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Lectures

1 Introduction of Basic Terms, Example Applications.
2 Integer Linear Programming - Algorithms.
3 Problem Formulation by Integer Linear Programming.
4 Shortest Paths. Test I.
5 Flows and Cuts - Problem Formulation and Algs. Bipartite Matching.
6 Multicommodity Network Flows.
7 Knapsack Problem, Pseudo-polynomial and Approximation Algs.
8 Traveling Salesman Problem and Approximation Algorithms. Test II.
9 Monoprocessor Scheduling.
10 Scheduling on Parallel Processors.
11 Project Scheduling with Time Windows.
12 Constraint Programming.

1 - motivation
4,5,6 - mostly polynomial complexity
7,8,9,10,11 - NP-hard problems
2,3,12 - declarative programming techniques
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Seminars

1 Introduction to the Experimental Environment and Optimization
Library

2 Integer Linear Programming
3 Applications of Integer Linear Programming
4 Individual Project I - Assignment and Problem Classification
5 Shortest Paths
6 Individual Project II - Related Work and Solution
7 Applications of Network Flows and Cuts
8 Individual Project III - Consultation
9 Scheduling
10 Test III
11 Individual Project IV - presentation of code, results and written report
12 Credits

1,2,3,5,7,9 - exercises 1-6
4,6,8,11 - individual project - consultation and reporting
10 - test III - programming exercise to be finished in limited time
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Course Organization

A4M35KO site: https://moodle.dce.fel.cvut.cz

Courses
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What is Combinatorial Optimization?

Optimization is a term for the mathemat-
ical discipline that is concerned with the
minimization/maximization of some objec-
tive function subject to constraints or deci-
sion that no solution exists.

Combinatorics is the mathematics of discretely structured problems.

Combinatorial optimization is an optimization that deals with discrete
variables.

It is very similar to operation research (a term used mainly by
economists, originated during WW II in military logistics).
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Application Areas

Many real-life problems can be formulated
as combinatorial optimization problems.

Typical application areas:

Production (production speed up, cost reduction, efficient utilization
of resources...)

Transportation (fuel saving, reduction of delivery time...)

Employees scheduling (reduction of human resources...)

Hardware design (acceleration of computations...)

Communication network design (end-to-end delay reduction...)

...
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Container Loading

Goal:

To store as much cargo
as possible in a container.

Constraints:

size of the container

sizes of the boxes

loading process

stability, orientation of the boxes

requested order of the boxes when unloading the cargo

Can be formalized as a 3-D knapsack.
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Scheduling of Human Resources

Assignment of shifts to employees

Goal:

create acceptable shift schedule,
so that all required shifts are assigned

Constraints:

qualification of employees

labor code restrictions (e.g. at least 12 hours of rest during 24 hours)

collective agreement restrictions (e.g. maximum number of night
shifts in a block)

employees demands (e.g. required day-off)

fair assignment of shifts (same number of weekend shifts)

Z. Hanzálek (CTU FEE) Introduction to Combinatorial Optimization February 12, 2013 9 / 56



Scheduling of Human Resources

Scheduling of human resources is often formalized as a
matching in a bipartite graph

The problem becomes harder when we consider the geographic position of
the employees (e.g. stewards and pilots in an airline company).
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Storage System in Automated Warehouse

Automated warehouse is used as a in-process store connecting parts of the
factory. When overloaded, it can become a bottleneck.

Goal:

reduce the length of vehicle trips

Constraints:

given tasks

warehouse parameters

vehicle can transport
1 container in the given time

tasks are added on-line
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Storage System in Automated Warehouse
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The task is determined by the start position
and destination position.
The problem is represented by the directed
graph.
The nodes of the graph represent the trans-
port tasks.
Edge (i , j) means the possibility to perform
task j right after i .
Edge cost represents the cost of the trip from
i to j .

Can be formulated as
Asymmetric Traveling Salesman Problem.
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Vehicle Routing

Goods, customers and fleet of cars.

Goal:

fulfill demands of customers

minimize transportation cost

Constraints:

payload capacity

time windows

traffic jams

shifts, breaks

Z. Hanzálek (CTU FEE) Introduction to Combinatorial Optimization February 12, 2013 13 / 56



Surface Mount Technology

The placement machines are scarce resource
of the Printed Circuit Board (PCB) produc-
tion, due to their high cost.

Goal:

Maximize production speed

Constraints:

Assembly line configuration

Description of produced PCB

Problem can be divided into two subproblems.
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Surface Mount Technology

A) Allocation of the components to the placement heads
Can be formulated as a Partition Problem

Input:

types of SMT components

number of components
of a given type

precedence relations
among some components

machine parameters

Output:

allocation of components
to the placement heads
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Surface Mount Technology

B) Sequencing for a given head can be
formulated as a (capacitated multi-trip)
Traveling Salesman Problem

Input:

allocation of
components to the assembly head

position of components on the PCB

Output:

assembly sequence

estimation of operation time
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Steel Mill Slab Design Problem

A steel plant produces slabs which are later
divided and processed into final products

Goal:

Minimize the amount of the steel slabs needed
for realization of all jobs

Constraints:

n different sizes of slabs

size of each job

color of job determines processing of a slab

at most p jobs of different colors
can be made from one casting
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Steel Mill Slab Design Problem

Example

Slab sizes: {3, 5}, n = 2

Jobss 1 . . . 9

Colors 1 . . . 5

Maximum number of colors on each slab p = 2
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Routing in Wireless Sensor Network - Specification

Vast area monitoring using autonomous devices equipped with:

own power supply

wireless short range communication

temperature sensors

Goal:

create routing tables

minimize energy consumption

Constraints:

capacity of each communication link

limited transmitter performance

maximal allowed end-to-end delay of communication

memory capacity of devices
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Routing in Wireless Sensor Network - Formalization
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Load of the links in the network for each communication demand separately

Can be formalized as a Multi-Commodity Network Flows problem.
Network represented by a graph (devices = vertices, links = edges)
Constant communication delay for all links (TDMA period,...)
Communication demand = commodity flow:

source devices and destination devices

volume of demand (quantity of data per time unit)

deadline (maximum number of hops)

Communication link:
capacity (quantity of data per time unit)

relates to the number of TDMA slots)

price (energy to transfer one unit of data)

Other variants:

various delay on links

indivisible flows

maximize the network lifetime (minimize energy consumption)

distributed version
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Routing in Wireless Sensor Network - Distributed Problem

In this application, the centralized approach is not useful:

inputs (link capacity,...) and outputs (volume of flow in each link)
have a local nature
adding/removing of a device in centralized algorithm needs:

communication of inputs
centralized computation
communication of outputs
switching of network configuration
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Routing in Wireless Sensor Network - Distributed Problem

In this application, the centralized approach is not useful:

inputs (link capacity,...) and outputs (volume of flow in each link)
have a local nature
adding/removing of a device in centralized algorithm needs:

communication of inputs
centralized computation
communication of outputs
switching of network configuration

Distributed algorithm - same code in each device:

Input: capacities and prices of incident links, source and sink nodes,...
Output: volume of flow on incident links,...
while consensus not reached do

do local optimization;
communicate border variables with neighbors;

end

Problems in distributed algorithms - convergence and termination
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Routing in Wireless Sensor Network
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Z. Hanzálek (CTU FEE) Introduction to Combinatorial Optimization February 12, 2013 22 / 56



Routing in Wireless Sensor Network

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Progress of routing

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Progress of routing

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Progress of routing

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Progress of routing

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Progress of routing

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
Progress of routing
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Crossroads Design - Specification

A city is represented by crossroads and streets. Traffic flows are
determined by sources, destinations and the number of cars per time unit.

Goal:

For every crossroad find out a volume of the flow in
left/straight/right direction = routing (from such information, we can
determine the capacities of lanes and setting of traffic lights)

We assume optimal behavior of the system = minimization of the
transportation cost (i.e. we minimize traveled distance or fuel
consumption or transportation time).

Constraints:

road capacities (determined by the number of lanes and speed limits)

one-way roads

Can be formalized as a Multi-Commodity Network Flows Problem
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Crossroads Design - Specification
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[ 209 2.8 ]

[ 69 5.6 ]

[ 102 2.8 ]
[ 112 2.8 ]

source 14 14 14 14 16 16 16 16 18
destination 24 17 21 27 24 21 15 27 24
cars per minute 4.9 1.9 3.1 30.1 10.1 12.1 1.2 6.6 32.7
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Lacquer Production Scheduling

Made-to-order lacquer production, where jobs
are determined by type of lacquer, quantity
and delivery date.

Goal:

minimize tardiness (delivery date overrun)

minimize storage costs

Constraints:

batch production of various kinds of lacquer

varying production process/time for different kinds

time constraints between start times and/or completion times of
operations

working hours (processing times of some operations exceed working
hours)

preparation (set-up time)

Can be formalized as PS |temp, oij , tg |Cmax
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Lacquer Production Scheduling

There can be time constraints on operations. We must consider:
(1) minimal delay between the end of one operation and the start of the
next one (e.g. minimal delay needed to dissolve an ingredient into the
lacquer)
(2) maximal delay between the end of one operation and the start of the
next one (e.g. the lacquer can solidify).

Plus, we have take into account that the processing time on some
resources (reservoirs) depends on the start or completion of different
operations.
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Lacquer Production Scheduling

Example

production of 29 jobs

3 types of lacquer

9 weeks time horizon
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Configurable HW for Specific DSP Application Design

Special computational units (adder, multiplier) on
FPGA.
Iterative Digital Signal Processing (DSP) algorithm con-
sists of atomic operations executed on these units.

Goal:

maximize computational speed

minimize amount of used gates and interconnects

Constraints:

precedence relations between atomic operations (addition,
multiplication...)

limited access to the circuit memory

limited amount of circuit memory

number of available processing units on FPGA
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Configurable HW for Specific DSP Application Design

An example application is a simple
digital filter LWDF. X (k) are samples
of input signal, Y (k) are samples of
output signal.

Lattice Wave
Digital Filter

(LWDF)

X(k) Y(k)

for k=1 to N do
T1: a(k) = X (k)− c(k − 2)
T2: b(k) = a(k) ∗ α
T3: c(k) = b(k) + X (k)
T4: d(k) = b(k) + c(k − 2)
T5: Y (k) = X (k − 1) + d(k)

end

LWDF filter algorithm Atomic operation dependencies
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Configurable HW for Specific DSP Application Design

Can be formalized as a cyclic extension of PS |temp|Cmax

Used hardware features
unit count [−] computation time [clk]

ADD 2 1
MUL 1 2

T1 T1 T1T3 T3 T3

T4 T4 T4T5 T5 T5

T2 T2 T2

0 1 2 3 4 5 6 7 8 9 10 11

t

ADD1

ADD2

MUL

T1 T3

T4 T5

T2

k=1 k=2 k=3 k=4

w
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Message Scheduler for Profinet IO IRT - Specification

Profinet IO IRT is an Ethernet-based hard-real time communication
protocol, which uses static schedules for time-critical data. Each node
contains a special hardware switch that intentionally breaks the standard
forwarding rules for a specified part of the period to ensure that no
queuing delays occur for time-critical data.

Goal:

Find the shortest makespan (length of the schedule) for time critical
messages.

P1 P2 P3 P4

N1

CP-1616

P1 P2 P3 P4

N5

CP-1616

P1 P2 P3 P4

N4

Sinamics S120

P1 P2 P3 P4

N3

PN-IO/CP-1616

P1 P2

N2

IM151-3

link N3-N1

link N1-N3

link N5-N3

link N3-N5

link N1-N2

link N2-N1
link N1-N4

link N4-N1

line N1 → N3 N1 → N4 N1 → N2 N2 → N1 N3 → N1 N4 → N1 N3 → N5 N5 → N3

line delay [ns] 4875 5130 5862 3841 4875 4895 4875 4875
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Message Scheduler for Profinet IO IRT - Specification

Constraints:

tree topology ⇒ fixed routing

release date r - earliest time the message can be sent

deadline d̃ - latest time the message can be delivered

maximal allowed end-to-end time delay

ID source → target length [ns] r [ns] d̃ [ns] end2end delay [ns]
256 N2 → N3 5760 5000 20000 11000
257 N3 → N2 5760 15000 40000 15000
258 N1 → N3 5760 15000 – –
259 N3 → N1 5760 20000 35000 –
128 N3 → {N1,N2,N4,N5} 11680 5000 {–,–,–,18000} {–,17675,17675,15000}
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Message Scheduler for Profinet IO IRT - Formalization

Can be formulated as
PS |temp|Cmax problem.

task = message on a given line

positive cost edge = r ,
precedence relations

negative cost edge = d̃ ,
end-to-end delay

unicast message = chain of
tasks (assuming positive edges)

multicast message = out-tree of
tasks (assuming positive edges)

T3

1 - 3

6880

T2

2 - 1

6880

3841

4875

5000

- 4120

- 8120

- 13120

- 33120

- 28120

15000

15000

20000

T5

1 - 2

6880

T4

3 - 1

6880

T6

1 - 3

6880

T7

3 - 1

6880

T1

0

256

257

258

259

4875

4875

- 4875

- 4875
- 2200

- 5200

0

0

T11

1 - 2

12800

T12

1 - 4

12800

T9

3 - 1

12800

T10

3 - 5

12800

T8

0

128
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Message Scheduler for Profinet IO IRT - Result

N1 - N2

N1 - N3

N2 - N1

N3 - N1

N3 - N5

10 20 30

10 20 30

10 20 30

10

5

20 30

N1 - N4

10 20 30

10 20 30 t [µs]

Cmax

Class 3 Class 2 Class 1/NRT reserve

communication cycle

T
11

: 128, 11.68

T
9
: 128, 11.68

T
5
: 257, 5.76

T
12

: 128, 11.68

T
6
: 258, 5.76

T
7
: 259, 5.76

T
2
: 256, 5.76

T
4
: 257, 5.76

T
3
: 256, 5.76

T
10

: 128, 11.68
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Convincing Arguments

Explain the typical goals of optimization:

increase the volume of the production (shorter production-line cycle)

cost reduction (fuel saving, less machines)

risk reduction (error elimination due to automated creation of
production schedule)

lean manufacturing (supply and stores reduction, outgrowths
reduction when delay in supply)

increase of the flexibility (faster reaction to structure or constraint
change)

user-friendly solutions (balanced schedule for all employees)
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How does this course cover the important skills?

An engineer is usually hired to systematically solve the problem.

Skill Example

Business Attract a
case customer
Specification Production

scheduling
Formalization Flow-shop

Algorithms Johnson’s
algorithm

Prototype Matlab
solution OPL, ...
Implementation C#, dB, ...
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How does this course cover the important skills?

An engineer is usually hired to systematically solve the problem.

Skill Example Lectures

Business Attract a -
case customer
Specification Production Application

scheduling examples
Formalization Flow-shop Formulation of the

opt. problem
Algorithms Johnson’s Pseudocode

algorithm iteration with data
Prototype Matlab -
solution OPL, ...
Implementation C#, dB, ... -
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How does this course cover the important skills?

An engineer is usually hired to systematically solve the problem.

Skill Example Lectures Seminars

Business Attract a - Project?
case customer
Specification Production Application Project

scheduling examples Exercises
Formalization Flow-shop Formulation of the Project

opt. problem Exercises
Algorithms Johnson’s Pseudocode Project

algorithm iteration with data
Prototype Matlab - Project
solution OPL, ... Exercises
Implementation C#, dB, ... - Project?
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How does this course cover the important skills?

An engineer is usually hired to systematically solve the problem.

Skill Example Lectures Seminars Exam

Business Attract a - Project? -
case customer
Specification Production Application Project Project

scheduling examples Exercises
Formalization Flow-shop Formulation of the Project Project

opt. problem Exercises Exam
Algorithms Johnson’s Pseudocode Project Test I, II

algorithm iteration with data Exam
Prototype Matlab - Project Project
solution OPL, ... Exercises Test III
Implementation C#, dB, ... - Project? -
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Algorithms are used to solve the problems

Combinatorial optimization uses combinatorial algorithms

Many problems can be formalized by:

constraints

optimization criterion

It is not always easy to find the optimal solution efficiently.
In the case of exhaustive search while enumerating all solutions, the
computation time for bigger instances can be enormous.
For example, the permutation Flow-shop problem has complexity of n!,
where n is the number of jobs.
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Time Complexity of Algorithms
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Graph Theory Overview

Graphs informally:

A graph consists of nodes and edges.

Each edge joins two nodes, it is directed or undirected.

In a directed graph, the edge leaves one node and enters another one.

In an undirected graph, an edge is a symmetric join of two nodes.
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Directed Graph

Directed graph (digraph) is a triplet (V ,E ,Ψ):

V is a finite set of nodes

E is a finite set of directed edges

Ψ is a mapping from the set of edges to the ordered pair of nodes, i.e.
Ψ : E → {(v ,w) ∈ V × V : v 6= w}
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Undirected Graph

Undirected graph is a triplet (V ,E ,Ψ):

V is a finite set of nodes.

E is a finite set of undirected edges

Ψ is a projection from the set of edges to the 2-element subset of V ,
i.e. Ψ : E → {X ⊆ V : |X | = 2}
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Edges

Two edges e, e′ are called parallel edges if Ψ(e) = Ψ(e′).

A graph containing parallel edges is called a multigraph - we usually
do not work with a multigraph.

A graph that does not contain parallel edges is called simple graph.

We usually denote simple graphs by pair G = (V (G ),E (G )), where
V (G ) is a set of nodes and E (G ) is set of (ordered) pairs of nodes
that describes the edges (i.e. we identify an edge with its image
Ψ(e)).

Undirected edge e = {v ,w} or directed edge e = (v ,w) connects v
and w . Nodes v and w are the endpoints of e or we can say they are
incident with e. In case of a directed graph we say that e leaves v
and enters w .
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Comparison of Graphs

For directed graph G we can have an underlaying undirected graph G ′,
with the same set of vertices and undirected edge {v ,w} for every directed
edge (v ,w) from G .
We call graph H a subgraph of graph G , if we can create it by omitting
the nodes (zero or more of them) or edges (when an edge is in the
subgraph, it’s endpoints must be there as well). Special cases of
subgraphs:

Subgraph H of G is called spanning if we omit some or zero edges
and V (G ) = V (H).

Graph H is called subgraph induced by set of vertices
V (H) ⊆ V (G ) if we omit some (or zero) nodes and incident edges,
i.e. H contains all edges from G whose both endpoints are in V (H).

Z. Hanzálek (CTU FEE) Introduction to Combinatorial Optimization February 12, 2013 43 / 56



Comparison of Graphs – Isomorphic Graphs

Two graphs G and H are called isomorphic if there are bijections:
ΦV : V (G ) → V (H) and ΦE : E (G ) → E (H) such that:

for directed graphs: ΦE ((v ,w)) = (ΦV (v),ΦV (w)) for all
(v ,w) ∈ E (G )

for undirected graphs: ΦE ({v ,w}) = {ΦV (v),ΦV (w)} for all
{v ,w} ∈ E (G )

We usually don’t deal with isomorphic graphs when talking about
algorihms, but it is good to be aware of them during modelling.
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Other Terms for Digraphs

For node v of digraph G we define:

a set of successors of v is a set of nodes such that there is an edge
from v to each of these nodes, i.e. {w ∈ V : (v ,w) ∈ Ψ(E )}

a set of predecessors v is a set of nodes such that there is an edge
from each of these nodes to v , i.e. {w ∈ V : (w , v) ∈ Ψ(E )}

Γ(v), a set of neighbors of v , is set of nodes connected by an edge
with v , i.e. a union of successors and predecessors

δ+(v), a set of edges leaving v

δ−(v), a set of edges entering v

δ(v), a set of edges incident with v

|δ+(v)|, out-degree

|δ−(v)|, in-degree

|δ(v)|, degree of node

Notice:
∑

v∈V (G) |δ(v)| = 2 |E (G )|.
the number of nodes with an odd degree is even
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Other Terms for Digraphs

For sets X ,Y ⊆ V (G ) of directed graph G we define:

E+(X ,Y ) a set of edges from X to Y , i.e.
E+(X ,Y ) = {(x , y) ∈ E (G ) : x ∈ X \ Y , y ∈ Y \ X}

δ+(X ), a set of edges leaving set X , i.e. δ+(X ) := E+(X ,V (G ) \ X )

δ−(X ), a set of edges entering set X , i.e. δ−(X ) := δ+(V (G ) \ X )

δ(X ), a set of ”border” edges of set X , i.e. δ(X ) := δ+(X ) ∪ δ−(X )

Γ(X ), a set of neighbor nodes of set X , i.e. Γ(X ) := {v ∈ V (G ) \ X :
“border” edge e ∈ δ(X ) exists and it is incident with node v}
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Similar Terms for an Undirected Graph

These terms are used in undirected graphs:

Γ(v), a set of neighbors of node v

δ(v), a set of edges incident with v

|δ(v)|, a degree of v

E (X ,Y ), a set of edges between X and Y , i.e.
E (X ,Y ) = {{x , y} ∈ E (G ) : x ∈ X \ Y , y ∈ Y \ X}

δ(X ), a set of ”border” edges of set X , i.e. δ(X ) := E (X ,V (G ) \ X )

Γ(X ), set of neighbours of set X , i.e.
Γ(X ) := {v ∈ V (G ) \ X : E (X , v) 6= ⊘}

Mostly, we will use digraphs (from an undirected graph we can make a
digraph by replacing every undirected edge by a pair of inverse directed
edges).

Z. Hanzálek (CTU FEE) Introduction to Combinatorial Optimization February 12, 2013 47 / 56



Special Graphs

A complete digraph is (a simple) graph G = (V ,E ), where E is a set of
all possible pairs of different nodes of V .
A complete undirected graph is (a simple) graph, in which every pair of
vertices is connected by a unique edge. We denote it Kn, where n is the
number of nodes.
A graph is called regular if all its nodes have the same degree. If the
degree of all nodes is k , the graph is called k-regular.
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Special Graphs

A complement of simple graph G is simple graph H such that G + H is
the complete graph. A pair of nodes in the complement is connected if it
is not connected in G .
A clique is a subgraph that is complete. The number of nodes in the
maximum (biggest) clique is called the clique number
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Edge Progression, Walk and Path

Edge progression is a sequence v1, e1, v2, e2, . . . , vk , ek , vk+1 such
that ei = (vi , vi+1) ∈ E (G ) or ei = {vi , vi+1} ∈ E (G ) for all
i = 1, . . . , k .

Edge progression is called closed if v1 = vk+1.

Directed (undirected) walk is directed (undirected) edge progression,
where no edge appears more than once, i.e. ei 6= ej for all
1 ≤ i < j ≤ k .

Directed (undirected) path is directed (undirected) walk, where no
node appears more than once, i.e. vi 6= vj for all 1 ≤ i < j ≤ k + 1.

The path can be also thought of as a graph
P = ({v1, v2, . . . , vk+1}, {e1, e2, . . . , ek}) and we call it “path from v1
to vk+1” or a “v1-vk+1 path”.

The circuit (also called cycle) is an undirected walk, where no node
appears more than once except v1 = vk+1.

The cycle (also called circuit) is a directed walk, where no node
appears more than once except v1 = vk+1.
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Tree

An undirected graph is called connected, if every pair of nodes is
connected by an undirected path.

The maximal connected subgraphs of G are its connected
components.

Every node of the graph is included in exactly one connected
component.

The connected component containing node x can be found as a
complete subgraph induced by the set of all nodes which can be
reached from x via the undirected path.

A forest is an undirected graph G without a circuit.

A tree is an undirected graph G without a circuit that is connected.

For every connected graph there exists a spanning that is the tree and
it is called the spanning tree.
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Undirected Graph - Spanning Tree

Let G be an undirected graph with n nodes, then the following statements
are equivalent:

(a) G is a tree.

(b) G has n − 1 edges and no circuit.

(c) G has n − 1 edges and is connected.

(d) G is connected and while removing any edge it will not be
connected anymore.

(e) G is a minimal graph which has δ(X ) 6= ⊘ for all ⊘ 6= X ⊂ V (G )

(f) G is circuit-free and the addition of any edge creates a circuit.

(g) G contains a unique path between any pair of vertices.
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Undirected Graph - Spanning Tree

Proof:
(a)⇒(g): follows from the fact that the union of two distinct paths with
the same endpoints contains a circuit.
(f)⇒(b)⇒(c): follows from the fact that for a forest with n nodes, m
edges and p connected components n = m + p. (The proof is a trivial
induction on m).
(g)⇒(e)⇒(d): see [1] page 17 Proposition 2.3.
(d)⇒(f): trivial.
(c)⇒(a): G is connected with n− 1. As long as there are any circuits in
G , we destroy them by deleting any edge of the circuit. Suppose we have
deleted k circuits, the resulting graph G ′ is a tree (contains no circuit and
is connected) and has m = n − 1− k edges. So
n = m + p = n − 1− k + 1, implying k = 0.
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Connectivity and Trees in Digraphs

Digraph G is connected if the underlying undirected graph is
connected.

Digraph G is strongly connected if there is a path from x to y and
from y to x for all x , y in G .

The strongly connected component of G is every maximal strongly
connected subgraph H of G .

Node x ∈ V (G ) is a root of graph G , if there is a directed path path
from x to every node of G .

An out-tree or arborescence or branching is digraph G that contains
a root. No edge enters the root, but exactly one edge enters every
other node.

Properties of trees in an undirected graph - see [1] page 18

A binary tree is tree G in which each node has at most two child
nodes.
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Summary

A graph is:

often used to formalize optimization problems

very general

easy to represent
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