

OPPA European Social Fund Prague \& EU: We invest in your future.

Fitting of a Planar Line

$\mathrm{A}[\mathrm{E}] 4 \mathrm{M} 33 \mathrm{TDV}-3 \mathrm{D}$ compute vision: labs.

Martin Matoušek

October, 2011*

1 Maximum Likelihood Model Fitting

Given a set of measurements \mathcal{X}, a model l is estimated by maximising likelihood function

$$
\begin{equation*}
l^{*}=\arg \max _{l} p(\mathcal{X} \mid \boldsymbol{l}) . \tag{1}
\end{equation*}
$$

Hence the conditional probability of the measurements given the model $p(\mathcal{X} \mid \boldsymbol{l})$ must be known. Should also a prior probability $p(\boldsymbol{l})$ of the model be known, the maximum a posteriori estimate can be found by maximising $p(\mathcal{X} \mid \boldsymbol{l}) p(\boldsymbol{l})$ instead.

In the case of fitting a line to a set of points, the measurements consists of a set of n point locations, $\mathcal{X}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$ and the model \boldsymbol{l} is an appropriate line representation. The conditional probability of the points given the line is derived in the next sections.

2 Trivial Example: Single Point Fitting

For the purpose of demonstration, a trivial example is considered first. The model l in (1) is a single point \boldsymbol{x}. Given the point (Euclidean) coordinates, the measurement is modelled as this very point polluted by an isotropic Gaussian noise,

$$
\begin{gather*}
\boldsymbol{x}_{i}=\boldsymbol{x}+\boldsymbol{e}_{i} \tag{2}\\
\left.\boldsymbol{e}_{i} \sim p\left(\boldsymbol{e}_{i}\right)=\mathcal{N}\left(\boldsymbol{e}_{i} ; \boldsymbol{O}, \boldsymbol{\Sigma}_{\mathbf{e}}\right), \quad \boldsymbol{\Sigma}_{\mathbf{e}}=\left[\begin{array}{cc}
\sigma_{e}^{2} & 0 \\
0 & \sigma_{e}^{2}
\end{array}\right]\right) . \tag{3}
\end{gather*}
$$

Thus the conditional probability of a single measurement is

$$
\begin{equation*}
p\left(\boldsymbol{x}_{i} \mid \boldsymbol{x}\right)=\mathcal{N}\left(\boldsymbol{x}_{i}-\boldsymbol{x} ; \boldsymbol{O}, \boldsymbol{\Sigma}_{\mathbf{e}}\right)=\mathcal{N}\left(\boldsymbol{x}_{i} ; \boldsymbol{x}, \boldsymbol{\Sigma}_{\mathbf{e}}\right)=\frac{1}{2 \pi \sqrt{\left|\boldsymbol{\Sigma}_{\mathbf{e}}\right|}} e^{0.5\left(\boldsymbol{x}_{i}-\boldsymbol{x}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{e}} 1\left(\boldsymbol{x}_{i}-\boldsymbol{x}\right)}=\frac{1}{2 \pi \sigma_{e}^{2}} e^{\frac{1}{2 \sigma_{e}^{2}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}\right\|^{2}} \tag{4}
\end{equation*}
$$

The measurements are assumed to be independent, so the overall probability of the measurements is

$$
\begin{equation*}
p(\mathcal{X} \mid \boldsymbol{x})=n!\prod_{i=1}^{n} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{x}\right)=n!\prod_{i=1}^{n} \mathcal{N}\left(\boldsymbol{x}_{i}-\boldsymbol{x} ; \boldsymbol{o}, \boldsymbol{\Sigma}_{\mathbf{e}}\right), \tag{5}
\end{equation*}
$$

where the n ! term is added since the order of the measurements does not matter.
The ML estimate of the point from the measurements is then

$$
\begin{align*}
\boldsymbol{x}^{*} & =\arg \max _{\boldsymbol{x}} p(\mathcal{X} \mid \boldsymbol{x})=\arg \min _{\boldsymbol{x}}(-\log p(\mathcal{X} \mid \boldsymbol{x}))= \\
& =\arg \min _{\boldsymbol{x}}\left\{-\log (n!)+\sum_{i=1}^{n}\left(-\log \frac{1}{2 \pi \sigma_{e}^{2}}+\frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}\right\|^{2}}{2 \sigma_{e}^{2}}\right)\right\}=\arg \min _{\boldsymbol{x}} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}\right\|^{2}, \tag{6}
\end{align*}
$$

[^0]where a monotonous function (log) was applied and some constants were omitted. This simplification obviously does not affect the result, and transforms the original problem of likelihood maximisation into the sum-of-squared-errors (SSE) minimisation.
Note, that in this simple case the coordinate components x, y, \ldots are independent. Hence the minimiser of (6) is found in closed-form simply by laying the derivation according to each component of \boldsymbol{x} equal zero,
\[

$$
\begin{equation*}
\boldsymbol{O}=\frac{\partial}{\partial \boldsymbol{x}} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}^{*}\right\|^{2}=\sum_{i=1}^{n} 2\left(\boldsymbol{x}^{*}-\boldsymbol{x}_{i}\right)=2 n \boldsymbol{x}^{*}-2 \sum_{i=1}^{n} \boldsymbol{x}_{i} \Rightarrow \boldsymbol{x}^{*}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} . \tag{7}
\end{equation*}
$$

\]

As expected, the ML estimate (in arbitrary number of dimensions) of the point under isotropic Gaussian noise is simply the mean of the set \mathcal{X}.

3 Model for Noisy Planar Line and ML Estimate

A normalised planar line $\boldsymbol{l}=\left(\boldsymbol{n}^{\top}, d\right)$ is given, where \boldsymbol{n} is normal vector. There is also direction vector \boldsymbol{u}, such that $\boldsymbol{u} \perp \boldsymbol{n}$. These two vectors forms a basis of line coordinates. A point $\tilde{\boldsymbol{x}}$ (exactly) lying on the line is created as

$$
\tilde{\boldsymbol{x}}_{i}=\left[\begin{array}{ll}
\boldsymbol{u} & \boldsymbol{n}
\end{array}\right]\left[\begin{array}{c}
t_{i} \tag{8}\\
-d
\end{array}\right],
$$

where t is a parameter along a line. Note, that the Euclidean coordinates of points are used. The distribution of the parameter is chosen as

$$
\begin{equation*}
t_{i} \sim p\left(t_{i}\right)=\mathcal{N}\left(t_{i} ; \mu_{t}, \sigma_{t}\right) . \tag{9}
\end{equation*}
$$

The measurement \boldsymbol{x}_{i} is the line point polluted by an isotropic Gaussian noise,

$$
\begin{gather*}
\boldsymbol{x}_{i}=\tilde{\boldsymbol{x}}_{i}+\boldsymbol{e}_{i} \tag{10}\\
\boldsymbol{e}_{i} \sim p\left(\boldsymbol{e}_{i}\right)=\mathcal{N}\left(\boldsymbol{e}_{i} ;\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma_{e} & 0 \\
0 & \sigma_{e}
\end{array}\right]\right) . \tag{11}
\end{gather*}
$$

The noise can be expressed in the line coordinates as

$$
\boldsymbol{e}_{i}=\left[\begin{array}{ll}
\boldsymbol{u} & \boldsymbol{n}
\end{array}\right]\left[\begin{array}{c}
t_{i}^{e} \tag{12}\\
d_{i}^{e}
\end{array}\right], \quad p_{e}\left(\left[\begin{array}{c}
d_{i}^{e} \\
t_{i}^{e}
\end{array}\right]\right)=\mathcal{N}\left(d_{i}^{e} ; 0, \sigma_{e}\right) \mathcal{N}\left(t_{i}^{e} ; 0, \sigma_{e}\right),
$$

and the measurement expressed in the line coordinates is then

$$
\boldsymbol{x}_{i}=\left[\begin{array}{ll}
\boldsymbol{u} & \boldsymbol{n}
\end{array}\right]\left[\begin{array}{c}
t_{i}+t_{i}^{e} \tag{13}\\
-d+d_{i}^{e}
\end{array}\right] .
$$

This leads to (using transformation of probability by linear transformation with unit Jacobian)

$$
p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}, t_{i}\right)=p_{e}\left(\left[\begin{array}{c}
\boldsymbol{u}^{\top} \tag{14}\\
\boldsymbol{n}^{\top}
\end{array}\right] \boldsymbol{x}_{i}-\left[\begin{array}{c}
t_{i} \\
-d
\end{array}\right]\right)=\mathcal{N}\left(\boldsymbol{u}^{\top} \boldsymbol{x}_{i}-t_{i} ; 0, \sigma_{e}\right) \mathcal{N}(\underbrace{\boldsymbol{n}^{\top} \boldsymbol{x}_{i}+d}_{d_{i}} ; 0, \sigma_{e}) .
$$

Here the term $d_{i}=\boldsymbol{n}^{\top} \boldsymbol{x}_{i}+d$ represents the orthogonal distance of the point \boldsymbol{x}_{i} to the line \boldsymbol{l}.
Now the probability $p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)$ is derived from the joint p.d.f. $p\left(\boldsymbol{x}_{i}, t_{i} \mid \boldsymbol{l}\right)$ by marginalisation over t_{i}.

$$
\begin{aligned}
p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right) & =\int_{-\infty}^{\infty} p\left(\boldsymbol{x}_{i}, t_{i} \mid \boldsymbol{l}\right) \mathbf{d} t_{i}=\int_{-\infty}^{\infty} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}, t_{i}\right) p\left(t_{i}\right) \mathbf{d} t_{i}= \\
& =\int_{-\infty}^{\infty} \mathcal{N}\left(\boldsymbol{u}^{\top} \boldsymbol{x}_{i}-t_{i} ; 0, \sigma_{e}\right) \mathcal{N}\left(d_{i} ; 0, \sigma_{e}\right) \mathcal{N}\left(t_{i} ; \mu_{t}, \sigma_{t}\right) \mathbf{d} t_{i}=
\end{aligned}
$$

$$
\begin{align*}
& =\mathcal{N}\left(d_{i} ; 0, \sigma_{e}\right) \int_{-\infty}^{\infty} \mathcal{N}\left(t_{i} ;-\boldsymbol{u}^{\top} \boldsymbol{x}_{i}, \sigma_{e}\right) \mathcal{N}\left(t_{i} ; \mu_{t}, \sigma_{t}\right) \mathbf{d} t_{i}= \\
& =\mathcal{N}\left(d_{i} ; 0, \sigma_{e}\right) \frac{1}{\sqrt{2 \pi\left(\sigma_{e}^{2}+\sigma_{t}^{2}\right)}} e^{\frac{-\left(-u^{\top} x_{i}-\mu_{t}\right)^{2}}{2\left(\sigma_{e}^{2}+\sigma_{t}^{2}\right)}} \tag{15}
\end{align*}
$$

(The last step with fruitful help of Maple solver.)
Now the variance σ_{t} is chosen much larger than the size of image, where the points are observed, the mean μ_{t} is chosen e.g. zero (assuming that origin is in the image centre). Then the exponent is close to zero, and the probability is approximately

$$
\begin{equation*}
p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right) \approx \gamma \mathcal{N}\left(d_{i} ; 0, \sigma_{e}\right) \tag{16}
\end{equation*}
$$

where γ is some constant.
Again, the measurements are assumed to be independent, so the overall conditional probability of the measurements is

$$
\begin{equation*}
p(\mathcal{X} \mid \boldsymbol{l})=n!\prod_{i=1}^{n} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)=n!\gamma^{n} \prod_{i=1}^{n} \mathcal{N}\left(d_{i} ; 0, \sigma_{e}\right) \tag{17}
\end{equation*}
$$

Finally, \log is applied and unnecessary constants are omitted to form a log-likelihood to minimise. The ML estimate of the line from the measurements is then

$$
\begin{align*}
\boldsymbol{l}^{*} & =\arg \max _{l} p(\mathcal{X} \mid \boldsymbol{l})=\arg \min _{l}(-\log p(\mathcal{X} \mid \boldsymbol{l}))= \\
& =\arg \min _{l}\left\{-\log \left(n!\gamma^{n}\right)+\sum_{i=1}^{n}\left(-\log \frac{1}{\sqrt{2 \pi \sigma_{e}^{2}}}+\frac{d_{i}^{2}}{2 \sigma_{e}^{2}}\right)\right\}=\arg \min _{x} \sum_{i=1}^{n} d_{i}^{2} \tag{18}
\end{align*}
$$

Again, the original problem of likelihood maximisation is transformed into the sum-of-squared-errors (SSE) minimisation. There is no closed form solution of (18), some numerical approach must be used.

4 Model for Noisy Planar Line Points with Outliers.

The process that creates set of points for a given line \boldsymbol{l} is modelled by following three random processes that participates on generating each planar point \boldsymbol{x}_{i}.

1. Label generator. A label $L_{i} \in\{I, O\}$ determining if a point is inlier or outlier is randomly drawn.

$$
L_{i} \sim p_{L}\left(L_{i}\right), \quad p_{L}\left(L_{i}=I\right)=\alpha(\text { const }), \quad p_{L}\left(L_{i}=0\right)=1-\alpha
$$

2. Inlier generator. If $L_{i}=I$, a point location \boldsymbol{x}_{i} belonging to the line is generated as described in Section 3.

$$
\boldsymbol{x}_{i} \sim p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)
$$

3. Outlier generator. If $L_{i}=O$, an outlier (not dependent on the line) is drawn from uniform distribution, assuming finite image of area $1 / \beta$.

$$
\boldsymbol{x}_{i} \sim p_{O}\left(\boldsymbol{x}_{i}\right)=\beta \text { (const.) }
$$

This leads the robust joint probability of point locations and labels, given the line, to be

$$
p_{R}\left(\boldsymbol{x}_{i}, L_{i} \mid \boldsymbol{l}\right)=\left\{\begin{array}{cl}
\alpha p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right) & \text { if } L_{i}=I \tag{19}\\
(1-\alpha) \beta & \text { if } L_{i}=O
\end{array}\right.
$$

The resulting robust probability $p_{R}\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)$ is obtained by marginalisation (over all values of L_{i}) as

$$
\begin{equation*}
p_{R}\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)=\sum_{L_{i} \in\{I, O\}} p_{R}\left(\boldsymbol{x}_{i}, L_{i} \mid \boldsymbol{l}\right)=\alpha p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)+(1-\alpha) \beta . \tag{20}
\end{equation*}
$$

The points are assumed to be independent, so using (16) the overall robust probability of measurements is

$$
\begin{align*}
p_{R}(\mathcal{X} \mid \boldsymbol{l}) & =n!\prod_{i=1}^{n} p_{R}\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)=n!\prod_{i=1}^{n}\left(\alpha p\left(\boldsymbol{x}_{i} \mid \boldsymbol{l}\right)+(1-\alpha) \beta\right)= \\
& =n!\prod_{i=1}^{n}\left(\frac{\alpha \gamma}{\sqrt{2 \pi \sigma_{e}^{2}}} e^{-\frac{d_{i}^{2}}{2 \sigma_{e}^{2}}}+(1-\alpha) \beta\right) . \\
& =c_{1} \prod_{i=1}^{n}\left(e^{-\frac{d_{i}^{2}}{2 \sigma_{e}^{2}}+c_{2}}\right), \tag{21}
\end{align*}
$$

where c_{1}, c_{2} are some constants. Again, cost function from minus log-likelihood is constructed prior to optimisation

$$
\begin{align*}
& -\log \left(p_{R}(\mathcal{X} \mid \boldsymbol{l})\right)=-c_{1}-\sum_{i=1}^{n} \log \left(e^{\frac{-d_{i}^{2}}{2 \sigma_{e}^{2}}}+c_{2}\right) \\
C(\boldsymbol{l})= & \sum_{i=1}^{n}-e^{2 \sigma_{e}^{2}} \log \left(e^{-\frac{d_{i}^{2}}{2 \sigma_{e}^{2}}}+e^{\frac{\theta^{2}}{2 \sigma_{e}^{2}}}\right)=\sum_{i=1}^{n} C_{1}\left(d_{i}\right) . \tag{22}
\end{align*}
$$

Here the constant c_{2} was replaced by a threshold θ. The cost function (robust penalty) $C 1$ is analysed in the next section.

4.1 Robust Penalty

The previous section reveals a typical property of the robust model fitting problem under Gaussian noise: the error (d_{i} in the case of line fitting) is modelled using a mixture of normal and constant probability density. The mixture p.d.f and its negative logarithm is

$$
\begin{equation*}
p\left(d_{i}\right)=\alpha \mathcal{N}\left(d_{i} ; 0, \sigma_{e}\right)+(1-\alpha) \beta, \quad-\log \left(p\left(d_{i}\right)\right)=-\log \left(\frac{\alpha}{\sqrt{2 \pi \sigma_{e}^{2}}} e^{\frac{-d_{i}^{2}}{2 \sigma_{e}^{2}}}+(1-\alpha) \beta\right) \tag{23}
\end{equation*}
$$

where α is a mixing coefficients. Example is in Figure 1.
There is an important value of d_{i} on the intersection of both densities (i.e. the probability of both processes is the same), denoted as a threshold θ.

$$
\begin{equation*}
\frac{\alpha}{\sqrt{2 \pi \sigma_{e}^{2}}} e^{\frac{-\theta^{2}}{2 \sigma_{e}^{2}}}=(1-\alpha) \beta \Rightarrow \theta=\sqrt{-\log \left(\frac{(1-\alpha) \beta}{\alpha} \sqrt{2 \pi \sigma_{e}^{2}}\right) 2 \sigma_{e}^{2}} \tag{24}
\end{equation*}
$$

Usually, the threshold is used to parametrise the mixture, and the Gaussian variance σ_{e} is assumed approx $\sigma_{e} \in(0.1 \theta, 0.5 \theta)$ (the variance affects only the curvature of the penalty function near the threshold). Then the robust penalty function after removing some constants is

$$
\begin{equation*}
C_{1}\left(d_{i}\right)=-2 \sigma_{e}^{2} \log \left(e^{\frac{-d_{i}^{2}}{2 \sigma_{e}^{2}}}+e^{\frac{-\theta^{2}}{2 \sigma_{e}^{2}}}\right) . \tag{25}
\end{equation*}
$$

Fig. 1: Mixture of a Gaussian and a constant probability density. (a) Probability density function and (b) its negative logarithm.

Fig. 2: Approximation of a robust penalty. (a) penalty function $C_{1}(26)$, (b) likelihood function $L_{1}(28)$.

This function can be approximated by two segments, one quadratic and one constant,

$$
C_{1}\left(d_{i}\right) \approx \begin{cases}d_{i}^{2} & \text { if }\left|d_{i}\right|<\theta \tag{26}\\ \theta^{2} & \text { if }\left|d_{i}\right|>\theta\end{cases}
$$

The original problem is then solved by a numeric minimisation of $\sum C_{1}\left(d_{i}\right)$. Alternatively, the negative of $C_{1}\left(d_{i}\right)$ can be used for maximisation, i.e. (with a constant shift that do not affect optimisation),

$$
\begin{equation*}
L_{1}\left(d_{i}\right)=1-\frac{C_{1}\left(d_{i}\right)}{\theta^{2}} \tag{27}
\end{equation*}
$$

which is then approximated as

$$
L_{1}\left(d_{i}\right) \approx \begin{cases}1-{\frac{d_{i}}{\theta}}^{2} & \text { if }\left|d_{i}\right|<\theta \tag{28}\\ 0 & \text { if }\left|d_{i}\right|>\theta\end{cases}
$$

Both approximations are demonstrated in Figure 2. Then the original problem is solved by a numeric maximisation of $\sum L_{1}\left(d_{i}\right)$.

OPPA European Social Fund Prague \& EU: We invest in your future.

[^0]: *Last revision: October 13, 2011

