Part VI

3D Structure and Camera Motion

- Introduction
- 2 Reconstructing Camera Systems
- 8 Bundle Adjustment

covered by

- [1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
- [2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In *Proc ICCV Workshop on Vision Algorithms*. Springer-Verlag. pp. 298–372, 1999.

▶ Constructing Cameras from the Fundamental Matrix

Given F, construct some cameras P_1 , P_2 such that F is their fundamental matrix.

Solution

$$\mathbf{P}_1 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}$$

 $\mathbf{P}_2 = \begin{bmatrix} [\mathbf{e}_2] \mathbf{F} + \mathbf{e}_2 \mathbf{v}^\top & \lambda \mathbf{e}_2 \end{bmatrix}$ ([e], F+eze,)e,= 4 = 0 = e, ||e, ||2 where

- v is any 3-vector, e.g. $v = e_1$ to make the camera finite
- $\mathbf{e}_2 = \text{null}(\mathbf{F}^\top)$, i.e. $\mathbf{e}_2^\top \mathbf{F} = 0$

Proof

- 1. S is antisymmetric iff $\mathbf{x}^{\top} \mathbf{S} \mathbf{x} = 0$ for all \mathbf{x}
- 2. we have $\mathbf{x} \simeq \mathbf{P} \mathbf{X}$
- 3. a non-zero \mathbf{F} is a f.m. iff $\mathbf{P}_2^{\top} \mathbf{F} \mathbf{P}_1$ is antisymmetric
- 4. if $P_1 = \begin{bmatrix} I & 0 \end{bmatrix}$ and $P_2 = \begin{bmatrix} SF & \underline{e}_2 \end{bmatrix}$ then F corresponds to (P_1, P_2) by Step 3 5. we can write $S = [s]_{\downarrow}$

• $\lambda \neq 0$ is a scalar,

6. a suitable choice is $\mathbf{s} = \mathbf{e}_2$

[Luong96]

See [H&Z, p. 256]

look-up the proof!

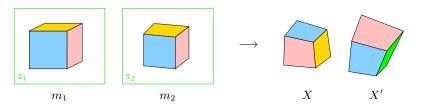
7. for the full the class including v, see [H&Z, Sec. 9.5]

► The Projective Reconstruction Theorem

Observation: Unless P_i are constrained, then for any number of cameras $i=1,\ldots,k$

$$\underline{\mathbf{m}}_{i} = \mathbf{P}_{i}\underline{\mathbf{X}} = \underbrace{\mathbf{P}_{i}\mathbf{H}^{1}}_{\mathbf{P}_{i}^{\prime}}\underbrace{\mathbf{H}^{1}\underline{\mathbf{X}}}_{\underline{\mathbf{X}}^{\prime}} = \mathbf{P}_{i}^{\prime}\underline{\mathbf{X}}^{\prime}$$

• when P_i and \underline{X} are both determined from correspondences (including calibrations K_i), they are given up to a common 3D homography H (translation, rotation, scale, shear, pure perspectivity)



• when cameras are internally calibrated (\mathbf{K}_i known) then \mathbf{H} is restricted to a <u>similarity</u> since it must preserve the calibrations \mathbf{K}_i [H&Z, Secs. 10.2, 10.3], [Longuet & Higgins 81] (translation, rotation, scale)

▶Reconstructing Camera Systems

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{ij} = [\hat{\mathbf{t}}_{ij}]_{\times} \hat{\mathbf{R}}_{ij}$ and calibration matrices \mathbf{K}_i reconstruct the camera system \mathbf{P}_i , $i=1,\ldots,k$

$$\mathbf{P}_{7}$$
 $\hat{\mathbf{E}}_{78}$
 \mathbf{P}_{8}
 $\hat{\mathbf{E}}_{18}$
 $\hat{\mathbf{E}}_{82}$
 $\hat{\mathbf{E}}_{82}$
 $\hat{\mathbf{E}}_{18}$
 $\hat{\mathbf{P}}_{12}$
 $\hat{\mathbf{P}}_{12}$
 $\hat{\mathbf{P}}_{13}$
 $\hat{\mathbf{P}}_{14}$
 $\hat{\mathbf{P}}_{15}$
 $\hat{\mathbf{P}}_{15}$
 $\hat{\mathbf{P}}_{15}$
 $\hat{\mathbf{P}}_{15}$
 $\hat{\mathbf{P}}_{15}$
 $\hat{\mathbf{P}}_{15}$
 $\hat{\mathbf{P}}_{15}$

ightarrow Slides 78 and 138 on representing ${f E}$ We construct camera pairs $\hat{{f P}}_{ij}\in\mathbb{R}^{6,4}$ ightarrow Slide 123

$$\hat{\mathbf{P}}_{ij} = egin{bmatrix} \hat{\mathbf{P}}_i \ \hat{\mathbf{P}}_j \end{bmatrix} = egin{bmatrix} \hat{\mathbf{K}}_i \begin{bmatrix} \mathbf{I} & \mathbf{0} \ \hat{\mathbf{K}}_j \begin{bmatrix} \hat{\mathbf{K}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix} \end{bmatrix} \in \mathbb{R}^{6,4}$$

- singletons i, j correspond to vertices V k vertices • pairs ij correspond to graph edges E p edges
- $\hat{\mathbf{P}}_{ij}$ are <u>in different coordinate systems</u> but these are related by similarities $\hat{\mathbf{P}}_{ij}\mathbf{H}_{ij}=\mathbf{P}_{ij}$

$$\frac{\mathbf{R}_{ij} \quad \mathbf{R}_{ij} \quad \mathbf{R}_{ij}}{\mathbf{R}_{ij} \quad \mathbf{R}_{ij}} \quad \mathbf{R}_{ij} \quad \mathbf{R}_{ij} \quad \mathbf{R}_{ij} \quad \mathbf{R}_{ij}}{\mathbf{R}_{ij} \quad \mathbf{R}_{ij}} = \mathbf{R}_{ij} \quad \mathbf$$

- \mathbf{K}_i removed on both sides of eq. (24) • (24) is a linear system of 24p eqs. in 7p + 6k unknowns $7p \sim (\mathbf{t}_{i:i}, \mathbf{R}_{i:i}, s_{i:i})$, $6k \sim (\mathbf{R}_{i:i}, \mathbf{t}_{i:i})$
- (24) is a linear system of 24p eqs. in 7p+6k unknowns $7p \sim (\mathbf{t}_{ij}, \mathbf{R}_{ij}, s_{ij})$, $6k \sim (\mathbf{R}_i, \mathbf{t}_i)$ • each \mathbf{P}_i appears on the right side as many times as is the degree of vertex \mathbf{P}_i eg. P_5 3-times

$$\begin{bmatrix} \mathbf{R}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{R}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \\ \mathbf{R}_j \end{bmatrix} \qquad \begin{bmatrix} \mathbf{t}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{t}_{ij} + s_{ij} \hat{\mathbf{t}}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_i \\ \mathbf{t}_j \end{bmatrix}$$

R_{ij} and t_{ij} can be eliminated:

$$\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j, \qquad \hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} = \mathbf{t}_j, \qquad s_{ij} > 0$$
(25)

ullet note transformations that do not change these equations assuming no error in $\hat{f R}_{ij}$

1. $\mathbf{R}_i \mapsto \mathbf{R}_i \mathbf{R}$, 2. $\mathbf{t}_i \mapsto \sigma \mathbf{t}_i$ and $s_{ij} \mapsto \sigma s_{ij}$, 3. $\mathbf{t}_i \mapsto \mathbf{t}_i + \mathbf{R}_i \mathbf{t}$

the global frame is fixed by e.g. selecting

$$\mathbf{R}_1 = \mathbf{I}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \frac{1}{p} \sum_{i,j} s_{ij} = 1$$
 (26)

- rotation equations are decoupled from translation equations
- in principle, s_{ij} could correct the sign of $\hat{\mathbf{t}}_{ij}$ from essential matrix decomposition Slide 78 but \mathbf{R}_i cannot correct the α sign in $\hat{\mathbf{R}}_{ij}$

but \mathbf{R}_i cannot correct the α sign in \mathbf{R}_{ij} \rightarrow therefore make sure all points are in front of cameras and constrain $s_{ij} > 0$; see Slide 80

- + pairwise correspondences are sufficient
- suitable for well-located cameras only (dome-like configurations)

otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (25)

Task: Solve $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_i$, $i, j \in V$, $(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each. Per columns c = 1, 2, 3 of \mathbf{R}_i :

$$\hat{\mathbf{R}}_{ij}\mathbf{r}_i^c - \mathbf{r}_j^c = \mathbf{0}, \qquad \text{for all } i, j$$

- fix c and denote $\mathbf{r}^c = \left[\mathbf{r}_1^c, \mathbf{r}_2^c, \dots, \mathbf{r}_k^c\right]^{ op}$ c-th columns of all rotation matrices stacked; $\mathbf{r}^c \in \mathbb{R}^{3k}$
- then (27) becomes $\mathbf{D} \mathbf{r}^c = \mathbf{0}$ $\mathbf{D} \in \mathbb{R}^{3p,3k}$ • 3p equations for 3k unknowns $\rightarrow p \geq k$ in a 1-connected graph we have to fix $\mathbf{r}_1^c = [1, 0, 0]$

Ex: (k = p = 3)

must hold for any c

Idea: [Martinec & Paidla CVPR 2007]

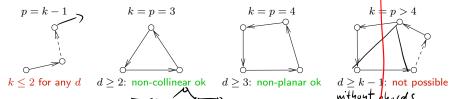
- 1. find the space of all $\mathbf{r}^c \in \mathbb{R}^{3k}$ that solve (27) \mathbf{D} is sparse, use [V,E] = eigs(D'*D,3,0); (Matlab)
- choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors 3. find closest rotation matrices per cam. using SVD because $\|\mathbf{r}^c\|=1$ is necessary but insufficient
 - $\mathbf{R}_i^{"} = \mathbf{U}\mathbf{V}^{ op}$, where $\mathbf{R}_i = \mathbf{U}\mathbf{D}\mathbf{V}^{ op}$ global world rotation is arbitrary

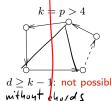
Finding The Translation Component in Eq. (25)

From eqs. (25) and (26): d – rank of camera center set p – No. of pairs, k – No. of cameras

$$\hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} - \mathbf{t}_j = \mathbf{0}, \qquad \sum_{i \neq j} \mathbf{t}_i = \mathbf{0}, \qquad \sum_{i \neq j} \mathbf{s}_{ij} = p, \qquad \mathbf{s}_{ij} > 0, \qquad \mathbf{t}_i \in \mathbb{R}^d$$
• in rank d : $d \cdot p + d + 1$ equations for $d \cdot k + p$ unknowns $d \cdot p \geq d \cdot k + d \cdot p$

Ex: Chains and circuits construction from sticks of known orientation and unknown length?





- rank is not sufficient for chains, trees, or when d=1 (collinear cameras)
- 3-connectivity gives a sufficient rank for d=3 (cams. in general pos. in 3b)
- s-connected graph has $p \geq \lceil \frac{sk}{2} \rceil$ edges for $s \geq 2$, hence $p \geq \lceil \frac{3k}{2} \rceil \leq \frac{3k}{2} 2$ 4-connectivity gives a sufficient rank for any k for d=2 (coplanar cams)
- since $p \geq \lceil 2k \rceil \geq 2k 3$ - maximal planar tringulated graphs have p=3k-6 and give the rank for

Linear equations in (25) and (26) can be rewritten to

$$\mathbf{Dt} = \mathbf{0}, \qquad \mathbf{t} = \begin{bmatrix} \mathbf{t}_1^\top, \mathbf{t}_2^\top, \dots, \mathbf{t}_k^\top, \, s_{12}, \dots, s_{ij}, \, \dots \end{bmatrix}^\top$$
 for $d=3$: $\mathbf{t} \in \mathbb{R}^{3k+p}$, $\mathbf{D} \in \mathbb{R}^{3p,3k+p}$ is sparse

$$\mathbf{t}^* = \underset{\mathbf{t}, \, s_{ij} > 0}{\operatorname{arg\,min}} \ \mathbf{t}^\top \mathbf{D}^\top \mathbf{D} \mathbf{t}$$

• this is a quadratic programming problem (constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

• but check the rank first!

► Solving Eq. (25) by Stepwise Gluing

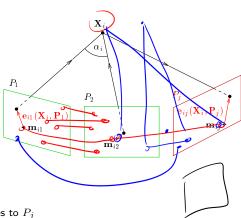
Given: Calibration matrices \mathbf{K}_j and tentative correspondences per camera triples.

Initialization

- 1. initialize camera cluster C with P_1 , P_2 ,
- 2. find essential matrix ${f E}_{12}$ and matches M_{12} by the 5-point algorithm Slide 84
- construct camera pair

$$\mathbf{P}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \ \mathbf{P}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

- 4. compute 3D reconstruction $\{X_i\}$ per match from M_{12} Slide 90
- 5. initialize point cloud $\mathcal X$ with $\{X_i\}$ satisfying chirality constraint $z_i>0$ and apical angle constraint $|\alpha_i|>\alpha_T$



Attaching camera $P_i \notin \mathcal{C}$

- 1. select points \mathcal{X}_j from \mathcal{X} that have matches to P_j
- 2. estimate \mathbf{P}_j using \mathcal{X}_j , RANSAC with the 3-pt alg. (P3P), projection errors \mathbf{e}_{ij} in \mathcal{X}_j Slide 69
- 3. reconstruct 3D points from all tentative matches from P_j to all P_l , $l \neq k$ that are <u>not</u> in \mathcal{X}
- 4. filter them by the chirality and apical angle constraints and add them to ${\cal X}$
- 5. add P_i to \mathcal{C}
- $\overline{\mathbf{6}}$. perform bundle adjustment on $\mathcal X$ and $\mathcal C$

coming next

▶Bundle Adjustment

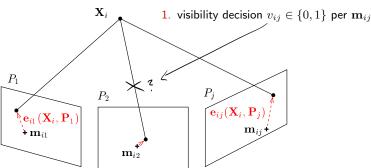
Given:

- 1. set of 3D points $\{\mathbf{X}_i\}_{i=1}^p$
- 2. set of cameras $\{\mathbf{P}_j\}_{j=1}^c$
- 3. fixed tentative projections \mathbf{m}_{ij}

Required:

- 1. corrected 3D points $\{\mathbf{X}_i'\}_{i=1}^p$
- 2. corrected cameras $\{\mathbf{P}_j'\}_{j=1}^c$

Latent:



- for simplicity, X, m are considered direct (not homogeneous)
- we have projection error $e_{ij}(\mathbf{X}_i, \mathbf{P}_j) = \mathbf{x}_i \mathbf{m}_i$ per image feature, where $\mathbf{x}_i = \mathbf{P}_i \mathbf{X}_i$
- for simplicity, we will work with scalar error $e_{ij} = ||\mathbf{e}_{ij}||$

Robust Objective Function for Bundle Adjustment

Data likelihood is

constructed by marginalization, as in Robust Matching Model, Slide 107

-2

2

$$p(\{\mathbf{m}\} \mid \{\mathbf{P}\}) = \prod_{\mathsf{pts}: i=1}^p \prod_{\mathsf{cams}: j=1}^c \left((1-\alpha_0) p_1(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) + \alpha_0 \, p_0(e_{ij} \mid \mathbf{X}_i, \mathbf{P}_j) \right)$$

the simplified log-likelihood is (as on Slide 108)

$$V(\{\mathbf{m}\}\mid \{\mathbf{P}\}) = -\log p(\{\mathbf{m}\}\mid \{\mathbf{P}\}) = \sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)}{2\sigma_1^2}} + t\right)}_{\rho(e_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)) = \nu_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)} \stackrel{\text{def}}{=} \sum_{i} \sum_{j} \nu_{ij}^2(\mathbf{X}_i, \mathbf{P}_j)$$

- ν_{ij} is a 'robust' error fcn.; it is non-robust $(\nu_{ij} = e_{ij})$ when t = 0
- $\rho(\cdot)$ is a 'robustification function' we often find in M-estimation
- ullet the ${f L}_{ij}$ in Levenberg-Marquardt changes to vector $(\mathbf{L}_{ij})_{l} = \frac{\partial \nu_{ij}}{\partial \theta_{l}} = \underbrace{\frac{1}{1 + t e^{\frac{e^{2}_{ij}(\theta)}{(2\sigma_{1}^{2})}}} \cdot \frac{1}{\nu_{ij}(\theta)} \cdot \frac{1}{4\sigma_{1}^{2}} \cdot \frac{\partial e^{2}_{ij}(\theta)}{\partial \theta_{l}} (28) \overset{\circ}{\psi}_{ij}^{-\frac{1}{2}}$

small for big
$$e_{ij}$$

but the LM method stays the same as on Slides 101-102

• outliers have virtually no impact on d_s in normal equations because of the red term in (28) that scales contributions to the sums down

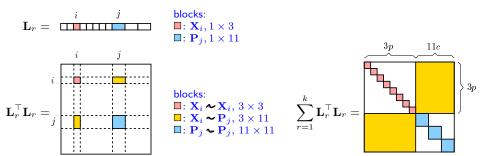
$$-\sum_{i,j}\mathbf{L}_{ij}^{\top}\nu_{ij}(\theta^s) = \Bigl(\sum_{i,j}^{k}\mathbf{L}_{ij}^{\top}\mathbf{L}_{ij}\Bigr)\mathbf{d}_s$$

► Sparsity in Bundle Adjustment

We have q=3p+11c parameters: $\theta=(\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_p;\mathbf{P}_1,\mathbf{P}_2,\ldots,\mathbf{P}_c)$ points, cameras We will use a running index $r=1,\ldots,k,\ k=p\cdot c$. Then each r corresponds to some i,j

$$\theta^* = \arg\min_{\theta} \sum_{r=1}^k \nu_r^2(\theta), \ \theta^{s+1} := \theta^s + \mathbf{d}_s, \ -\sum_{r=1}^k \mathbf{L}_r^\top \nu_r(\theta^s) = \left(\sum_{r=1}^k \mathbf{L}_r^\top \mathbf{L}_r + \lambda \operatorname{diag} \mathbf{L}_r^\top \mathbf{L}_r\right) \mathbf{d}_s$$

The block form of \mathbf{L}_r in Levenberg-Marquardt (Slide 101) is zero except in columns i and j: r-th error term is $\nu_r^2 = \rho(e_{ij}^2(\mathbf{X}_i, \mathbf{P}_j))$



- "points first, then cameras" scheme
- standard bundle adjustment eliminates points and solves cameras, then back-substitutes