
Combinatorial Optimization

Zdeněk Hanzálek
hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

May 3, 2013

European Social Fund Prague & EU: We invests in your future.

Z. Hanzálek (CTU FEE) Combinatorial Optimization May 3, 2013 1 / 1

Network Flows

Zdeněk Hanzálek, Přemysl Šůcha
hanzalek@fel.cvut.cz

CTU FEE Department of control engineering

April 2, 2013

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 1 / 42

Table of contents

1 Flows
Maximum Flow Problem

Ford-Fulkerson Algorithm

Minimum Cut Problem

Integrality

Feasible Flow as a Decision Problem
Initial feasible flow for Ford-Fulkerson algorithm

Minimum Cost Flow

2 Matching
Maximum Cardinality Matching in Bipartite Graphs
Assignment Problem - minimum weight perfect matching in complete bipa

Hungarian Algorithm

3 Multicommodity Flow Problem
Minimum Cost Multicommodity Flow Problem

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 2 / 42

Network and Network Flow

What is Network?

By network we mean a 5-tuple (G , l , u, s, t), where G denotes the oriented
graph, u : E (G) → R

+
0 and l : E (G) → R

+
0 denote the maximum and

minimum capacity of the arcs and finally s represents the source node
while t represents the sink node.

Network Flow

f : E (G) → R
+
0 is the flow if Kirchhoff law

∑
e∈δ−(v) f (e) =∑

e∈δ+(v) f (e) is valid for every node except s and t.

δ+(v) is a set of arcs leaving node v

δ−(v) is a set of arcs entering node v

Feasible Flow

Feasible flow must satisfy f (e) ∈ 〈l(e), u(e)〉.
There might be no feasible flow when l(e) > 0.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 3 / 42

Maximum Flow Problem

Maximum flow

Given a network (G , l , u, s, t). The goal is to find the feasible flow f from
the source to the sink that maximizes

∑
e∈δ+(s) f (e) −

∑
e∈δ−(s) f (e)

(i.e. to send the maximum volume of the flow from s to t).

δ+(s) is a set of arcs leaving node s

δ−(s) is a set of arcs entering node s (often we do not consider these arcs).

Example - Transportation problem: We wish to transport the maximum
amount of goods from s to t. The problem is described by the network
where the arc represents the route (pipeline, railway, motorway, etc). The
flows on the arcs are assumed to be steady and lossless.
Example constraints:

ui = 10 - arc i is capable of transporting 10 units maximum

lj = 3 - arc j must transport at least 3 units

lk = uk = 20 - arc k transports exactly 20 units

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 4 / 42

Example Flow.scheduling: Multiprocessor Scheduling

Problem with Preemption, Release Date and Deadline

Consider a P

∣∣∣pmtn, rj , d̃j

∣∣∣Cmax problem - we have n tasks which we want

to assign to R identical resources (processors). Each task has its own
processing time pj , release date rj and deadline d̃j . Preemption is
allowed (including migration from one resource to another).

Example for 3 parallel identical resources:

task T1 T2 T3 T4

pj 1.5 1.25 2.1 3.6
rj 3 1 3 5

d̃j 5 4 7 9

Goal

Assign all tasks to processors so that every processor will execute no
more than one task at a moment and no task will be executed
simultaneously on more than one processor.

This can be solved as a Maximum flow problem.Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 5 / 42

Example Flow.scheduling: Multiprocessor Scheduling

Problem with Preemption, Release Date and Deadline

3 parallel identical resources
Tj 1 2 3 4

pj 1.5 1.25 2.1 3.6
rj 3 1 3 5

d̃j 5 4 7 9

1) Nodes I1,3, I3,4, I4,5, I5,7 a I7,9 represent
time interval in which the tasks can be
executed (intervals are given by r and d̃).
E.g. I1,3 represents time interval 〈1, 3).
2) The upper bound for the (Tj , Ix ,y) arc is
the length of the time interval (i.e. y − x),
since the tasks are internally sequential.
3) The upper bound for (Ix ,y , t) is the length
of the interval multiplied by the number of
resources.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 6 / 42

Example Flow.dynamic: Dynamic Flow [Dem02]

Dynamic flow is changing its volume in time. We will show, how to
formulate this problem while introducing discrete time and using (static)
flow.

For example: let us consider cities a1, a2, . . . , an with q1, q2, . . . , qn cars
that should be transported to city an in K hours. When the cities ai , aj are
connected directly, the duration of driving is denoted by dij and the
capacity of the road in number of cars per hour is denoted by uij . Finally,
pi represents capacity of parking area in city ai . The objective is to
manage transport of all cars so that the maximum number of them
reaches city an in K hours.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 7 / 42

Maximum Flow Problem Formulated as LP

Variable f (e) ∈ R
+
0 represents flow through arc e ∈ E (G).

max
∑

e∈δ+(s) f (e)−
∑

e∈δ−(s) f (e)

s.t.
∑

e∈δ−(v) f (e) =
∑

e∈δ+(v) f (e) v ∈ V (G) \ {s, t}

l(e) ≤ f (e) ≤ u(e) e ∈ E (G)

Note that the following equation is valid for any set A containing source s

but not containing sink t :∑
e∈δ+(s) f (e)−

∑
e∈δ−(s) f (e) =

∑
e∈δ+(A) f (e) −

∑
e∈δ−(A) f (e).

Homework: Prove it while using Kirchhoff’s law.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 8 / 42

Ford-Fulkerson Algorithm

Pioneers in the field of networks and network flows are L. R. Ford, Jr. and
D. R. Fulkerson (in the picture). In 1956, they published a widely known
algorithm for the maximum flow problem, the Ford-Fulkerson
Algorithm.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 9 / 42

Ford-Fulkerson Algorithm

The algorithm is based on incremental augmentation of the flow while
maintaining its feasibility.

Forward arc and backward arc

An arc is called a forward arc if it is orientated in the same direction as the
path from the source to the sink and a backward arc otherwise.

Augmenting path

An augmenting path for flow f is an undirected path from source s to
sink t with:

f (e) < u(e) if e is a forward arc ... the flow can be increased

f (e) > l(e) if e is a backward arc... the flow can be decreased

Capacity of an augmenting path

Capacity γ of the augmenting path is the biggest possible increase of the
flow on the augmenting path.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 10 / 42

Ford-Fulkerson Algorithm

Input: Network (G , l , u, s, t).
Output: Maximum feasible flow f from s to t.

1 Find the feasible flow f (e) for all e ∈ E (G).

2 Find an augmenting path P . If none exists then stop.

3 Compute γ, the capacity of an augmenting path P . Augment the
flow from s to t and go to 2.

Increase flow by γ on forward arcs and decrease flow by γ on backward
arcs. This preserves feasibility of the flow and Kirchhof’s law moreover the
flow is augmented by γ.
This augmenting path can’t be used again since the flow along this path is
the highest possible.

The flow from s to t is the maximum if and only if there is no
augmenting path.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 11 / 42

Finding the Augmenting Path (Labeling Procedure) for

Ford-Fulkerson Algorithm

Input: Network (G , l , u, s, t), feasible flow f .
Output: Augmenting path P .

1 Label mv = FALSE ∀v ∈ V (G), ms = TRUE (mark node s)

2 If there exists e ∈ E (G) (where e is the edge from vi to vj) that
satisfies mi = TRUE , mj = FALSE and f (e) < u(e) then
mj = TRUE .

3 If there exists e ∈ E (G) (where e is the edge from vi to vj) that
satisfies mi = FALSE , mj = TRUE and f (e) > l(e) then
mi = TRUE .

4 If t is reached, then the search stops as we have found the
augmenting path P . If it is not possible to mark another node, then
P does not exists. In other cases go to 2 or 3 .

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 12 / 42

Ford-Fulkerson Algorithm

Zero Lower Bounds Example

arcs are labeled by f (e), u(e)

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 13 / 42

Ford-Fulkerson Algorithm

Zero Lower Bounds Example

arcs are labeled by f (e), u(e)

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 13 / 42

Ford-Fulkerson Algorithm

Zero Lower Bounds Example

arcs are labeled by f (e), u(e)

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 13 / 42

Ford-Fulkerson Algorithm

Zero Lower Bounds Example

arcs are labeled by f (e), u(e)

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 13 / 42

Ford-Fulkerson Algorithm

Zero Lower Bounds Example

arcs are labeled by f (e), u(e)

1

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 13 / 42

Ford-Fulkerson Algorithm

Zero Lower Bounds Example

arcs are labeled by f (e), u(e)

1

set A={s, u, v} determines the minimum capacity cut

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 13 / 42

Ford-Fulkerson Algorithm

Non-zero Lower Bounds Example

This example illustrates that we can’t omit the backward edges when
creating an augmenting path. Otherwise we can not obtain the maximum
flow (right) from the initial flow (left).
The arcs are labeled by: l(e), f (e), u(e).

Capacity of augmenting path
is equal to 2.

Final flow is the maximal one.
Find a minimum capacity cut.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 14 / 42

Minimum Cut Problem

Cut

The cut in G is an edge set δ(A) with s ∈ A and t ∈ V (G) \ A (i.e. the
cut separates nodes s and t). The minimum cut is the cut of minimum
capacity C (A) =

∑
e∈δ+(A) u(e)−

∑
e∈δ−(A) l(e).

Ford and Fulkerson [1956]

The value of the maximum flow from s to t is equal to the capacity of the
minimum cut. This property follows from LP duality.

When the labeling procedure stops, since there is no augmenting path, the
minimum cut is given by the labeled vertices (the minimum cut is equal to
the set of edges that do not allow further labeling). Therefore, f (e) = u(e)
holds for all e ∈ δ+(A) and f (e) = l(e) holds for all e ∈ δ−(A).

The value of the max. flow is equal to the capacity of the minimum cut:∑
e∈δ+(A) f (e)−

∑
e∈δ−(A) f (e) =

∑
e∈δ+(A) u(e) −

∑
e∈δ−(A) l(e).

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 15 / 42

Integrality

Integral Flow Theorem (Dantzig and Fulkerson [1956])

If the capacities of the network are integers, then an integer-valued
maximum flow exists.

This follows from total unimodularity of the incidence matrix of a digraph
G , which is matrix A in LP formulation A · x ≤ b.

Alternatively we can prove it as follows:
If all capacities are integers, γ in 3) of the Ford-Fulkerson algorithm is
always an integer. Since there is a maximum flow of finite value, the
algorithm terminates after a finite number of steps.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 16 / 42

Ford-Fulkerson Algorithm - Time Complexity

When we choose the augmenting path inappropriately, we can augment
the flow only by unit steps. For non-integer capacities and non-integer
flow the algorithm might not terminate at all.

Edmonds and Karp [1972])

When choosing the augmenting path, if we always choose the shortest
one, time complexity is O

(
m2 · n

)
.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 17 / 42

Example Flow.lower.representatives:

Distinct Representatives - Existence of Lower Bound
[AMO93]

Assignment problem with additional constraint.
Let us have n residents of town, each of them is a member of at least one
club k1, . . . , kl and belongs to exactly one age group p1, . . . , pr . Each club
must nominate one of its members to the town’s governing council so that
the number of council members belonging to the age group is constrained
by its minimum and maximum.
The objective is to find the maximum number of representatives or prove
that it does not exist. Formulate as the Maximum Flow Problem.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 18 / 42

Example Flow.lower.rounding:

Matrix Rounding Problem - Existence of Lower Bound
[AMO93]

This application is concerned with consistent rounding of the elements,
row sums, and column sums of a matrix. We are given a p × q matrix of
real numbers with row sums vector and column sums vector. We can
round any real number a to the next smaller integer or to the next larger
integer, and the decision is completely up to us. The problem requires that
we round all matrix elements and the following constraints hold:

the sum of the rounded elements in each row is equal to the rounded
row sum
the sum of the rounded elements in each column is equal to the
rounded column sum

We refer to such rounding as a consistent rounding.
The objective is to maximize the sum of matrix entries (due to the
constraint it is equal to the sum of the row sums and at the same time to
the sum of the column sums).

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 19 / 42

Feasible Flow as a Decision Problem

We assume several sources and several sinks. We do not assume lower
bounds.
Can be polynomially reduced to the Maximum flow problem (with one
source and one sink).

Feasible flow in the network

Instance: Let (G , u, b) be a network where G is a digraph with upper
bounds u : E (G) → R

+
0 and with:

balance b : V (G) → R that represents the supply/consumption of the
nodes and satisfies

∑
v∈V (G) b(v) = 0.

Goal: Decide if there exists a feasible flow f which satisfies∑
e∈δ+(v) f (e) −

∑
e∈δ−(v) f (e) = b(v) for all v ∈ G (V).

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 20 / 42

Example - Transport Problem

There are suppliers (represented by nodes with b(v) > 0) and consumers
(represented by nodes with b(v) < 0) of a product. Our goal is to decide
whether it is possible to transport all the product from the suppliers to the
consumers through the network with upper bounds u. The problem is
described by a network (or graph) where the edges represent pipelines,
highways or railways of some transportation capacity.

Goal

The goal is to decide whether it is possible to transport
all the product from suppliers A to consumers B
through the network with capacities u.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 21 / 42

Feasible Flow as a Decision Problem

We transform this problem to the maximum flow problem with zero
lower bounds:

1 We add a new node s called the source and add edges (s, v) with the
upper bound uv = b(v) for every node that satisfies b(v) > 0

2 We add a new node t called the sink and add edges (v , t) with the
upper bound uv = −b(v) for every node that satisfies b(v) < 0

3 We solve the maximum flow problem for the lower bounds equal to
zero (we start with the initial feasible flow equal to zero).

4 If the maximum flow saturates all edges leaving s and/or entering t,
then the answer to the feasible flow decision problem is YES.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 22 / 42

How to find an initial feasible flow for Ford-Fulkerson

algorithm?

If ∀e ∈ E (G); l(e) = 0 - easy solution - we use zero flow which satisfies
Kirchhoff’s law.
If ∃e ∈ E (G); l(e) > 0, we transform the feasible flow problem to the
feasible flow decision problem as follows:

1 We transform the maximum flow problem (with non-zero lower
bounds) to a circulation problem by adding an arc from t to s of
infinite capacity. Now we can apply Kirchhoff’s law to all nodes
including s and t.

2 Therefore, we look for a feasible circulation which must satisfy:
∑

e∈δ+(v) f (e) −
∑

e∈δ−(v) f (e) = 0 v ∈ V (G)

l(e) ≤ f (e) ≤ u(e) e ∈ E (G)

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 23 / 42

How to find an initial feasible flow for Ford-Fulkerson

algorithm?

3 Substituting f (e) = f (e)′ + l(e), we obtain the transformed problem:
∑

e∈δ+(v) f (e)
′ −

∑
e∈δ−(v) f (e)

′ = b(v) v ∈ V (G)

0 ≤ f (e)′ ≤ u(e)− l(e) e ∈ E (G)
where b(v) =

∑
e∈δ−(v) l(e)−

∑
e∈δ+(v) l(e) v ∈ V (G)

4 This is a feasible flow decision problem because
∑

v∈V (G) b(v) = 0
(notice that l(e) appears twice in summation, once with a positive
and once with a negative sign).

5 While solving this decision problem (i.e. adding s ′, t ′ and solving the
maximum flow problem with zero lower bounds) we obtain the initial
feasible circulation/flow or decide that it does not exist.

Conclusion: the problem of finding the initial flow with nonzero lower
bounds can be transformed to the feasible flow decision problem which
can be further transformed to the maximum flow problem with zero
lower bounds.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 24 / 42

Minimum Cost Flow

Extension of the Maximum flow problem - we consider the edge costs and
the supply/consumption of the nodes.

Minimum cost flow

Instance: 5-tuple (G , l , u, c , b) where G is a digraph, u : E (G) → R
+
0

represents the upper and l : E (G) → R
+
0 the lower bounds and:

cost of arcs c : E (G) → R

balance b : V (G) → R that represents the supply/consumption of the
nodes and satisfies

∑
v∈V (G) b(v) = 0.

Goal: Find the feasible flow f that minimizes
∑

e∈E(G) f (e) · c(e) (we
want to transport the flow through the network at the lowest possible
cost) and satisfies

∑
e∈δ+(v) f (e)−

∑
e∈δ−(v) f (e) = b(v) for all

v ∈ G (V), or decide that it does not exist.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 25 / 42

Minimum Cost Flow - LP Formulation

Variable f (e) ∈ R
+
0 represents the flow on edge e ∈ E (G).

min
∑

e∈E(G) c(e) · f (e)

s.t.
∑

e∈δ+(v) f (e)−
∑

e∈δ−(v) f (e) = b(v) v ∈ V (G)

l(e) ≤ f (e) ≤ u(e) e ∈ E (G)

The maximum flow problem can be transformed to the minimum cost flow
problem:

Add an edge from t to s with the upper bound equal to ∞ and the
cost -1.

Set the cost of every other edge to 0.

Set b(v) = 0 for all nodes including s and t.

Minimum cost circulation (it will be negative) maximizes the flow on
the added edge.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 26 / 42

Example Flow.cut.blocking:

Blocking of Communication[AMO93]

A commander is located at one node p in a communication network G and
his soldiers are located at nodes denoted by the set S . Let cij be the effort
required to eliminate undirected arc i , j from the network. The problem is
to determine the minimal effort required to block all communications
between the commander and his subordinates. How can you solve this
problem in polynomial time?

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 27 / 42

Matching - Introduction

Matching is the set of arcs P ⊆ E (G) in graph G , such that the endpoints
are all different (no arcs from P are incident with the same node).
When all nodes of G are incident with some arc in P , we call P a perfect
matching.
Problems:

a) Maximum Cardinality Matching Problem - we are looking for
matching with the maximum number of edges.

b) Maximum Cardinality Matching in Bipartite Graphs - special
case of problem a.

c) Minimum Weight Matching in a weighted graph - the cheapest
matching from the set of all Maximum Cardinality Matchings.

d) Minimum Weight Perfect Matching in a complete bipartite graph
whose parts have the same number of nodes. This problem is also called
an Assignment Problem and it is a special case of problem c) and also a
special case of the minimum cost flow problem.
These problems can be solved in polynomial time.
We will present some algorithms for bipartite graphs only.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 28 / 42

b) Maximum Cardinality Matching in Bipartite Graphs -

Solution by Maximum Flow

Can be transformed to the maximum flow problem:

Add source s and edge (s, i) for all i ∈ X

Add sink t and edge (j , t) for all j ∈ Y

Edge orientation should be from s to X , from X to Y and from Y to
t

The upper bound of all edges is equal to 1 and the lower bound is
equal to 0

By solving the maximum flow from s to t we obtain maximum
cardinality matching

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 29 / 42

b) Maximum Cardinality Matching in Bipartite Graphs -

Solution Using M-alternating Path

Definition: Let G be a graph (bipartite or not), and let M be some
matching in G . A path P is an M-alternating path if E (P) \M is a
matching. An M-alternating path is M-augmenting if its endpoints are
not covered by M.
Theorem: Let G be a graph (bipartite or not) with some matching M.
Then M is maximum if and only if there is no M-augmenting path.

Algorithm:

Find the arbitrary matching.

Find the M-alternating path
with uncovered endpoints.
Exchange (i.e. augment) the
matching along the alternating
path. Repeat as long as such a
path does exist.
Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 30 / 42

d) Assignment Problem - Example

We have n employees and n tasks and we know the cost of execution for
each possible employee-task pair.

Goal

Assign one task per employee while minimizing the total cost.

edges labeled by: u(e)
cost of execution of task
1,2,3 by employee A,B,C

A B C

1 6 2 4
2 3 1 3
3 5 3 4

We can solve this problem as a minimum cost flow problem (on the
picture) or as an assignment problem.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 31 / 42

Solution of Assignment Problem (i.e. Minimum Weight

Perfect Matching in Complete Bipartite Graph whose Sets
Have the Same Cardinality)

Description:

G - Complete undirected bipartite graph containing sets X , Y which
satisfy |X | = |Y | = n.

Edge costs are arranged in the matrix, where element cij ∈ R
+
0

represents the cost of edge (i , j) ∈ X × Y .

The basic ideas of the Hungarian algorithm:

Assign an arbitrary real number p(v), to every vertex v ∈ V (G).
These numbers are used to transform the costs cpij = cij − pxi − p

y
j .

For every perfect matching, this transformation changes the total
cost by the same value (every node participates only once). Thanks
to this, the cheapest perfect matching is still given by the same set
of edges.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 32 / 42

Solution of Assignment Problem - Hungarian Algorithm

Definition: We call numbers assigned to nodes p a feasible rating if all
transformed costs are nonnegative, i.e. cpij ≥ 0.

Definition: When p is the feasible rating, we call G p an equality graph if
it is a factor of graph G which contains only edges with zero cost.

Theorem

P is the optimal solution to the assignment problem if the equality graph
G p contains perfect matching.

Idea of the proof: The cost of matching P in G p is equal to zero. There is
no cheaper matching, since it is the feasible rating, where c

p
ij ≥ 0.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 33 / 42

Hungarian Algorithm

Input: Undirected complete bipartite graph G and costs c : E (G) → R
+
0 .

Output: Perfect matching P ⊆ E (G) whose cost
∑

(i ,j)∈P cij is minimal.
1 For all i ∈ X compute pxi := minj∈Y {cij}

and for all j ∈ Y compute p
y
j := mini∈X {cij − pxi }

2 Construct the equality graph G p;

E (G p) =
{
(i , j) ∈ E (G); cij − pxi − p

y
j = 0

}

3 Find the maximum cardinality matching P in G p.
If P is perfect matching, the computation ends.

4 If P is not perfect, find set A ⊆ X and set B ⊆ Y incident to A in
G p satisfying |A| > |B |. Compute

d = mini∈A,j∈Y \B

{
cij − pxi − p

y
j

}

and change the rating of the nodes as follows:
pxi := pxi + d for all i ∈ A

p
y
j := p

y
j − d for all j ∈ B

Go to 2. Time complexity is O(n4).
Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 34 / 42

Hungarian algorithm - example

Cost matrix (It is neither an adjacency nor an incidence matrix):

5 3 7 4 5 4
10 11 10 7 8 3
18 7 6 6 6 2
6 12 2 1 9 8
8 4 4 4 1 1
4 8 1 3 7 4

1 First from each row subtract off the row minimum - we obtain the
rating for nodes in X .
Now subtract the lowest element of each column from that column -
we obtain the rating for nodes in Y .

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 35 / 42

Hungarian Algorithm - Example

2 Create the transformed cost matrix and note pxi for every row and p
y
j

for every column. Construct the equality graph G p.

3 Find the maximum cardinality matching in bipartite graph G p (i.e.
solve the problem b)).

pxi
0 0 4 1 2 1 3
5 8 7 4 5 0 3
14 5 4 4 4 0 2
3 11 1 0 8 7 1
5 3 3 3 0 0 1
1 7 0 2 6 3 1

p
y
j 2 0 0 0 0 0

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 36 / 42

Hungarian algorithm - example

4 Since the matching is not perfect yet:
- find (blue) set A and (green) set B (start the labeling procedure
from the uncovered node in X)
- from the blue elements of the matrix find the minimum d = 4

pxi
0 0 4 1 2 1 3
5 8 7 4 5 0 3

14 5 4 4 4 0 2
3 11 1 0 8 7 1
5 3 3 3 0 0 1
1 7 0 2 6 3 1

p
y
j 2 0 0 0 0 0

- add d to pxi , subtract d from p
y
j and recalculate the cost matrix

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 37 / 42

Hungarian Algorithm - Example

2 Several zeros appeared
in the matrix and several
edges appeared in G p.
On the contrary, edge
(5,6) disappeared.

3 The cardinality of the
matching cannot be
increased now.

4 Find sets A (blue) and B

(green). Minimum
d = 1.

2 Now, perfect matching
does exist in graph G p.
The cost is equal to 18
(sum of the ratings).

pxi
0 0 4 1 2 5 3
1 4 3 0 1 0 7

10 1 0 0 0 0 6
3 11 1 0 8 11 1
5 3 3 3 0 4 1
1 7 0 2 6 7 1

p
y
j 2 0 0 0 0 -4

pxi
0 0 5 2 3 6 3
0 3 3 0 1 0 8
9 0 0 0 0 0 7
2 10 1 0 8 11 2
4 2 3 3 0 4 2
0 6 0 2 6 7 2

p
y
j 2 0 -1 -1 -1 -5

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 38 / 42

Multicommodity Flow Problem

So far, we have assumed to be transporting just one commodity.
Let M be the commodity set transported through the network.
Every commodity has several sources and several sinks.
Variable f m(e) ∈ R

+
0 is the flow of commodity m ∈ M along edge

e ∈ E (G).

Example: sensor network with two commodities and one sink for every
commodity:

source nodes are measuring
temperature(green) and/or
humidity(blue) and sending the data
to one concentrator (sink) for
temperature and one for humidity

flow (amount of data per time unit)

Communication links:

capacity (amount of data per time unit)

cost (energy spent on data transfer)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Progress of routing

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 39 / 42

Minimum Cost Multicommodity Flow Problem

Minimum cost multicommodity flow problem

Instance: 5-tuple (G , l , u, c , b1 . . . bm . . . b|M|) where G is a digraph
with upper bounds u : E (G) → R

+
0 , lower bounds l : E (G) → R

+
0 and

costs c : E (G) → R and with:

vectors bm : V (G) → R that express (supply/consumption) of nodes
by commodity m.

∑
v∈V (G) b

m(v) = 0 for all commodities m ∈ M .

Goal: Find the feasible flow f whose cost∑
e∈E(G)

∑
m∈M f m(e) · c(e) is minimal (we want to transport the

flow as cheap as possible) or decide that such a flow does not exist.
Feasible flow that satisfies∑

e∈δ+(v) f
m(e)−

∑
e∈δ−(v) f

m(e) = bm(v) for all v ∈ G (V) and all
m ∈ M.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 40 / 42

Minimum Cost Multicommodity Flow Problem

LP Formulation

Variable f m(e) ∈ R
+
0 represents the flow of commodity m ∈ M along edge

e ∈ E (G).

min
∑

e∈E(G)

∑
m∈M f m(e) · c(e)

s.t.
∑

e∈δ+(v) f
m(e) −

∑
e∈δ−(v) f

m(e) = bm(v) v ∈ V (G),m ∈ M

l(e) ≤
∑

m∈M f m(e) ≤ u(e) e ∈ E (G)

1st Kirchhoff’s law is satisfied in every node for every commodity.

Multicommodity flow can be sloved by LP - in polynomial time.

Integer-valued flow is not assured since matrix A in LP is not totally
unimodular (see l(e) ≤

∑
m∈M f m(e) ≤ u(e))

Practical experience: ILP formulation which guarantees integer-valued
solution can be solved even for big instances in acceptable time.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 41 / 42

References

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin.
Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

Jǐŕı Demel.
Grafy a jejich aplikace.
Academia, 2002.

B. H. Korte and Jens Vygen.
Combinatorial Optimization: Theory and Algorithms.
Springer, fourth edition, 2008.

Z. Hanzálek (CTU FEE) Network Flows April 2, 2013 42 / 42

	prvni
	Flows_e
	Flows
	Maximum Flow Problem
	Feasible Flow as a Decision Problem
	Minimum Cost Flow

	Matching
	Maximum Cardinality Matching in Bipartite Graphs
	Assignment Problem - minimum weight perfect matching in complete bipartite graph

	Multicommodity Flow Problem
	Minimum Cost Multicommodity Flow Problem

