
I1D Projective Coordinates

The 1-D projective coordinate of a point P :

[P ] = [P∞ P0 PI P ] = [p∞ p0 pI p] =
|p∞ pI |
|p0 pI |

|p0 p|
|p∞ p|

P0 – the origin [P0] = 0

PI – the unit point [PI ] = 1

P∞ – the supporting point [P∞] = ±∞

[P ] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

n
n′ : N ′‖N

p0

pI

p

p∞

Applications

• Given the image of a line N , the origin, the unit point, and the vanishing point, then
the Euclidean coordinate of any point P ∈ N can be determined → see Slide 45

• Finding v.p. of a line through a regular object → see Slide 46
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Application: Counting Steps
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• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point

Result: [P ] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitionsp0 pI p
p1 P

P0 PI
in 3D: |P0P | = 2|P0PI | then [H&Z, p. 218]~ P1; 1pt: How high is the camera above the floor?

[P∞P0PIP ] =
|P0P |
|P0PI |

= 2 ⇒ |p∞p0| =
|p0pI | · |p0p|
|p0p| − 2|p0pI |

• could be applied to counting steps (Slide 45)
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Homework Problem

~ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution
• deadline: +2 weeks

B

A oA
z

mh uxAxB oB
n1 p

Hints

1. what are the properties of line h connecting the top of Buiding B with the point m at which the horizon is
intersected with the line p joining the foots of both buildings? [1 point]

2. how do we actually get the horizon n∞? [1 point] (we do not see it directly, there are hills there)

3. what tool measures the length? [formula = 1 point]
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2D Projective Coordinates

pyI

p0 pxI px px∞

pI

p

py∞

py

[Px] = [Px∞ P0 PxI Px]

[Py] = [Py∞ P0 PyI Py]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units

• what are the dimensions of the seal? Is it circular (assuming square tiles)?

• needs no explicit camera calibration
because we see the calibrating object (vanishing points)
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IReal Camera with Radial Distortion

image with no radial distortion an extreme case of radial distortion image undistorted by division model

distortion types

none (λ = 0) barrel (λ = 0.3) pincushion (λ = −0.3)
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IThe Radial Distortion Mapping

y0
ryR yL

y0 – center of radial distortion (usually principal point)

yL – linearly projected point

yR – radially distorted point

• radial distortion r maps yL to yR along the radial direction

• magnitude of the transfer depends on the radius ‖yL − y0‖ only

• circles centered at y0 map to centered circles, lines incident on y0 map on themselves

• the mapping r() can be scaled to a r() so that a particular circle Cn does not scale

distortion inside Cn outside Cn
barrel expanding contracting

pincushion contracting expanding

Cn

in barrel in pincushion

• choose boundary point that preserves all image content within the same image size
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IRadial Distortion Models

y0

Cn

yR

yL

yn

• let z = y − y0 non-homogeneous

• we have zR = r(zL) zL – linear, zR – distorted

• but are often interested in zL = r−1(zR)

• yn – a no-distortion point on Cn: r(yn) = yn

• zn = yn − y0

Division Model single parameter −1 ≤ λ < 1, has an analytic inverse, models even some fish-eye lenses

zR =
ẑ

1 +
√

1 + λ ‖ẑ‖
2

‖zn‖2

, where ẑ =
2 zL
1− λ and zL =

1− λ
1− λ ‖zR‖2‖zn‖2

zR

λ > 0 – barrel distortion, λ < 0 – pincushion distortion

Polynomial Model better fit for n ≥ 3, no analytic inverse, may loose monotonicity, hard to calibrate

zL =
D(zR; zn,k)

1 +
∑n
i=1 ki

zR , D(zR; zn,k) = 1+k1ρ
2+k2ρ

4+· · ·+knρ2n, ρ =
‖zR‖
‖zn‖

, k = (ki)

e.g. ki ≥ 0 – barrel distortion, ki ≤ 0 – pincusion distortion, i = 1, . . . , n

Zernike polynomials R0
i are a better choice: R0

2(ρ) = 2ρ2 − 1, R0
4(ρ) = 6ρ4 − 6ρ2 + 1, R0

6(ρ) = · · ·
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IReal and Linear Camera Models

Ar xR ≃ A r
(
K0

[
R t

]
X
)

(real camera)
X

yL yR

xL ≃ AK0

[
R t

]
X (linear camera)A

undistortion: xL = A r−1(A−1xR)

K0

[
R t

]

perspective projection distortion scanning

K0 =

f 0 0
0 f 0
0 0 1

 ‘ideal’ calibration matrix AK0 =

f s f u0
0 a f v0
0 0 1


A =

1 s u0
0 a v0
0 0 1

 everything affecting radial distortion center, skew, aspect ratio

r radial distortion function (here, it includes conversion from/to
homogeneous representation!)

Notes
• assumption: the principal point and the center of radial distortion coincide

• f included in K0 to make radial distortion independent of focal length

• A makes radial lens distortion an elliptic image distortion

• it suffices in practice that r−1 is an analytic function (r need not be)
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Calibrating Radial Distortion

• radial distortion calibration includes at least 5 parameters: λ, u0, v0, s, a

1. detect a set of straight line segment images {si}ni=1 from a calibration target
2. select a suitable set of k measurement points per segment how to select k?

3. define invariant radial transfer error per measurement point ei,j
and per segment e2i =

∑k−2
j=1 e

2
i,j invariant to rotation, translation

ei,1

y0

k = 2

ei,2
si

4. minimize total radial transfer error: arg min
λ, u0, v0, s, a

n∑
i=1

e2i

• line segments from real-world images requires segmentation to inliers/outliers
inliers = lines that are straight in reality

• marginalisation over the hidden label gives a ‘robust’ error, e.g.

ε2i = − log

(
e
−
e2i

2σ2 + t

)
, t > 0

• direct optimization usually suffices but in general such optimization is unstable
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Example Calibrations

Low-resolution (VGA) wide field-of-view (130◦) camera

Camera 0, im. 6: Reprojection errors (16x)
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Camera 0: Error histogram.

Cam 0
RMS [px] 0.33
max [px] 1.97
f [px] 94.59
a [-] 1.0951

u0 [px] 243.26
v0 [px] 353.37

(poly) k1 0.8256
k2 −0.2261
k3 1.2524

4 Mpix consumer camera
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2 • radial distortion
is slightly
dependend on
focal length

3D Computer Vision: II. Perspective Camera (p. 55/196) R. Šára, CMP; rev. 2–Oct–2012



Thank You
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Camera 0, im. 6: Reprojection errors (16x)
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