = O(n c(S1)
t

) = O(n c(S1)n
ǫc(S1)

) = O(n2 · 1
ǫ
).

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 13 / 15



Knapsack - Summary

One of the “easiest” NP-hard problems

Basic problem for many other optimization problems (bin packing,
container loading, 1-D, 2-D, 3-D cutting problem)

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 14 / 15



References

B. H. Korte and Jens Vygen.
Combinatorial Optimization: Theory and Algorithms.
Springer, fourth edition, 2008.

Z. Hanzálek (CTU FEE) Knapsack Problem April 9, 2013 15 / 15


	prvni
	knapsack_e
	Problem formulation
	Knapsack Problem
	Fractional Knapsack Problem

	Solutions and Algorithms
	Simple Solution to Fractional Knapsack Problem
	2-Approximation Algorithm
	Dynamic programming
	Approximation Scheme for Knapsack

	Summary


