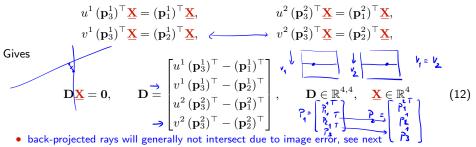
► The Triangulation Problem

Problem: Given cameras P_1 , P_2 and a correspondence $x \leftrightarrow y$ compute a 3D point X projecting to x and y

$$\lambda_{1} \underline{\mathbf{x}} = \mathbf{P}_{1} \underline{\mathbf{X}}, \qquad \lambda_{2} \underline{\mathbf{y}} = \mathbf{P}_{2} \underline{\mathbf{X}}, \qquad \underline{\mathbf{x}} = \begin{bmatrix} u^{1} \\ v^{1} \\ 1 \end{bmatrix}, \qquad \underline{\mathbf{y}} = \begin{bmatrix} u^{2} \\ v^{2} \\ 1 \end{bmatrix}, \qquad \mathbf{P}_{i} = \begin{bmatrix} (\mathbf{p}_{1}^{i})^{\top} \\ (\mathbf{p}_{2}^{i})^{\top} \\ (\mathbf{p}_{3}^{i})^{\top} \end{bmatrix}$$

Linear triangulation method



- using Jack-knife (Slide 66) not recommended
- we will use SVD (Slide 86)
- but the result will not be invariant to projective frame

replacing $\mathbf{P}_{\mathbf{I}} \mapsto \mathbf{P}_{\mathbf{I}}\mathbf{H}, \mathbf{P}_{\mathbf{Z}}^{\mathsf{X}} \mapsto \mathbf{P}_{\mathbf{Z}}^{\mathsf{X}}\mathbf{H}$ does not always result in $\underline{\mathbf{X}} \mapsto \mathbf{H}^{-1}\underline{\mathbf{X}}$

sensitive to small error

• the homogeneous form in (12) can represent points at infinity

3D Computer Vision: IV. Computing with a Camera Pair (p. 85/213) 🔊 ९ ९ R. Šára, CMP; rev. 30-Oct-2012 🔢

► The Least-Squares Triangulation by SVD

if D is full-rank we may minimize the algebraic least-squares error

$$\begin{split} \underbrace{\mathbf{X}}_{\mathbf{x}} & \text{and} \quad \underbrace{\mathbf{W}}_{\mathbf{y}} \quad \mathbf{E}^{\mathbf{x}}(\mathbf{y}) \\ \mathbf{x} \in \mathbf{X} \\ \mathbf{x} \in \mathbf{X} \\ \mathbf{x} \in \mathbf{X} \\ \mathbf{y} = \mathbf{x} \\ \mathbf{x} \in \mathbf{y} \\ \mathbf{y} = \mathbf{x} \\ \mathbf{x} \in \mathbf{y} \\ \mathbf{y} = \mathbf{x} \\ \mathbf{x} = \mathbf{y} \\ \mathbf{x} = \mathbf{y} \\ \mathbf{x} = \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} = \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} = \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x}$$

$$\underline{\mathbf{X}} = \arg\min_{\mathbf{q}, \|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q} = \mathbf{u}_{4}, \qquad \mathbf{q}^{\top} \mathbf{Q} \mathbf{q} = \sum_{j=1}^{\infty} \sigma_{j}^{2} \underbrace{\mathbf{q}^{\top} \mathbf{u}_{j}}_{j} \underbrace{\mathbf{u}_{j}^{\top} \mathbf{q}}_{j} = \sum_{j=1}^{\infty} \sigma_{j}^{2} (\mathbf{u}_{j}^{\top} \mathbf{q})^{2}$$

we have a sum of non-negative elements $0 \le (\mathbf{u}_j^\top \mathbf{q})^2 \le 1$, let $\mathbf{q} = \mathbf{u}_4 + \bar{\mathbf{q}}$ s.t. $\bar{\mathbf{q}} \perp \mathbf{u}_4$, then $\mathbf{q}^\top \mathbf{Q} \mathbf{q} = \sigma_4^2 + \sum_{i=1}^{\mathbf{z}} \sigma_j^2 (\mathbf{u}_j^\top \bar{\mathbf{q}})^2 \ge \sigma_4^2$

3D Computer Vision: IV. Computing with a Camera Pair (p. 86/213) 996 R. Šára, CMP; rev. 30-Oct-2012 🚰

▶cont'd

 if σ₄ ≪ σ₃, there is a unique solution <u>X</u> = u₄ with residual error (D <u>X</u>)² = σ₄² the quality (conditioning) of the solution may be expressed as q = σ₃/σ₄ (greater is better)

Matlab code for the least-squares solver:

sva (2)

```
[U,0,V] = svd(D);
X = V(:,end);
q = 0(3,3)/0(4,4);
```

 \circledast P1; 2pt: Why did we decompose ${\bf D}$ and not ${\bf Q}={\bf D}^\top{\bf D}?$ Could we use QR decomposition instead of SVD?

Numerical Conditioning

• The equation $\mathbf{D}\underline{\mathbf{X}} = \mathbf{0}$ in (12) may be ill-conditioned for numerical computation, which results in a poor estimate for $\underline{\mathbf{X}}$.

Why: on a row of D there are big entries together with small entries, e.g. of orders projection centers in mm, image points in px

$$\begin{bmatrix} 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \\ 10^3 & 0 & 10^3 & 10^6 \\ 0 & 10^3 & 10^3 & 10^6 \end{bmatrix}$$

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

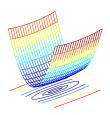
$$0 = \mathbf{D} \mathbf{q} = \bigcup_{\mathbf{q}} \mathbf{S} \mathbf{S} \underbrace{\mathbf{S}^{-1}}_{\mathbf{q}} \mathbf{q} = \mathbf{\bar{D}} \mathbf{\bar{q}} \qquad \mathbf{\bar{q}} = \mathbf{\bar{S}} \mathbf{\bar{q}} \rightarrow \mathbf{q} = \mathbf{S} \mathbf{\bar{q}}$$

choose ${\bf S}$ to make the entries in $\hat{{\bf D}}$ all smaller than unity in absolute value:

$$\mathbf{S} = \text{diag}(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}) \qquad \qquad \mathbf{S} = \text{diag}(1./\text{max}(\text{max}(\text{abs}(D)), 1))$$

- 2. solve for $\bar{\mathbf{q}}$ as before
- 3. get the final solution as $\mathbf{q} = \mathbf{S} \, \bar{\mathbf{q}}$

ullet when SVD is used in camera resectioning, conditioning is essential for success \hdots \rightarrow Slide 65



Back to Triangulation: The Golden Standard Method

We are given P_1 , P_2 and a single correspondence $x \leftrightarrow y$ and we look for 3D point **X** projecting to x and y. \rightarrow Slide 85

Idea:

- 1. compute $\mathbf F$ from $\mathbf P_1$, $\mathbf P_2$, e.g. $\mathbf F=(\mathbf Q_1\mathbf Q_2^{-1})^\top [\mathbf q_1-(\mathbf Q_1\mathbf Q_2^{-1})\mathbf q_2]_\times$
- 2. correct measurement by linear estimate of the correction vector

$$\begin{bmatrix} \hat{u}^1 \\ \hat{v}^1 \\ \hat{u}^2 \\ \hat{v}^2 \end{bmatrix} \approx \begin{bmatrix} u^1 \\ v^1 \\ u^2 \\ v^2 \end{bmatrix} - \frac{\varepsilon}{\|\mathbf{J}\|^2} \, \mathbf{J}^\top = \begin{bmatrix} u^1 \\ v^1 \\ u^2 \\ v^2 \end{bmatrix} - \frac{\underline{\mathbf{y}}^\top \mathbf{F} \underline{\mathbf{x}}}{\|\mathbf{S}\mathbf{F}\underline{\mathbf{x}}\|^2 + \|\mathbf{S}\mathbf{F}^\top\underline{\mathbf{y}}\|^2} \begin{bmatrix} (\mathbf{F}_1)^\top \mathbf{y} \\ (\mathbf{F}_2)^\top \mathbf{y} \\ (\mathbf{F}^1)^\top \mathbf{x} \\ (\mathbf{F}^2)^\top \mathbf{x} \end{bmatrix}$$

3. use the SVD algorithm with numerical conditioning

Ex (cont'd from Slide 89): C_1 C_2 X_T - noiseless ground truth position \bullet - reprojection error minimizer X_s - Sampson-corrected algebraic error minimizer X_a - algebraic error minimizer m - measurement (m_T with noise in v^2) C_1 m_{T} - m_{T} - m_{T} - m_{T}

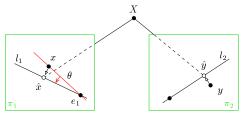
3D Computer Vision: V. Optimization for 3D Vision (p. 100/203) のへや

R. Šára, CMP; rev. 30–Oct–2012 🖲

 \rightarrow Slide 86

Optimal Triangulation for the Geeks

- detected image points x, y do not satisfy epipolar geometry exactly
- as a result optical rays do not intersect in space, we must correct the image points to $\hat{x},\,\hat{y}$ first



- 1. given epipolar line l_1 and l_2 , $l_2 \simeq \mathbf{F}[\mathbf{e}_1]_{\times} \mathbf{l}_1$ the \hat{x} , \hat{y} are the closest points on l_1 , l_2
- 2. parameterize all possible l_1 by θ
 - find θ after translating $\underline{\mathbf{x}}$, $\underline{\mathbf{y}}$ to (0,0,1), rotating the epipoles to $(1,0,f_1)$, $(1,0,f_2)$, and parameterising $\underline{\mathbf{l}}_1 = (0,\theta,\overline{1}) \times (1,0,f_1)$
- 3. minimise the error

$$\theta^* = \arg\min_{\theta} d^2 (x, l_1(\theta)) + d^2 (y, l_2(\theta))$$

the problem reduces to 6-th degree polynomial root finding, see [H&Z, Sec 12.5.2] 4. compute \hat{x} , \hat{y} and triangulate using the linear method on Slide 85

- the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
- a fully optimal procedure requires error re-definition in order to get the most probable $\hat{x},\,\hat{y}$

Continuation from Slide 71

problem	given	unknown	slide
resectioning	6 world-img correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^6$	Р	65
exterior orientation	K , 3 world–img correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^3$	R , C	69
fundamental matrix	7 img-img correspondences $\left\{(m_i, m_i') ight\}_{i=1}^7$	F	81
relative orientation	K, 5 img-img correspondences $\left\{ \left(m_{i},m_{i}^{\prime} ight) ight\} _{i=1}^{5}$	R, t	84
triangulation	1 img-img correspondence (m_i,m_i')	X	85

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators ightarrow Slide 113)
- algebraic error optimization (with SVD) makes sense in resectioning and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

3D Computer Vision: IV. Computing with a Camera Pair (p. 91/213) のへへ R. Šára, CMP; rev. 30-Oct-2012 🔢

Part V

Optimization for 3D Vision

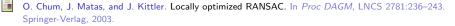
- **5** Algebraic Error Optimization
- 6 The Concept of Error for Epipolar Geometry
- 1 Levenberg-Marquardt's Iterative Optimization
- 8 The Correspondence Problem
- Optimization by Random Sampling

covered by

- [1] [H&Z] Secs: 11.4, 11.6, 4.7
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. *Communications of the ACM* 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. *Computer Vision, Graphics, and Image Processing*, 18:97–108, 1982.

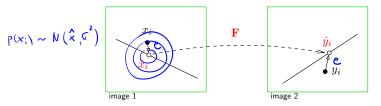


3D Computer Vision: V. Optimization for 3D Vision (p. 92/213) つくへ R. Šára, CMP; rev. 30-Oct-2012 🔢

► The Concept of Error for Epipolar Geometry

Problem: Given at least 8 corresponding points $x_i \leftrightarrow y_j$ in a general position, estimate the most likely (or most probable) fundamental matrix **F**.

 $\text{meganeman}(s \quad \mathbf{x}_i = (u_i^1, \, v_i^1), \quad \mathbf{y}_i = (u_i^2, \, v_i^2), \qquad i = 1, 2, \dots, k, \quad k \geq 8$



- detected points x_i , y_i ; the correspondence set is $S = \{(x_i, y_i)\}_{i=1}^k$
- corrected points \hat{x}_i , \hat{y}_i ; the set is $\hat{S} = \left\{ (\hat{x}_i, \hat{y}_i) \right\}_{i=1}^k$
- corrected points satisfy the epipolar geometry exactly $\hat{\mathbf{y}}_i^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}}_i = 0$ for all $k = \eta_{ij} \mathbf{k}$
- small correction is more probable
- ok, but we need to choose a definite error function for optimization that is tractable
- the solution for calibrated cameras (unknown ${\bf E})$ is essentially the same and is not mentioned here explicitly

▶cont'd

- Let $V(\cdot)$ be a positive semi-definite 'energy function'
- e.g., per correspondence,

-
$$V_i(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F}) = \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|^2 + \|\mathbf{y}_i - \hat{\mathbf{y}}_i\|^2$$
 (13)

• the total (negative) log-likelihood (of all data) then is

$$L(S \mid \hat{S}, \mathbf{F}) = \sum_{i=1}^{k} V_i(x_i, y_i \mid \hat{x}_i, \hat{y}_i, \mathbf{F})$$

and the optimization problem is

$$\hat{S}^{*}, \mathbf{F}^{*}) = \arg\min_{\substack{\mathbf{F}\\ \text{rank } \mathbf{F} = 2}} \min_{\substack{\hat{y}_{i}^{\top} \mathbf{F} \, \hat{\mathbf{x}}_{i} = 0}} \sum_{i=1}^{k} V_{i}(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F})$$
(14)

Slide 96

we mention 3 approaches

- 1. direct optimization of 'geometric error' over all variables \hat{S} , F Slide 95
- 2. approximate minimization of $L(S \mid \hat{S}, \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F}

3. marginalization of $L(S, \hat{S} | \mathbf{F})$ over \hat{S} followed by minimization over \mathbf{F}

Method 1: Geometric Error Optimization

• we need to encode the constraints $\hat{\mathbf{y}}_i \mathbf{F} \hat{\mathbf{x}}_i = 0$, rank $\mathbf{F} = 2$

- idea: reconstruct 3D point via equivalent projection matrices and use reprojection error
- equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

$(\mathbf{\hat{r}}, \mathbf{\hat{\varsigma}}) \rightarrow \mathbf{\hat{\chi}} \qquad \mathbf{P}_1 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} \begin{bmatrix} \mathbf{e}_2 \end{bmatrix}_{\times} \mathbf{F} + \mathbf{e}_2 \mathbf{e}_1^{\top} & \mathbf{e}_2 \end{bmatrix}$

 \circledast H3; 2pt: Verify that \mathbf{F} is a f.m. of \mathbf{P}_1 , \mathbf{P}_2 , for instance that $\mathbf{F} \simeq \mathbf{Q}_2^{-\top} \mathbf{Q}_1^{\top} [\mathbf{e}_1]_{\times}$

- 1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithmSlide 812. construct camera $\mathbf{P}_2^{(0)}$ from $\mathbf{F}^{(0)}$
- 3. triangulate 3D points $\hat{X}_i^{(0)}$ from correspondences (x_i, y_i) for all $i = 1, \dots, k$ Slide 85
- 4. express the energy function as reprojection error

 $W_i(x_i, y_i \mid \hat{X}_i, \mathbf{P}_2) = \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|^2 + \|\mathbf{y}_i - \hat{\mathbf{y}}_i\|^2 \quad \text{where} \quad \mathbf{\underline{\hat{x}}}_i \simeq \mathbf{P}_1 \mathbf{\underline{\hat{X}}}_i, \ \mathbf{\underline{\hat{y}}}_i \simeq \mathbf{P}_2(\mathbf{F}) \mathbf{\underline{\hat{X}}}_i$

5. starting from $\mathbf{P}_2^{(0)}$, $\hat{X}^{(0)}$ minimize

$$(\hat{X}^*, \mathbf{P}_2^*) = \arg\min_{\mathbf{P}_2, \hat{X}} \sum_{i=1}^k W_i(x_i, y_i \mid \hat{X}_i, \mathbf{P}_2)$$

 \cap

- 6. compute \mathbf{F} from \mathbf{P}_1 , \mathbf{P}_2^*
- 3k+12 'parameters' to be found: latent: $\mathbf{\hat{X}}_i$, for all i (correspondences!), non-latent: \mathbf{P}_2
- there are pitfalls; this is essentially bundle adjustment; we will return to this later Slide 139

Thank You

