

OPPA European Social Fund Prague & EU: We invest in your future.

Combinatorial Optimization

Zdeněk Hanzálek hanzalek@fel.cvut.cz

CTU FEE Department of Control Engineering

May 3, 2013

European Social Fund Prague & EU: We invests in your future.

Constraint Programming

Zdeněk Hanzálek, Jan Kelbel hanzalek@fel.cvut.cz

CTU FEE Department of control engineering

May 16, 2011

Ipspiration - Sudoku

- Constraint Satisfaction Problem (CSP)
 - Search and Propagation
 - Arc consistency
 - AC-3 Algorithm
 - Global constraints

What is Constraint Programming?

What is Constraint Programming?

Sudoku is Constraint Programming

Motivation - Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

Assign digits to blank fields such that: digits distinct per rows, columns, blocks

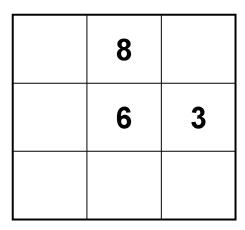
Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

Assign digits to blank fields such that: digits distinct per **rows**, columns, blocks

Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			


Assign digits to blank fields such that: digits distinct per rows, **columns**, blocks

Sudoku

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

Assign digits to blank fields such that: digits distinct per rows, columns, **blocks**

Sudoku - propagation in the lower left block

No blank field in the block can have value of 3,6,8

Sudoku - propagation in the lower left block

1,2,4,5,7,9	8	1,2,4,5,7,9
1,2,4,5,7,9	6	3
1,2,4,5,7,9	1,2,4,5,7,9	1,2,4,5,7,9

No blank field in the block can have value of 3,6,8 - propagate to all blank fields
Use the same propagation for rows and columns

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

1,2,3,4,5,6,7,8,9

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

1,3,5,6,7,8

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

1,3,6,7

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

1,3,6

Sudoku - iterated propagation

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

- Iterate propagation for rows, columns and blocks
 - When to stop?
 - What if more assignments exist?
 - What if no assignment exists?

Sudoku is constraint programming

			2		5			
	9					7	3	
		2			9		6	
2						4		9
				7				
6		9						1
	8		4			1		
	6	3					8	
			6		8			

Sudoku:

- Variables fields
 - assign values digits
 - maintain domain of variable set of possible values
- Constraints numbers in row, column and box must vary
 - relations among variables disable certain combinations of values

Constraint programming is **declarative programming**:

- Model: variables, domains, constraints
- Solver: propagation, searching

Constraint Satisfaction Problem - formally

Constraint Satisfaction Problem (CSP) is defined by triplet (X, D, C), where:

- $X = \{x_1, \dots, x_n\}$ is finite set of variables
- $D = \{D_1, \dots, D_n\}$ is finite set of domains of variables
- $C = \{C_1, \dots, C_t\}$ is finite set of constraints.

Domain $D_i = \{v_1, \dots, v_k\}$ is **finite** set of all possible values of x_i .

Constraint C_i is couple (S_i, R_i) where $S_i \subseteq X$ and R_i is relation relation over the set of variables S_i . For $S_i = \{x_{i_1}, \dots, x_{i_r}\}$ is $R_i \subseteq D_{i_1} \times \dots \times D_{i_r}$.

CSP is NP-complete problem.

Terminology - CSP, CSOP, Constraint Solving and CP

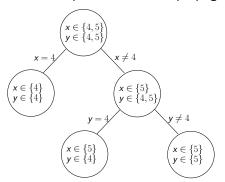
- Solution to (CSP) is complete assignment of values from domains to variables such that all constraints are satisfied
 - it is a decision problem.
- Constraint Satisfaction Optimization Problem (**CSOP**) is defined by (X, D, C, f(X)) where f(X) is objective function. The search is not finished, when the first acceptable solution was found, but it is finished when the **optimal solution** was found (using branch&bound method for example).
- Constraint Solving is defined by (X, D, C) where D_i is defined on \mathbb{R} (e.g. solution of the set of linear equations-inequalities).
- Constraint Programming, CP includes Constraint Satisfaction and Constraint Solving.

Example: $x \in \{3,4,5\}$, $y \in \{3,4,5\}$, $x \ge y$, y > 3

Example: $x \in \{3, 4, 5\}$, $y \in \{3, 4, 5\}$, $x \ge y$, y > 3

1 propagate y > 3: $x \in \{3, 4, 5\}, y \in \{4, 5\}$

Example: $x \in \{3,4,5\}$, $y \in \{3,4,5\}$, $x \ge y$, y > 3


- **1** propagate y > 3: $x \in \{3, 4, 5\}, y \in \{4, 5\}$
- ② propagate $x \ge y$: $x \in \{4, 5\}, y \in \{4, 5\}$

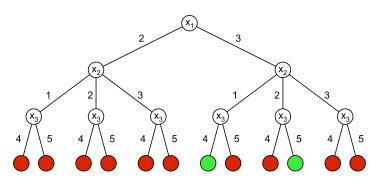
Example:
$$x \in \{3,4,5\}$$
, $y \in \{3,4,5\}$, $x \ge y$, $y > 3$

- **1** propagate y > 3: $x \in \{3, 4, 5\}, y \in \{4, 5\}$
- ② propagate $x \ge y$: $x \in \{4, 5\}, y \in \{4, 5\}$
- propagation alone is not enough
 - product of the domains (incl. x = 4, y = 5) is a superset of solution
 - the search helps we create subproblems

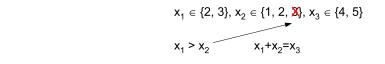
Example: $x \in \{3, 4, 5\}$, $y \in \{3, 4, 5\}$, $x \ge y$, y > 3

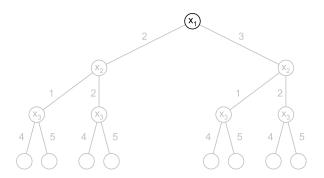
- propagate y > 3: $x \in \{3, 4, 5\}, y \in \{4, 5\}$
- **2** propagate $x \ge y$: $x \in \{4, 5\}, y \in \{4, 5\}$
- propagation alone is not enough
 - product of the domains (incl. x = 4, y = 5) is a superset of solution
 - the search helps we create subproblems
- o in subproblems we use propagation again

- The search can be driven by various means (order of the variables, division of domain/domains).
- By propagation of constraints we filter domains of variables.

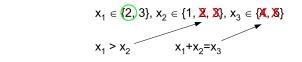

Comparison with ILP

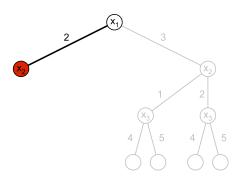
- In both cases we deal with declarative programming
- Performance differs from problem to problem
- CSP allows to formulate complex constraints
 (ILP uses inequalities only, CSP uses arbitrary relation e.g. binary relation may be given by a set of compatible tuples)
 - CSP is more flexible, formulation is easier to understand
- it is difficult to represent continuous problems by CSP
 - finiteness of domains can be bypassed by using hybrid approaches
 - e.g. combination with LP
- CP is new technique, it is more open

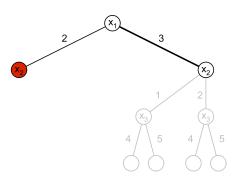

Complete search (for example Depth First Search):

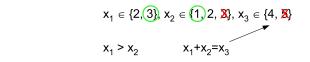

$$x_1^{} \in \{2,\,3\},\, x_2^{} \in \{1,\,2,\,3\},\, x_3^{} \in \{4,\,5\}$$

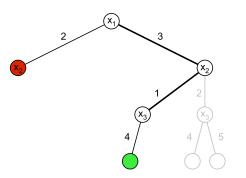
$$x_1 > x_2$$
 $x_1 + x_2 = x_3$




Initial propagation of constraints:

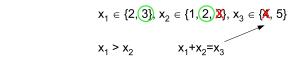

Choose $x_1 = 2$ and propagate constraints:

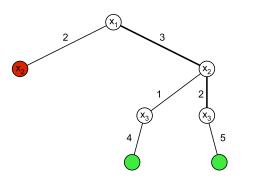



Choose $x_1 = 3$ and propagate constraints:

$$x_1 \in \{2, \widehat{3}\}, x_2 \in \{1, 2, 2\}, x_3 \in \{4, 5\}$$

 $x_1 > x_2$ $x_1 + x_2 = x_3$




Choose $x_2 = 1$ and propagate constraints:

Choose $x_2 = 2$ and propagate constraints:

Arc consistency

We will continue to consider only **binary CSP**, where every constraint is binary relation

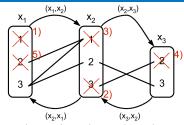
- general (n-ary) CSP can be converted to binary CSP
- binary CSP can be represented by digraph G
 - nodes are variables
 - if there is a constraint involving x_i, x_j , then the nodes x_i, x_j are interconnected by arcs (x_i, x_i) and (x_i, x_i)

Arc consistency is an essential method for propagation.

- Arc (x_i, x_j) is **Arc Consistent, AC** iff for each value $a \in D_i$ there exists value $b \in D_j$ such that assignment $x_i = a, x_j = b$ meets all binary constraints for variables x_i, x_j .
- A CSP is arc consistent if all arc are arc consistent.
- Note that AC is **oriented** consistence of arc (x_i, x_j) does not guarantee consistence of arc (x_j, x_i) .

There are other local consistencies (path consistency, k-consistency, singleton arc consistency,...). Some of them are stronger some are weaker.

REVISE procedure


From domain D_i delete any value a, which is not consistent with domain D_j .

```
procedure REVISE
Input: Indexes i, j. Revised domain D_i. Domain D_i.
        Set of constraints C
Output: Binary variable deleted indicating deletion of some value
          from D_i. Revised domain D_i.
deleted := 0:
for a \in D_i do
   if there is no b \in D_i; x_i = a, x_i = b satisfies all constraints on x_i, x_i
    then
      D_i := D_i \setminus a;

deleted := 1;
                                                      // delete a from D_i
    end
end
```

Example: application of REVISE

CSP with variables $X = \{x_1, x_2, x_3\}$, constraints $x_1 > x_2, x_2 \neq x_3, x_2 + x_3 > 4$, and domains $D_1 = \{1, 2, 3\}, D_2 = \{1, 2, 3\}, D_3 = \{2, 3\}.$

revised arc	deleted	revised domain	(x_1, x_2)	(x_2, x_1)	(x_2, x_3)	(x_3, x_2)	
(x_1, x_2)	$1^{1)}$	$D_1 = \{2,3\}$	consist	nonconsist	nonconsist	consist	
(x_2, x_1)	$3^{2)}$	$D_2 = \{1, 2\}$	consist	consist	nonconsist	nonconsist	
(x_2, x_3)	$1^{3)}$	$D_2 = \{2\}$	nonconsist	consist	consist	nonconsist	
(x_3, x_2)	$2^{4)}$	$D_3 = \{3\}$	nonconsist	consist	consist	consist	

After revision, some the arcs are still nonconsistent

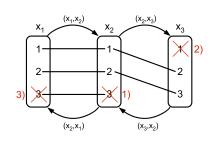
- the reason is that some of the domains have been reduced
- continue in revision till all arc are consistent (without consistence check - see AC-3)

revised arc	deleted	revised domain	(x_1, x_2)	(x_2, x_1)	(x_2, x_3)	(x_3, x_2)
(x_1, x_2)	$2^{5)}$	$D_1 = \{3\}$	consist	consist	consist	consist

Arc Consistency - AC-3 algorithm

Maintain a queue of arcs to be revised (the arc is added into queue only if it's consistency could have been affected by reduction of the domain).

```
procedure AC-3
Input: X, D, C and graph G.
Output: Binary variable fail indicating no solution in this part of the
          state space. The set of revised domains D.
fail = 0; Q := E(G);
                                        // initialize Q by arcs of G
while Q \neq \emptyset do
    select and delete arc (x_k, x_m) from Q;
    (deleted, D_k) = REVISE(k, m, D_k, D_m, C);
    if deleted then
       if D_k = \emptyset then fail = 1 and EXIT;
       Q := Q \cup \{(x_i, x_k) \text{ such that } (x_i, x_k) \in E(G) \text{ and } i \neq m\};
   end
end
```


Note: revision of (x_k, x_m) does not change arc consistency of (x_m, x_k) .

29 / 33

Example: iteration of AC-3

CSP with variables $X = \{x_1, x_2, x_3\}$, constraints $x_1 = x_2$, $x_2 + 1 = x_3$ and domains $D_1 = \{1, 2, 3\}$, $D_2 = \{1, 2, 3\}$, $D_3 = \{1, 2, 3\}$.

```
Initialization: Q = \{(x_1, x_2), (x_2, x_1), (x_2, x_3), (x_3, x_2)\}
revise (x_1, x_2)
D_1 = \{1, 2, 3\}, D_2 = \{1, 2, 3\}, D_3 = \{1, 2, 3\}
Q = \{(x_2, x_1), (x_2, x_3), (x_3, x_2)\}\
revise (x_2, x_1)
D_1 = \{1, 2, 3\}, D_2 = \{1, 2, 3\}, D_3 = \{1, 2, 3\}
Q = \{(x_2, x_3), (x_3, x_2)\}
revise (x_2, x_3)
D_1 = \{1, 2, 3\}, D_2 = \{1, 2\}^{1}, D_3 = \{1, 2, 3\}
Q = \{(x_3, x_2), (\mathbf{x_1}, \mathbf{x_2})\}
revise (x_3, x_2)
D_1 = \{1, 2, 3\}, D_2 = \{1, 2\}, D_3 = \{2, 3\}^2
Q = \{(x_1, x_2)\}\
revise (x_1, x_2)
D_1 = \{1, 2\}^3, D_2 = \{1, 2\}, D_3 = \{2, 3\}
Q = \emptyset
```


Global constraints

Global constraint

- capture **specific structure** of the problem
- use this structure to efficient propagation using specialized propagation algorithm

Example: On set $X = \{x_1, \dots, x_n\}$ we apply constraint $x_i \neq x_j \ \forall i \neq j$

- This can be formulated by $(n^2 n)/2$ disequalities.
- Second option is global constraint **alldifferent**, which uses a matching algorithm in bipartite graph, where one side represents variables and the other side represents values.

Other examples of global constraints:

- scheduling (edge-finder)
- graph algorithms (clique, cycle)
- finite state machine
- bin-packing

Tools for solving CSP

Proprietary:

- SICStus Prolog
- ILOG CP, CP Optimizer (C++)
- ILOG OPL Studio (OPL)
- Koalog (Java)

Open source:

- ECLiPSe (Prolog)
- Gecode (C++)
- Choco Solver (Java)
- Python constraints

References

Roman Barták.

Programování s omezujícími podmínkami.

http://kti.ms.mff.cuni.cz/~bartak/podminky/index.html, 2010.

Rina Dechter.

Constraint Processing.

Morgan Kaufmann, 2003.

Christian Schulte.

Constraint programming.

http://www.ict.kth.se/courses/ID2204/index.html, 2010.

OPPA European Social Fund Prague & EU: We invest in your future.