
OPPA European Social Fund
Prague & EU: We invest in your future.

European Social Fund Prague & EU: We invests in your future.

Combinatorial optimisation

Seminar No. 1

An introduction to the experimental environment

Roman Čapek, Přemysl Š̊ucha (capekrom@fel.cvut.cz, suchap@fel.cvut.cz)

April 4, 2013

1 TORSCHE

TORSCHE is a Matlab toolbox which is designed for developing scheduling and graph algorithms.
This toolbox is used in our seminar since toolbox functions and objects are very helpful in working
with graphs and the toolbox includes an utility for creating and editing graphs.

1.1 Graph representation

Definition 1.1 Directed graph G consists of directed edges E, nodes V , and incidence projection
ε : E → V 2, which assigns the ordered pair of nodes (x, y) to each directed edge e ∈ E. We say
that edge (x, y) leaves x and enters y.

Nevertheless, not all problems have to be formulated by a directed graph since directions of
edges are not always necessary. For this purpose, an undirected graph is devised. This graph is
similar to a directed graph, but the difference is that the projection ε : E → V 2 assigns unordered
pair of nodes {x, y} to each edge e ∈ E [1].

v
1

v
2

v
3

v
4

Figure 1: An example of a directed graph G.

Every graph can be stored in a matrix, which describes the graph structure. For example,
an adjacency matrix, which is denoted as M+

G , is a matrix where each element m+
ij is equal to

m+
ij = m+(vi, vj) where m+ is the number of edges from vi to vj . The adjacency matrix of the

1

graph in Figure 1 is shown below.

M+
G =


0 1 2 0
0 1 0 0
0 0 0 1
0 1 0 0

 (1)

If directions are not taken into account, the matrix is changed as follows.

MG =


0 1 2 0
1 1 0 1
2 0 0 1
0 1 1 0

 (2)

Another matrix form of a graph is an incidence matrix. Dimension of this matrix is n × m
where n is the number of nodes and m is the number of edges. In case of directed graph G without
loops, the incidence matrix BG has the following form.

bi,j =

 1 if edge ej = (vi, vk) leaves vi,
−1 if edge ej = (vk, vi) enters vi,
0 otherwise.

 (3)

As an example, the incidence matrix of the graph in Figure 1 can be seen below.

BG =


1 1 1 0 0
−1 0 0 0 −1

0 −1 −1 1 0
0 0 0 −1 1

 (4)

The incidence matrix can also be formulated in the case of an undirected graph.

bi,j =

{
1 if vi is incident with edge ej
0 otherwise

(5)

Ignoring edge directions, the incidence matrix of the graph in Figure 1 is shown below.

BG =


1 1 1 0 0
1 0 0 0 1
0 1 1 1 0
0 0 0 1 1

 (6)

In many problems, edges are weighted, i.e. a value (e.g. distance, cost, reliability, . . .) is
assigned to each edge. A weighted graph is a directed or undirected graph where all edges are
weighted. A weighted graph can be stored in matrix of weights W on condition that the graph is
a simple graph, i.e. no parallel edges and loops are in the graph. Matrix element wi,j corresponds
to a weight of the directed or undirected edge. If there is no such an edge in G, weight wi,j will
be set to infinity.

2 A seminar assignment

Software set up

Download and install the unstable version of the TORSCHE toolbox from the homepage KO. The
stable version can also be downloaded from http://rtime.felk.cvut.cz/scheduling-toolbox

but this version is not preferred in seminars. Unzip the downloaded file and add path scheduling
to the Matlab.

2

https://moodle.dce.fel.cvut.cz/course/view.php?id=21
http://rtime.felk.cvut.cz/scheduling-toolbox

Creating and editing graphs in TORSCHE

In the TORSCHE toolbox, the graph can be created using an adjacency matrix, an incidence
matrix, or a matrix of weights. To create a graph the function graph can be used. Using an
adjacency matrix, a graph can be created by following commands.

>> M = [0 1 2 0; 0 1 0 0; 0 0 0 1; 0 1 0 0];

>> g = graph(’adj’, M)

Or you can use an incidence matrix.

>> B = [1 1 1 0 0; -1 0 0 0 -1; 0 -1 -1 1 0; 0 0 0 -1 1];

>> g = graph(’inc’, B)

In case of a weighted graph, a graph is created in the following way.

>> W = [inf 6 4 inf; inf inf inf inf; inf inf inf 2; inf 3 inf inf];

>> g = graph(W)

To get a graph structure the command get is useful. For example, a node name is retrieved by
the following commands.

>> get(g)

>> g.N(1).Name;

In addition, the TORSCHE toolbox enables us to edit graphs. A graph editor can be executed by
graphedit command. An existing graph can be opened as it is shown below.

>> graphedit(g)

Having done fine adjustments, the graph will be looking in a similar way as the graph in Figure 2.
For more details see TORSCHE documentation.

v
1

v
2

v
3

v
4

6 3

 4 2

Figure 2: An example of graph g.

To access edge weights the functions edges2matrixparam and matrixparam2edges can be used.
The weights of graph g are retrieved by the following command.

>> W2 = edges2matrixparam(g)

The TORSCHE toolbox provides a lot of graph algorithms which can be applied directly to
graphs. In the next task we demonstrate how the TORSCHE toolbox can be used for searching a
Hamiltonian circuit.

3

2.1 Searching a Hamiltonian circuit using TORSCHE

Several cities of the Czech Republic and distances among them are given. The goal is to find the
cheapest closed path (Hamiltonian circuit) going through all cities on condition that each city
is once visited with the exception of the start position. The cities correspond to the nodes and
the edges are connections among cities. All edges are weighted according to the distances among
cities, therefore the cheapest path is the shortest one. To solve this issue the theory of graphs
and the TORSCHE toolbox are used. Using the graphedit tool, we create the same graph as it
is shown in Figure 3. You can use a property editor to input cities names and edge weights (i.e.
distances).

Praha

Brno

Ostrava

Plzen

Ceske Budejovice

Karlovy Vary

Usti n Labem
Liberec

Hradec Kralove

Pardubice

Jihlava

Olomouc

Zlin

 202

 186

 138

 93

 78

 100

 240

 240

 104

 80

 140
 133

 133

 83

 92

 146

 122

 102

 92

 112

 166

 97

 21 149 104

 196

 89 123

 186

 126

 93 147

 166

 52

Figure 3: The graph of the cities.

To deal with the problem, the hamiltoncircuit function is available in the toolbox. It has
two parameters, where the second one is optional. The first parameter is a weighted graph and the
second one determines whether directions of edges should be consider. In our case, the directions
of the edges are ignored, therefore the following command will be used.

>> gHam = hamiltoncircuit(g, ’u’);

>> graphedit(gHam, ’position’, [1300 50 600 1050], ’fit’)

This way the Hamiltonian circuit is found (see Figure 4). We would like to get the order of the
cities, theirs coordinates, and the total tour distance. Using the graph, we get a list of the circuit
edges and transform it into a matrix.

>> edges = cell2mat(gHam.edl);

After that, we display the cities and theirs coordinates in the correct order.

>> actEdge = 1;

>> for i = 1:size(edges, 1)

>> actCity = edges(actEdge, 1);

>> cityName = g.N(actCity).Name;

>> cityName(size(cityName, 2)+1:18) = ’ ’;

>> x = g.N(actCity).graphicParam(1).x;

>> y = g.N(actCity).graphicParam(1).y;

>> str = sprintf(’City: %sCoordinates(x,y): %g, %g’, cityName, x, y);

>> disp(str)

>> actEdge = find(edges(:, 2) == actCity);

>> end

4

Praha

Brno

Ostrava

Plzen

Ceske Budejovice

Karlovy Vary

Usti n Labem
Liberec

Hradec Kralove

Pardubice

Jihlava

Olomouc

Zlin

 80

 93

 104

 83

 140

 122

 92

 97

 21

 147

 126

 93

 100

Figure 4: The Hamiltonian circuit.

In the end we compute the total tour distance as the sum of the edge weights.

>> distance = sum(edges(:,3));

>> disp([’Total distance: ’ num2str(distance) ’ km’])

A seminar assignment: Use the TORSCHE toolbox to find the Hamiltonian circuit. The
resulting circuit should be displayed in a similar way as it is shown in Figure 4. The total
tour distance should also be printed to a console.

3 A homework assignment - graph colouring

A homework assignment: Create a graph model of the Sudoku puzzle. The grid size is
4× 4, therefore a one of the numbers 1 . . . 4 has to be assigned to each box. The goal is to
find such a number-placement that all numbers are different in each subregion 2×2, column
and row. To solve the puzzle the graph colouring algorithm should be used. Each node
corresponds to a box in the grid and a node colour corresponds to a number (see Figure 5).
A model must meet the requirements of the puzzle, i.e. some edges have to be added to
the graph to ensure correct graph colouring. The graph has to be created and edited using
command line. The graphedit tool should only be used for displaying the final graph.

Figure 5: The Sudoku puzzle

5

Hints: Using an adjacency matrix create the graph with 16 nodes and connect each pair of nodes
where the same number is not allowed. Afterwards, the graph colouring algorithm graphcoloring

can be executed to solve the puzzle. And finally, remove node names, adjust node positions
according to the box positions in the puzzle, and display the graph.

References

[1] J. Demel, Grafy a jejich aplikace. Academia, second ed., 2002.

[2] B. H. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms. Springer,
third ed., 2006.

6

OPPA European Social Fund
Prague & EU: We invest in your future.

