\section*{O P P \\ | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

Method 1：Geometric Error Optimization

－we need to encode the constraints $\hat{\mathbf{y}}_{i} \mathbf{F} \hat{\underline{x}}_{i}=0, \operatorname{rank} \mathbf{F}=2$
－idea：reconstruct 3D point via equivalent projection matrices and use reprojection error
－equivalent projection matrices are see［H\＆Z，Sec．9．5］for complete characterization

$$
\mathbf{P}_{1}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \quad \mathbf{P}_{2}=\left[\begin{array}{lll}
\left.\underline{\mathbf{e}}_{2}\right]_{\times} \mathbf{F}+\underline{\mathbf{e}}_{2} \mathbf{e}_{1}^{\top} & \underline{\mathbf{e}}_{2}
\end{array}\right]
$$

$\circledast \mathrm{H}$ ；2pt：Verify that \mathbf{F} is a f．m．of $\mathbf{P}_{1}, \mathbf{P}_{2}$ ，for instance that $\mathbf{F} \simeq \mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{e}_{1}\right]_{\times}$
1．compute $\mathbf{F}^{(0)}$ by the 7－point algorithm \rightarrow Slide 81；construct camera $\mathbf{P}_{2}^{(0)}$ from $\mathbf{F}^{(0)}$
2．triangulate 3D points $\hat{X}_{i}^{(0)}$ from correspondences $\left(x_{i}, y_{i}\right)$ for all $i=1, \ldots, k \rightarrow$ Slide 85
3．express the energy function as reprojection error

$$
W_{i}\left(x_{i}, y_{i} \mid \hat{X}_{i}, \mathbf{P}_{2}\right)=\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}\right\|^{2} \quad \text { where } \quad \hat{\mathbf{x}}_{i} \simeq \mathbf{P}_{1} \underline{\hat{\mathbf{x}}}_{i}, \underline{\hat{\mathbf{y}}}_{i} \simeq \mathbf{P}_{2} \underline{\hat{\mathbf{x}}}_{i}
$$

4．starting from $\mathbf{P}_{2}^{(0)}, \hat{X}^{(0)}$ minimize

$$
\left(\hat{X}^{*}, \mathbf{P}_{2}^{*}\right)=\arg \min _{\mathbf{P}_{2}, \hat{X}} \sum_{i=1}^{k} W_{i}\left(x_{i}, y_{i} \mid \hat{X}_{i}, \mathbf{P}_{2}\right)
$$

5．compute \mathbf{F} from $\mathbf{P}_{1}, \mathbf{P}_{2}^{*}$
－ $3 k+12$ parameters to be found：latent：$\hat{\mathbf{X}}_{i}$ ，for all i（correspondences！），non－latent： \mathbf{P}_{2}
－minimal representation： $3 k+7$ parameters， $\mathbf{P}_{2}=\mathbf{P}_{2}(\mathbf{F}) \rightarrow$ Slide 138
－there are pitfalls；this is essentially bundle adjustment；we will return to this later Slide 131

-Method 2: First-Order Error Approximation

An elegant method for solving problems like (14):

- we will get rid of the latent parameters
[H\&Z, p. 287], [Sampson 1982]
- we will recycle the algebraic error $\varepsilon=\underline{\mathbf{y}}^{\top} \mathbf{F} \underline{\mathbf{x}}$ from Slide 81

Observations:

- correspondences $\hat{x}_{i} \leftrightarrow \hat{y}_{i}$ satisfy $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}=0, \quad \underline{\hat{\mathbf{x}}}_{i}=\left(\hat{u}^{1}, \hat{v}^{1}, 1\right), \underline{\hat{\mathbf{y}}}_{i}=\left(\hat{u}^{2}, \hat{v}^{2}, 1\right)$
- this is a manifold $\mathcal{V}_{F} \in \mathbb{R}^{4}$: a set of points $\hat{\mathbf{Z}}=\left(\hat{u}^{1}, \hat{v}^{1}, \hat{u}^{2}, \hat{v}^{2}\right)$ consistent with \mathbf{F}
- let $\hat{\mathbf{Z}}_{i}$ be the closest point on \mathcal{V}_{F} to measurement \mathbf{Z}_{i}, then (see (13))

$$
\begin{aligned}
&\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}\right\|^{2}=\left(u_{i}^{1}-\hat{u}_{i}^{1}\right)^{2}+\left(v_{i}^{1}-\hat{v}_{i}^{1}\right)^{2}+\left(u_{i}^{2}-\hat{u}_{i}^{2}\right)^{2}+\left(v_{i}^{2}-\hat{v}_{i}^{2}\right)^{2}= \\
&=V_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right) \stackrel{\text { def }}{=}\left\|\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)\right\|^{2} \\
& \text { which is what we needed in (14) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{Z}_{i}=\left(u^{1}, v^{1}, u^{2}, v^{2}\right)-\text { measurement } \\
& \text { algebraic error: } \quad \varepsilon\left(\hat{\mathbf{Z}}_{i}\right) \stackrel{\text { def }}{=} \underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}(=\mathbf{0})
\end{aligned}
$$

Sampson's idea: Linearize $\boldsymbol{\varepsilon}\left(\hat{\mathbf{Z}}_{i}\right)$ (with hat!) at \mathbf{Z}_{i} (no hat!) and estimate $\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)$ with it

-Sampson's Idea

Linearize $\boldsymbol{\varepsilon}\left(\hat{\mathbf{Z}}_{i}\right)$ at \mathbf{Z}_{i} per correspondence and estimate $\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)$ with it have: $\boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)$, want: $\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)$

$$
\boldsymbol{\varepsilon}\left(\hat{\mathbf{Z}}_{i}\right) \approx \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)+\underbrace{\frac{\partial \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}}_{\mathbf{J}\left(\mathbf{Z}_{i}\right)} \underbrace{\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)}_{\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)} \stackrel{\text { def }}{=} \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)+\mathbf{J}\left(\mathbf{Z}_{i}\right) \mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right) \stackrel{!}{=} 0
$$

Illustration on circle fitting

We are estimating distance from point \mathbf{x} to circle \mathcal{V}_{C} of radius r in canonical position. The circle is $\varepsilon(\mathbf{x})=\|\mathbf{x}\|^{2}-r^{2}=0$. Then

$$
\varepsilon(\hat{\mathbf{x}}) \approx \varepsilon(\mathbf{x})+\underbrace{\frac{\partial \varepsilon(\mathbf{x})}{\partial \mathbf{x}}}_{\mathbf{J}(\mathbf{x})=2 \mathbf{x}^{\top}} \underbrace{(\hat{\mathbf{x}}-\mathbf{x})}_{\mathbf{e}(\hat{\mathbf{x}}, \mathbf{x})}=\cdots=2 \mathbf{x}^{\top} \hat{\mathbf{x}}-\left(r^{2}+\|\mathbf{x}\|^{2}\right) \stackrel{\text { def }}{=} \varepsilon_{L}(\hat{\mathbf{x}})
$$

and $\boldsymbol{\varepsilon}_{L}(\hat{\mathbf{x}})=0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^{2}+\|\mathbf{x}\|^{2}}{2\|\mathbf{x}\|} \quad$ not tangent to \mathcal{V}_{C}, outside!

-Sampson Error Approximation

In general, the Taylor expansion is

$$
\boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)+\underbrace{\frac{\partial \boldsymbol{\varepsilon}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}}_{\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right)} \underbrace{\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)}_{\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)}=\underbrace{\varepsilon\left(\mathbf{Z}_{i}\right)}_{\boldsymbol{\varepsilon}_{i} \in \mathbb{R}^{n}}+\underbrace{\mathbf{J}\left(\mathbf{Z}_{i}\right)}_{\mathbf{J}_{i} \in \mathbb{R}^{n, d}} \underbrace{\mathbf{e}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)}_{\mathbf{e}_{i} \in \mathbb{R}^{d}} \stackrel{!}{=} 0
$$

to find $\hat{\mathbf{Z}}_{i}$ closest to \mathbf{Z}_{i}, we estimate \mathbf{e}_{i} from ε_{i} by minimizing
per correspondence \mathbf{X}_{i}

$$
\mathbf{e}_{i}^{*}=\arg \min _{\mathbf{e}_{i}}\left\|\mathbf{e}_{i}\right\|^{2} \quad \text { subject to } \quad \boldsymbol{\varepsilon}_{i}+\mathbf{J}_{i} \mathbf{e}_{i}=0
$$

which gives a closed-form solution
$\circledast \mathrm{P} 1 ; 1 \mathrm{pt}:$ derive \mathbf{e}_{i}^{*}

$$
\begin{aligned}
\mathbf{e}_{i}^{*} & =-\mathbf{J}_{i}^{\top}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i} \\
\left\|\mathbf{e}_{i}^{*}\right\|^{2} & =\boldsymbol{\varepsilon}_{i}^{\top}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i}
\end{aligned}
$$

- note that \mathbf{J}_{i} is not invertible!
- we often do not need $\hat{\mathbf{Z}}_{i}$, just the squared distance $\left\|\mathbf{e}_{i}\right\|^{2} \quad$ exception: triangulation \rightarrow Slide 100
- the unknown parameters \mathbf{F} are inside: $\mathbf{e}_{i}=\mathbf{e}_{i}(\mathbf{F}), \boldsymbol{\varepsilon}_{i}=\boldsymbol{\varepsilon}_{i}(\mathbf{F}), \mathbf{J}_{i}=\mathbf{J}_{i}(\mathbf{F})$

-Sampson Error: Result for Fundamental Matrix Estimation

The fundamental matrix estimation problem becomes

$$
\mathbf{F}^{*}=\arg \min _{\mathbf{F}, \mathrm{rank} \mathbf{F}=2} \sum_{i=1}^{k} e_{i}^{2}(\mathbf{F})
$$

Let $\mathbf{F}=\left[\begin{array}{lll}\mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3}\end{array}\right]$ (per columns) $=\left[\begin{array}{c}\left(\mathbf{F}^{1}\right)^{\top} \\ \left(\mathbf{F}^{2}\right)^{\top} \\ \left(\mathbf{F}^{3}\right)^{\top}\end{array}\right]$ (per rows), $\mathbf{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, then

Sampson

$$
\begin{array}{rlrl}
\varepsilon_{i} & =\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i} & \varepsilon_{i} \in \mathbb{R} & \text { scalar algebraic error from Slide 81 } \\
\mathbf{J}_{i} & =\left[\frac{\partial \varepsilon_{i}}{\partial u_{i}^{1}}, \frac{\partial \varepsilon_{i}}{\partial v_{i}^{1}}, \frac{\partial \varepsilon_{i}}{\partial u_{i}^{2}}, \frac{\partial \varepsilon_{i}}{\partial v_{i}^{2}}\right] & \mathbf{J}_{i} \in \mathbb{R}^{1,4} & \text { derivatives over point coords. } \\
e_{i}^{2}(\mathbf{F}) & =\frac{\varepsilon_{i}^{2}}{\left\|\mathbf{J}_{i}\right\|^{2}} & e_{i} \in \mathbb{R} & \text { Sampson error } \\
\mathbf{J}_{i}=\left[\left(\mathbf{F}_{1}\right)^{\top} \mathbf{y}_{i},\left(\mathbf{F}_{2}\right)^{\top} \mathbf{y}_{i},\left(\mathbf{F}^{1}\right)^{\top} \mathbf{x}_{i},\left(\mathbf{F}^{2}\right)^{\top} \mathbf{x}_{i}\right] & e_{i}^{2}(\mathbf{F})=\frac{\left(\mathbf{\mathbf { y }}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}\right)^{2}}{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F} \underline{\mathbf{y}}_{i}\right\|^{2}}
\end{array}
$$

- Sampson correction 'normalizes' the algebraic error
- automatically copes with multiplicative factors $\mathbf{F} \mapsto \lambda \mathbf{F}$
- actual optimization not yet covered \rightarrow Slide 103

-Back to Triangulation: The Golden Standard Method

We are given $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a single correspondence $x \leftrightarrow y$ and we look for 3D point \mathbf{X} projecting to x and y.
\rightarrow Slide 85

Idea:

1. compute \mathbf{F} from $\mathbf{P}_{1}, \mathbf{P}_{2}$, e.g. $\mathbf{F}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{\top}\left[\mathbf{q}_{1}-\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right) \mathbf{q}_{2}\right]_{\times}$
2. correct measurement by the linear estimate of the correction vector
\rightarrow Slide 98

$$
\left[\begin{array}{l}
\hat{u}^{1} \\
\hat{v}^{1} \\
\hat{u}^{2} \\
\hat{v}^{2}
\end{array}\right] \approx\left[\begin{array}{l}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right]-\frac{\varepsilon}{\|\mathbf{J}\|^{2}} \mathbf{J}^{\top}=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right]-\frac{\mathbf{y}^{\top} \mathbf{F} \underline{\mathbf{x}}}{\|\mathbf{S F} \underline{\mathbf{x}}\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}\right\|^{2}}\left[\begin{array}{l}
\left(\mathbf{F}_{1}\right)^{\top} \mathbf{y} \\
\left(\mathbf{F}_{2}\right)^{\top} \mathbf{y} \\
\left(\mathbf{F}^{1}\right)^{\top} \mathbf{x} \\
\left(\mathbf{F}^{2}\right)^{\top} \mathbf{x}
\end{array}\right]
$$

3. use the SVD algorithm with numerical conditioning

Ex (cont'd from Slide 89):

X_{T} - noiseless ground truth position

- - reprojection error minimizer
X_{s} - Sampson-corrected algebraic error minimizer
X_{a} - algebraic error minimizer
m - measurement (m_{T} with noise in v^{2})

Levenberg-Marquardt (LM) Iterative Estimation

Consider error function $\mathbf{e}_{i}(\boldsymbol{\theta})=f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \boldsymbol{\theta}\right) \in \mathbb{R}^{m}, \quad$ with $\mathbf{x}_{i}, \mathbf{y}_{i}$ given, $\theta \in \mathbb{R}^{q}$ unknown $\theta=\mathbf{F}, q=9, m=1$ for f.m. estimation
Our goal: $\quad \boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}\left\|\mathbf{e}_{i}(\boldsymbol{\theta})\right\|^{2}$
Idea 1 (Gauss-Newton approximation): proceed iteratively for $s=0,1,2, \ldots$

$$
\begin{equation*}
\boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s}, \quad \text { where } \quad \mathbf{d}_{s}=\arg \min _{\mathbf{d}} \sum_{i=1}^{k}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}\right)\right\|^{2} \tag{15}
\end{equation*}
$$

$$
\begin{aligned}
\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}\right) & \approx \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)+\mathbf{L}_{i} \mathbf{d}, \\
\left(\mathbf{L}_{i}\right)_{j l} & =\frac{\partial\left(\mathbf{e}_{i}(\boldsymbol{\theta})\right)_{j}}{\partial(\boldsymbol{\theta})_{l}}, \quad \mathbf{L}_{i} \in \mathbb{R}^{m, q} \quad \text { typically a long matrix }
\end{aligned}
$$

Then the solution to Problem (15) is a set of normal eqs

$$
\begin{equation*}
-\underbrace{\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)}_{\mathbf{e} \in \mathbb{R}^{q, 1}}=\underbrace{\left(\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)}_{\mathbf{L} \in \mathbb{R}^{q, q}} \mathbf{d}_{s} \tag{16}
\end{equation*}
$$

- \mathbf{d}_{s} can be solved for by Gaussian elimination using Choleski decomposition of \mathbf{L} \mathbf{L} symmetric \Rightarrow use Choleski, almost $2 \times$ faster than Gauss-Seidel, see bundle adjustment
- such updates do not lead to stable convergence \longrightarrow ideas of Levenberg and Marquardt

LM (cont'd)

Idea 2 (Levenberg): replace $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ with $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda \mathbf{I}$ for some damping factor $\lambda \geq 0$ Idea 3 (Marquardt): replace $\lambda \mathbf{I}$ with $\lambda \sum_{i} \operatorname{diag}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)$ to adapt to local curvature:

$$
-\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)=\left(\sum_{i=1}^{k}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda \operatorname{diag} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)\right) \mathbf{d}_{s}
$$

Idea 4 (Marquardt): adaptive λ small $\lambda \rightarrow$ Gauss-Newton, large $\lambda \rightarrow$ gradient descend

1. choose $\lambda \approx 10^{-3}$ and compute \mathbf{d}_{s}
2. if $\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}_{s}\right)\right\|^{2}<\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)\right\|^{2}$ then accept \mathbf{d}_{s} and set $\lambda:=\lambda / 10, s:=s+1$
3. otherwise set $\lambda:=10 \lambda$ and recompute \mathbf{d}_{s}

- sometimes different constants are needed for the 10 and 10^{-3}
- note that $\mathbf{L}_{i} \in \mathbb{R}^{m, q}$ (long matrix) but each contribution $\mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ is a square singular $q \times q$ matrix (always singular for $k<q$)
- error can be made robust to outliers, see the trick on Slide 106
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation)

See [Triggs et al. 1999, Sec. 4.3]

- λ helps avoid the consequences of gauge freedom \rightarrow Slide 136

LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates $u^{1}, v^{1}, u^{2}, v^{2}$)

$$
e_{i}^{2}(\mathbf{F})=\frac{\varepsilon_{i}^{2}}{\left\|\mathbf{J}_{i}\right\|^{2}}=\frac{\left(\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}\right)^{2}}{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right\|^{2}} \quad \mathbf{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

LM (by linearization over parameters \mathbf{F})

$$
\mathbf{L}_{i}=\frac{\partial e_{i}(\mathbf{F})}{\partial \mathbf{F}}=\frac{1}{2\left\|\mathbf{J}_{i}\right\|}\left[\left(\underline{\mathbf{y}}_{i}-\frac{2 e_{i}}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F} \underline{\mathbf{x}}_{i}\right) \underline{\mathbf{x}}_{i}^{\top}+\underline{\mathbf{y}}_{i}\left(\underline{\mathbf{x}}_{i}-\frac{2 e_{i}}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right)^{\top}\right]
$$

- \mathbf{L}_{i} is a 3×3 matrix, must be reshaped to dimension- 9 vector
- $\underline{\mathbf{x}}_{i}$ and $\underline{\mathbf{y}}_{i}$ in Sampson error are normalized to unit homogeneous coordinate
- reinforce $\operatorname{rank} \mathbf{F}=2$ after each LM update to stay in the fundamental matrix manifold and $\|\mathbf{F}\|=1$ to avoid gauge freedom
(by SVD, see Slide 104)
- LM linearization could be done by numerical differentiation (small dimension)

-Local Optimization for Fundamental Matrix Estimation

Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k>7$ inlier correspondences, compute an efficient estimate for fundamental matrix \mathbf{F}.

1. Find the conditioned (\rightarrow Slide 88) 7-point $\mathbf{F}_{0}(\rightarrow$ Slide 81) from a suitable 7-tuple
2. Improve the \mathbf{F}_{0}^{*} using the LM optimization (\rightarrow Slides 101-102) and the Sampson error $\left(\rightarrow\right.$ Slide 103) on all inliers, reinforce rank-2, unit-norm \mathbf{F}_{k}^{*} after each LM iteration using SVD

- if there are no wrong matches (outliers), this gives a local optimum
- contamination of (inlier) correspondences by outliers may wreak havoc with this algorithm
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

-The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given two sets of image points $X=\left\{x_{i}\right\}_{i=1}^{m}$ and $Y=\left\{y_{j}\right\}_{j=1}^{n}$ and their descriptors D, find the most probable

1. inliers $S_{X} \subseteq X, S_{Y} \subseteq Y$
2. one-to-one perfect matching $M: S_{X} \rightarrow S_{Y}$
perfect matching: 1-factor of the bipartite graph
3. fundamental matrix \mathbf{F} such that $\operatorname{rank} \mathrm{F}=2$
4. such that for each $x_{i} \in S_{X}$ and $y_{j}=M\left(x_{i}\right)$ it is probable that
a. the image descriptor $D\left(x_{i}\right)$ is similar to $D\left(y_{j}\right)$, and
b. the total geometric error $\sum_{i j} e_{i j}^{2}(\mathbf{F})$ is small note a slight change in notation: $e_{i j}$
5. inlier-outlier and outlier-outlier matches are improbable

$$
\begin{equation*}
\left(M^{*}, \mathbf{F}^{*}\right)=\arg \max _{M, \mathbf{F}} p(M, \mathbf{F} \mid X, Y, D) \tag{17}
\end{equation*}
$$

- probabilistic model: an efficient language for task formulation
- the (17) is a p.d.f. for all the involved variables
(there is a constant number of variables!)
- binary matching table $M_{i j} \in\{0,1\}$ of fixed size $m \times n$
- each row/column contains at most one unity
- zero rows/columns correspond to unmatched point x_{i} / y_{j}

Thank You

\section*{O P P
 | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

