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»1D Projective Coordinates

The 1-D projective coordinate of a point P:

[P] = [Ps Po Pr P] = [peo poprp] = [Poc pr] Ipopl
lpop1| |peo

Py — the origin [Po] =0 \R P ‘

P; — the unit point [Pr]=1 \P, B

P, — the supporting point [Po] = 00

[P] is equal to Euclidean coordinate along N
[p] is its measurement in the image plane

Applications
e Given the image of a line NV, the origin, the unit point, and the vanishing point, then
the Euclidean coordinate of any point P € N can be determined — see Slide 45
e Finding v.p. of a line through a regular object — see Slide 46
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Application: Counting Steps

e Namesti Miru underground station in Prague

PR Y

P’

L

} .
- '“‘" ‘__

detail around the vanishing point

Result: [P] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitions

Pr

in 3D: |PyP| = 2| Py Pr| then [H&Z, p. 218]® P1; 1pt: How high is the camera above the floor?
PPl
| Po Pyl

[pop1] - |pop]
[pop| — 2|popr|

[Poopopjp] = = |poop0| =

e could be applied to counting steps (Slide 45)
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Homework Problem

® H2; 3pt: What is the ratio of heights of Building A to Building B?
e expected: conceptual solution
e deadline: +2 weeks

. what are the properties of line h connecting the top of Buiding B with the point m at which the horizon is
intersected with the line p joining the foots of both buildings? [1 point]

. how do we actually get the horizon n.? [1 point] (we do not see it directly, there are hills there)
3. what tool measures the length? [formula = 1 point]
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2D Projective Coordinates

Po Pxr1 Pz Paco

[Py] = [Pyoo Po Pyr Py]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

e measuring distances on the floor in terms of tile units
e what are the dimensions of the seal? Is it circular (assuming square tiles)?

e needs no explicit camera calibration
because we see the calibrating object (vanishing points)
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»Real Camera with Radial Distortion

33

e

image with no radial distortion  an extreme case of radlal distortion image undistorted by division model

distortion types

none (A = 0) barrel (A = 0.3) pincushion (A = —0.3)
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» The Radial Distortion Mapping

p YL . . . N .

Y @ yo — center of radial distortion (usually principal point)
; YR yr — linearly projected point
R / yr — radially distorted point

/

;o= e radial distortion » maps yr, to yr along the radial direction

o N e magnitude of the transfer depends on the radius ||y — yo|| only

N\

N\
AN

e circles centered at yo map to centered circles, lines incident on yo map on themselves

e the mapping () can be scaled to ar() so that a particular circle C),, does not scale

. . .. . Cy
distortion ‘ inside C', outside Cy,

barrel | expanding  contracting
pincushion | contracting  expanding

in barrel in pincushion

e choose boundary point that preserves all image content within the same image size

3D
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»Radial Distortion Models

N\ c, /Z./L e letz=y—Yyo non-homogeneous
- YR e we have zgr = r(zL) z1, — linear, zr — distorted
e but are often interested in z;, = 7~ '(zRr)
- -
7 = e y, — a no-distortion point on C,: 7(yn) = yn
/ 7 N \ ® Zn =Y¥Yn — Yo
Division Model single parameter —1 < A\ < 1, has an analytic inverse, models even some fish-eye lenses
i N QZL 1-— /\
ZR= —F—, Wherez:1 3 and zL:WzR
|1z]| — R
T4 /14X nuz A
. . . . . -1
A > 0 — barrel distortion, A < 0 — pincushion distortion b v (a'_)
Polynomial Model better fit for n > 3, no analytic inverse, may loose monotonicity, hard to calibrate
D(zr;zn, k 2 4 2 ZR
zL = (’771"’) zr, D(zr;zn, k) =1+kip +kop + - +knp™, p= | H7 k = (ki)
1+300 ki 2|
e.g. k; > 0 — barrel distortion, k; < 0 — pincusion distortion, i =1,...,n

Zernike polynomials R are a better choice: RS (p) = 2p> — 1, R{(p) = 6p* — 6p> + 1, RY(p) =
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»Real and Linear Camera Models

A |—= x,~AK([Rt|X (linear camera)

Cundistortion: xr = Ar (A !xg)

X
—>| Ko[Rt] r A |—> xp~ A’V‘(KO [Rt] X) (real camera)
yL YR
perspective projection distortion scanning
f 0 0 fosf wo
Ko=|(0 f O ‘ideal’ calibration matrix AKo= 1|0 af wo
0 0 1 0 0 1
1 s wug
A=|0 a v everything affecting radial distortion center, skew, aspect ratio
0 0 1
r radial distortion function (here, it includes conversion from/to

homogeneous representation!)

Notes
e assumption: the principal point and the center of radial distortion coincide

e fincluded in Ko to make radial distortion independent of focal length
e A makes radial lens distortion an elliptic image distortion

e it suffices in practice that r—! is an analytic function (r need not be)
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Calibrating Radial Distortion
e radial distortion calibration includes at least 5 parameters: A, ug, vo, S, a

1. detect a set of straight line segment images {s;};—; from a calibration target

2. select a suitable set of kK measurement points per segment how to select k7
3. define invariant radial transfer error per measurement point e;;
k—2 z . . .
and per segment e = ijl ef’j - 109290 % jnvariant to rotation, translation

n

L . . . 2

4. minimize total radial transfer error: arg  min E e;
i=1

A, ug, 00, S, a

e line segments from real-world images requires segmentation to inliers/outliers
inliers = lines that are straight in reality
e marginalisation over the hidden label gives a ‘robust’ error, e.g.

er 2

€
/v?f 572:_10g e 202 +1), t>0

® direct optimization usually suffices but in general such optimization is unstable
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Thank You
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Camera 0, im. 6: Reprojection errors (16x)







Calibration errors
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Radial distortion coefficient values
0.1 T T T T T T T

—+— division model, A
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