► Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective images of 3</u> reference <u>Points</u>. **Problem:** Given **K** and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find **R**, **C** by solving

$$\lambda_i \underline{\mathbf{m}}_i = \mathbf{K} \mathbf{R} (\mathbf{X}_i - \mathbf{C}), \qquad i = 1, 2, 3$$

1. Transform $\mathbf{v}_i \stackrel{\text{def}}{=} \mathbf{K}^{-1} \mathbf{\underline{m}}_i$. Then configuration w/o rotation $\lambda_{i} \underline{\mathbf{v}}_{i} = \mathbf{R} \left(\mathbf{X}_{i} - \mathbf{C} \right). \quad \left(\mathbf{x}_{i} - \mathbf{c} \right)^{\mathsf{T}} \boldsymbol{\ell}^{\mathsf{T}} \boldsymbol{\mathcal{R}} \left(\mathbf{x}_{i} - \mathbf{c} \right)$ (9) X: V.V: 2. Eliminate **R** by taking rotation preserves length: $\|\mathbf{R}\mathbf{x}\| = \|\mathbf{x}\|$ $\underline{\mathbf{v}}_1$ $|\boldsymbol{\lambda}_i| \cdot \|\mathbf{v}_i\| = \|\mathbf{X}_i - \mathbf{C}\| \stackrel{\text{def}}{=} z_i$ $\underline{\mathbf{v}}_2$ (10) z_1 \mathbf{X}_3 3. Consider only angles among v_i and apply Cosine Law per z_2 triangle ($\mathbf{C}, \mathbf{X}_i, \mathbf{X}_j$) $i, j = 1, 2, 3, i \neq j$ \mathbf{X}_1 d_{12} $d_{ij}^2 = z_i^2 + z_j^2 - 2 z_i z_j c_{ij},$ \mathbf{X}_2 $z_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \mathbf{v}_i \, \mathbf{v}_j)$ 4. Solve system of 3 quadratic eqs in 3 unknowns z_i [Fischler & Bolles, 1981] there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from X_i and z_i ; then λ_i from (10) and R from (9)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

3D Computer Vision: III. Computing with a Single Camera (p. 69/213) つへへ R. Šára, CMP; rev. 16-Oct-2012 🚺

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

• center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i

degenerate

• camera *C* is coplanar with points (*X*₁, *X*₂, *X*₃) but is not on the circumscribed circle of (*X*₁, *X*₂, *X*₃)

<u>unstable</u>: a small change of X_i results in a large change of Ccan be detected by error propagation

no solution

- **1**. C cocyclic with (X_1, X_2, X_3)
- additional critical configurations depend on the method to solve the quadratic equations

[Haralick et al. IJCV 1994]

problem	given	unknown	slide
resectioning	6 world-img correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^6$	Р	65
exterior orientation	K, 3 world-img correspondences $\left\{ \left(X_{i},m_{i} ight) ight\} _{i=1}^{3}$	R , C	69

• resectioning and exterior orientation are similar problems in a sense:

- we do resectioning when our camera is uncalibrated
- · we do orientation when our camera is calibrated
- more problems to come

Part IV

Computing with a Camera Pair

- Camera Motions Inducing Epipolar Geometry
- Estimating Fundamental Matrix from 7 Correspondences
- Istimating Essential Matrix from 5 Correspondences
- Itiangulation: 3D Point Position from a Pair of Corresponding Points
- **(b** Camera Motions Inducing Homographies
- Estimating Relative Homography from Correspondences

covered by

- [1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
- [2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. *Nature*, 293 (5828):133–135, 1981.

► Geometric Model of a Camera Pair

Epipolar geometry:

- · brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Description

• <u>baseline</u> b joins projection centers C_1 , C_2

$$\mathbf{b} = \mathbf{C}_2 - \mathbf{C}_1$$

• epipole
$$e_i \in \pi_i$$
 is the image of C_j :

$$\underline{\mathbf{e}}_1 \simeq \mathbf{P}_1 \underline{\mathbf{C}}_2, \quad \underline{\mathbf{e}}_2 \simeq \mathbf{P}_2 \underline{\mathbf{C}}_1$$

- $l_i \in \pi_i$ is the image of <u>epipolar plane</u> $\varepsilon = (C_2, X, C_1)$
- l_j is the <u>epipolar line</u> in image π_j induced by m_i in image π_i

a necessary condition, see also Slide 87

$\blacktriangleright \text{Cross}$ Products and Maps by Antisymmetric 3×3 Matrices

• There is an equivalence $\mathbf{b} \times \mathbf{m} = [\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$ is a 3×3 antisymmetric matrix

$$\begin{bmatrix} \mathbf{b} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}, \quad \text{assuming} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

the general antisymmetry property

Frobenius norm ($\|\mathbf{A}\|_{F}^{2} = \sum_{i \mid i} |a_{ij}|^{2}$)

 $l_{\lambda}b = b$ check minors of $[b]_{\times}$

Some properties

$$0 = bxb = \hat{L}b_x^3b$$

- **1**. $[\mathbf{b}]_{\times}^{\top} = -[\mathbf{b}]_{\times}$
- $\mathbf{2.} \hspace{0.1 in} \left\| \left[\mathbf{b} \right]_{\times} \right\|_{F} = \sqrt{2} \left\| \mathbf{b} \right\|$
- $\mathbf{3.} \ \mathbf{[b]}_{\times}\mathbf{b} = \mathbf{0}$
- **4.** rank $[\mathbf{b}]_{\times} = 2$ iff $\|\mathbf{b}\| > 0$
- 5. if $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$ then $[\mathbf{R}\mathbf{b}]_{\times} = \mathbf{R}[\mathbf{b}]_{\times}\mathbf{R}^{\top}$
- $\textbf{6.} \ \left[\mathbf{B}\mathbf{z}\right]_{\times} \simeq \mathbf{B}^{-\top} \left[\mathbf{z}\right]_{\times} \mathbf{B}^{-1} \qquad \qquad \text{in general, } \left[\mathbf{A}^{-1}\mathbf{t}\right]_{\times} \cdot \det \mathbf{A} = \mathbf{A}^{\top} \left[\mathbf{t}\right]_{\times} \mathbf{A}$
- 7. if \mathbf{R}_b is rotation about \mathbf{b} then $[\mathbf{R}_b \mathbf{b}]_{\times} = [\mathbf{b}]_{\times}$

Expressing Epipolar Constraint Algebraically

Epipole is the Image of the Other Camera

3D Computer Vision: IV. Computing with a Camera Pair (p. 76/213) つくや R. Šára, CMP; rev. 16-Oct-2012 🔮

► A Summary of the Epipolar Constraint

$$\begin{split} \mathbf{0} &= \mathbf{\underline{m}}_{2}^{\top} \mathbf{F} \, \mathbf{\underline{m}}_{1} \\ \mathbf{F} &\simeq \mathbf{K}_{2}^{-\top} \mathbf{E} \, \mathbf{K}_{1}^{-1} \\ \mathbf{E} &\simeq [\mathbf{t}_{21}]_{\times} \mathbf{R}_{21} = [\mathbf{R}_{2} \mathbf{b}]_{\times} \mathbf{R}_{21} = \mathbf{R}_{21} [\mathbf{R}_{1} \mathbf{b}]_{\times} \\ \mathbf{\underline{e}}_{1} &\simeq \mathrm{null}(\mathbf{F}), \quad \mathbf{\underline{e}}_{2} \simeq \mathrm{null}(\mathbf{F}^{\top}) \end{split}$$

- E captures the relative pose
- the translation length t₂₁ is lost **E** is homogeneous

proof of $\mathbf{l}_2 \simeq \mathbf{F} [\mathbf{e}_1]_{\times} \mathbf{l}_1$: line/point transmutation $\mathbf{l}_2 \simeq \mathbf{F} \mathbf{x} \simeq \mathbf{F}(\mathbf{k} \times \mathbf{l}_1) = \mathbf{F} [\mathbf{k}]_{\times} \mathbf{l}_1 = \mathbf{F} [\mathbf{e}_1]_{\times} \mathbf{l}_1$

3D Computer Vision: IV. Computing with a Camera Pair (p. 77/213) nac R. Šára, CMP; rev. 16–Oct–2012 🗺 Thank You

