- Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of $\underline{3}$ reference $\underline{\text { Points. }}$ Problem: Given \mathbf{K} and three corresponding pairs $\left\{\left(m_{i}, X_{i}\right)\right\}_{i=1}^{3}$, find \mathbf{R}, \mathbf{C} by solving

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{K R}\left(\mathbf{X}_{i}-\mathbf{C}\right), \quad i=1,2,3
$$

1. Transform $\underline{\mathbf{v}}_{i} \stackrel{\text { def }}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_{i}$. Then
$\lambda_{i}^{2} v_{i}^{\top} v_{i}$

$$
\lambda_{i} \underline{\mathbf{v}}_{i}=\mathbf{R}\left(\mathbf{X}_{i}-\mathbf{C}\right) \cdot\left(x_{i}-c\right)^{\top} R^{\top} R\left(x_{i}-c\right)
$$

2. Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R x}\|=\|\mathbf{x}\|$

$$
\begin{equation*}
\left|\lambda_{i}\right| \cdot\left\|\underline{\mathbf{v}}_{i}\right\|=\left\|\mathbf{X}_{i}-\mathbf{C}\right\| \stackrel{\text { def }}{=} z_{i} \tag{10}
\end{equation*}
$$

3. Consider only angles among $\underline{\mathbf{v}}_{i}$ and apply Cosine Law per triangle $\left(\mathbf{C}, \mathbf{X}_{i}, \mathbf{X}_{j}\right) i, j=1,2,3, i \neq j$

$$
\begin{gathered}
d_{i j}^{2}=z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j} c_{i j} \\
z_{i}=\left\|\mathbf{X}_{i}-\mathbf{C}\right\|, \quad d_{i j}=\left\|\mathbf{X}_{j}-\mathbf{X}_{i}\right\|, \quad c_{i j}=\cos \left(\angle \underline{\mathbf{v}}_{i} \underline{\mathbf{v}}_{j}\right)
\end{gathered}
$$

[Fischler \& Bolles, 1981]
rify on additional points)

4. Solve system of 3 quadratic eqs in 3 unknowns z_{i} (verify on additional points)
5. Compute \mathbf{C} by trilateration (3-sphere intersection) from \mathbf{X}_{i} and z_{i}; then λ_{i} from (10) and \mathbf{R} from (9)

Similar problems (P4P with unknown f) at http://cmp.felk.cvut.cz/minimal/ (with code)

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}

degenerate

- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right)$
unstable: a small change of X_{i} results in a large change of C can be detected by error propagation

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$

- additional critical configurations depend on the method to solve the quadratic equations
[Haralick et al. IJCV 1994]

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
resectioning	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	65
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	69

- resectioning and exterior orientation are similar problems in a sense:
- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- more problems to come

Part IV

Computing with a Camera Pair

12 Camera Motions Inducing Epipolar Geometry
(13) Estimating Fundamental Matrix from 7 Correspondences
(14) Estimating Essential Matrix from 5 Correspondences
(15) Triangulation: 3D Point Position from a Pair of Corresponding Points
(10) Camera Motions Inducing Homographies
(1) Estimating Relative Homography from Correspondences
covered by
[1] [H\&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633
additional references
H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293 (5828):133-135, 1981.

Geometric Model of a Camera Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

$a=3000$
two-camera setup

$$
22 \rightarrow 7
$$

Epipolar constraint: d_{2}, b, d_{1} are coplanar

Description

- baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

- epipole $e_{i} \in \pi_{i}$ is the image of C_{j} :

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

- $l_{i} \in \pi_{i}$ is the image of epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

- l_{j} is the epipolar line in image π_{j} induced by m_{i} in image π_{i}
a necessary condition, see also Slide 87
- Epipolar plane

- Cross Products and Maps by Antisymmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=[\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 antisymmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

$$
0=b \times b=[b]_{x} b
$$

1. $[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times}$
2. $\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\|$
3. $[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0}$
4. $\operatorname{rank}[\mathbf{b}]_{\times}=2$ ff $\|\mathbf{b}\|>0$

5. if $\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}$ then $[\mathbf{R b}]_{\times}=\mathbf{R}[\mathbf{b}]_{\times} \mathbf{R}^{\top}$
6. $[\mathrm{Bz}]_{\times} \simeq \mathbf{B}^{-\top}[\mathbf{z}]_{\times} \mathbf{B}^{-1}$

Frobenius norm $\left(\|\mathbf{A}\|_{F}^{2}=\sum_{i, j}\left|a_{i j}\right|^{2}\right)$
the general antisymmetry property
7. if \mathbf{R}_{b} is rotation about \mathbf{b} then $\left[\mathbf{R}_{b} \mathbf{b}\right]_{\times}=[\mathbf{b}]_{\times}$

Expressing Epipolar Constraint Algebraically

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right], i=1,2
$$

\mathbf{R}_{21}－relative camera rotation， $\mathbf{R}_{21}=\mathbf{R}_{2} \mathbf{R}_{1}^{\top}$
\mathbf{t}_{21}－relative camera translation， $\mathbf{t}_{21}=\mathbf{R}_{21} \mathbf{t}_{1}-\mathbf{t}_{2}=\mathbf{R}_{2} \mathbf{b}$ remember： $\mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}=-\mathbf{R}^{\top} \mathbf{t}$
（Slides 30 and 32 ）

Epipolar constraint
$\underline{\mathbf{m}}_{2}^{\top} \underbrace{\mathbf{E}}_{\underline{\mathbf{m}}}=0 \quad$ is a point－line incidence constraint $3 \times 3-1-1=7$ D ${ }^{\lambda F}$ $l_{2} \quad\left(\mathrm{~F}_{2}\right) 1_{1}=0$
－point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{l}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1}$
－ $\mathbf{F e}_{1}=\mathbf{F}^{\top} \underline{\mathbf{e}}_{2}=\mathbf{0}$（non－trivially）
－point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
－all epipolars meet at the epipole
$\underline{\mathbf{e}}_{1} \simeq \mathbf{Q}_{1} \mathbf{C}_{2}+\mathbf{q}_{1}=\mathbf{Q}_{1} \mathbf{C}_{2}-\mathbf{Q}_{1} \mathbf{C}_{1}^{\prime \prime}=\mathbf{Q}_{1}\left(\mathbf{R}_{2}-C_{1}\right) \quad Q=k_{1} R_{1}$

$$
\mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}\right]_{\times}=\stackrel{\circledast 1}{\cdots}=\mathbf{K}_{2}^{-\top} \underbrace{\left[\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}}_{\text {essential matrix } \mathbf{E}} \mathbf{K}_{1}^{-1} \quad \text { Slide } 74
$$

$$
\mathbf{E}=\left[\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\underbrace{=}, \mathbf{R}_{2} \mathbf{b}]_{\times} \quad \mathbf{R}_{21}=\mathbf{R}_{21} \quad \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}
$$

S．06：$[t]_{\times} R \quad \begin{array}{r}R[b]_{\times} \underbrace{}_{\text {baseline in Cam } 2} \quad \underbrace{R}_{\text {baseline in Cam } 4} 1\end{array}$

Epipole is the Image of the Other Camera

- A Summary of the Epipolar Constraint

$$
\begin{aligned}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} \\
\mathbf{F} & \simeq \mathbf{K}_{2}^{-\top} \mathbf{E} \mathbf{K}_{1}^{-1} \\
\mathbf{E} & \simeq\left[\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times} \mathbf{R}_{21}=\mathbf{R}_{21}\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times} \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), \quad \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right)
\end{aligned}
$$

- E captures the relative pose
- the translation length \mathbf{t}_{21} is lost \mathbf{E} is homogeneous

proof of $\underline{l}_{2} \simeq \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{l}_{1}$: line/point transmutation $\underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{x}} \simeq \mathbf{F}\left(\underline{\mathbf{k}} \times \underline{\mathbf{l}}_{1}\right)=\mathbf{F}[\underline{\mathbf{k}}]_{\times} \underline{\mathbf{l}}_{1}=\mathbf{F}\left[\underline{e}_{1}\right]_{\times} \underline{1}_{1}$

Thank You

