

OPPA European Social Fund Prague & EU: We invest in your future.

Mining more complex patterns: frequent subgraphs

Christian Borgelt (Jiří Kléma)

Department of Cybernetics, Czech Technical University in Prague

http://ida.felk.cvut.cz

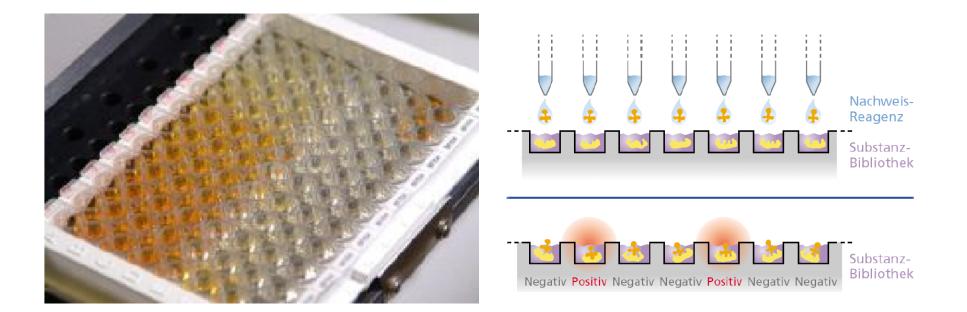
Outline

- Motivation for frequent subgraph mining
 - applications, variance in tasks,
- necessary graph terms
 - isomorphic subgraph,
 - frequent, closed a maximal subgraph,
- subgraph space search
 - $-\operatorname{code}$ words,
 - canonical code words,
 - how do they speed up search?
- summary
 - the issues covered,
 - the issues not covered (extensions for molecules, trees, single graph only, fragment repository).

Frequent subgraphs – illustration 1: molecular fragments

acceleration of drug development,

- ex.: protection of human CEM cells against an HIV infection (public data),
 - high-throughput screening of chemical compounds (37,171 substances tested)
 - * 325 confirmed active (100% protection against infection),
 - * 877 moderately active (50-99% protection against infection),
 - * others confirmed inactive (<50% protection against infection),
 - task: why some compounds active and others not?, where to aim future screening?



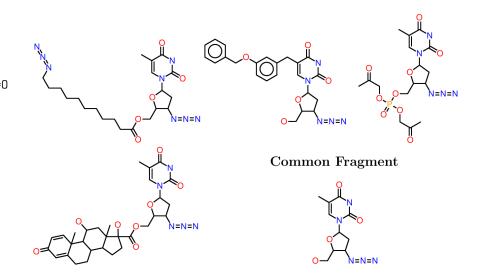
Frequent subgraphs – illustration 1: molecular fragments

- search for fragments common for the active substances
 - find molecular substructures that frequently appear in active substances,
 - frequent active patterns = subgraphs,
- search for discriminative patterns
 - we add the requirement that patterns appear only rarely in the inactive molecules,
 - where to aim future tests? what is the most promising pharmacophore, i.e., drug candidate?

Excerpt from the NCI DTP HIV Antiviral Screen data set (SMILES format):

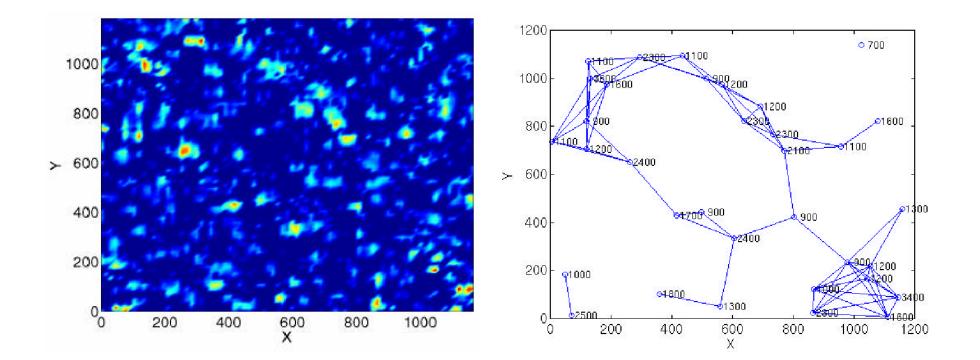
737, 0,CN(C)C1=[S+][Zn]2(S1)SC(=[S+]2)N(C)C 2018, 0,N#CC(=CC1=CC=CC=C1)C2=CC=CC=C2 19110,0,0C1=C2N=C(NC3=CC=CC=C3)SC2=NC=N1 20625,2,NC(=N)NC1=C(SSC2=C(NC(N)=N)C=CC=C2)C=CC=C1.0S(0)(=0)=0 22318,0,CCCCN(CCCC)C1=[S+][Cu]2(S1)SC(=[S+]2)N(CCCC)CCCC 24479,0,C[N+](C)(C)C1=CC2=C(NC3=CC=CC=C3S2)N=N1 50848,2,CC1=C2C=CC=CC2=N[C-](CSC3=CC=CC=C3)[N+]1=0 51342,0,0C1=C2C=NC(=NC2=C(0)N=N1)NC3=CC=C(C1)C=C3 55721,0,NC1=NC(=C(N=0)C(=N1)0)NC2=CC(=C(C1)C=C3) 55917,0,0=C(N1CCCC[CH]1C2=CC=CN=C2)C3=CC=CC=C3 64054,2,CC1=C(SC[C-]2N=C3C=CC=CC3=C(C)[N+]2=0)C=CC=C1 64055,1,CC1=CC=CC(=C1)SC[C-]2N=C3C=CC=CC3=C(C)[N+]2=0 64057,2,CC1=C2C=CC=C2=N[C-](CSC3=NC4=CC=CC=C4S3)[N+]1=0 66151,0,[0-][N+](=0)C1=CC2=C(C=NN=C2C=C1)N3CC3

. . .



Frequent subgraphs – illustration 2: gas and fluid dynamics

- measurements: size, velocity and locality of vortices (vortex = whirl = spinning motion),
- graph representation: vortex = vertex (node), proximity = edge length,
- often frequent patterns that e.g., appear shortly before anomalies
 - meteorology, aerodynamics, hydraulics.



Graphs: basic terms

• Attribute (label) set $A = \{a_1, \ldots, a_m\}$,

attribute examples for molecules:
chemical element, charge, bond type (single, double, triple, aromatic),

• labeled (attributed) graph is a triple $G = (V, E, \ell)$, where

- $-\ V$ is the set of vertices,
- $\ E \subseteq V \times V \{(v,v) \mid v \in V\}$ is the set of edges, and
- $-\ell: V \cup E \rightarrow A$ assigns labels from the set A to vertices and edges,
- G is undirected and simple (contains no loops, no multiple edges),
- several vertices and edges may have the same attribute/label,

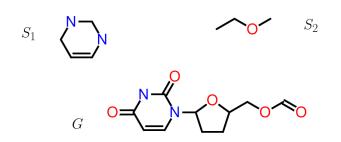
• subgraph $S \subseteq G$

- informally: omit some vertices and their incident edges (full, induced subgraph),
- when omitting more edges, it is a subgraph without the characteristic full,
- proper subgraph $S \subset G$.

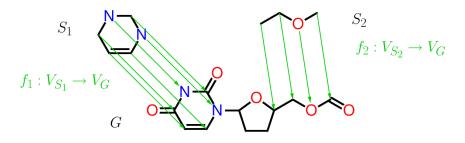
Graphs: basic terms

- connected component of a graph
 - connected subgraph, any larger subgraph that contains it is not connected,
- a vertex of a graph is called
 - isolated it is not incident to any edge,
 - leaf it is incident to exactly one edge,
- an edge of a graph is called
 - bridge removing it increases the number of connected components of the graph,
 - proper bridge if it is a bridge and not incident to a leaf (all other bridges are leaf bridges),
- graphs $S = (V_S, E_S, \ell_S)$ a $G = (V_G, E_G, \ell_G)$ are isomorphic ($S \equiv G$), iff
 - $\exists f \colon V_S \to V_G$ (bijection) such that:
 - $* \ell_S(v) = \ell_G(f(v))$ $* (x, y) \in E_S \Leftrightarrow (f(x), f(y)) \in E_G \land \ell_S((u, v)) = \ell_G((f(u), f(v))),$
- graph S is an isomorphic subgraph of G (S occurs in G, $S \sqsubseteq G$), iff
 - f limited on injective functions $\forall v \in V_S$,
 - $-S \sqsubseteq G \land G \sqsubseteq S \Leftrightarrow S \equiv G.$
- testing whether a subgraph isomorphism exists between given graphs S and G is NP-complete!

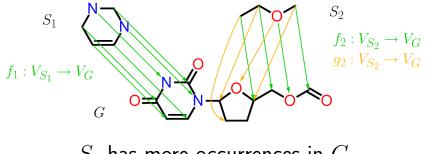
Subgraph Isomorphism: examples



 S_1 and S_2 subgraphs of G



isomorphisms f_1 and f_2 exist (mapping preserves vertex and edge labels)



 S_2 has more occurrences in G



 S_3 possesses an automorphism (S_3 non-identically maps to itself) (S_3 has more occurrences at the same location in G) • G covers S iff

- $-S \sqsubseteq G$ (S is contained in G),
- G properly covers S (S is properly contained in G) iff

 $- \ S \sqsubset G \Leftrightarrow S \not\equiv G \land S \sqsubseteq G,$

• having a vector of graphs $\mathcal{G} = \{G_1, \ldots, G_n\}$, the cover of S wrt \mathcal{G} is

 $- K_{\mathcal{G}}(S) = \{k \in \{1, \ldots, n\} \mid S \sqsubseteq G_k\},\$

- the index set of the database graphs that cover S,
- (absolute) support S wrt \mathcal{G} is a natural number
 - $\ s_{\mathcal{G}}(S) = |K_{\mathcal{G}}(S)|,$
 - the number of graphs that cover S

(more occurrences in one graph are not concerned),

• the frequent subgraph (fragment) S wrt \mathcal{G} is each subgraph that

 $-s_{\mathcal{G}}(S) \geq s_{min}.$

Frequent subgraph mining: definition

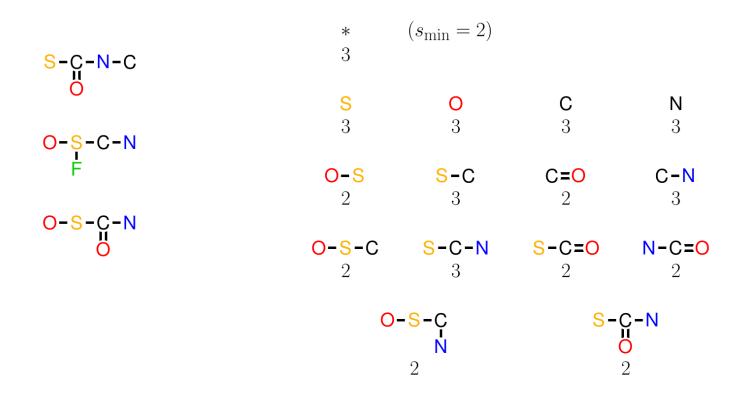
- given: graphs $\mathcal{G} = \{G_1, \dots, G_n\}$ with labels $A = \{a_1, \dots, a_m\}$ and minimum support s_{min}
- output: the set of frequent (sub)graphs with support meeting the minimum threshold

$$-F_{\mathcal{G}}(s_{\min}) = \{S \mid s_{\mathcal{G}}(S) \ge s_{\min}\},$$

- common constraint
 - connected subgraphs only,
- main problem
 - to avoid redundancy when searching
 - * canonical representation of (sub)graphs,
 - * partial order of (sub)graph space,
 - * efficient pruning of the searched subgraph space,
 - * fragment repository for processed graphs.
- APRIORI property generalized for graphs
 - All subgraphs of a frequent (sub)graph are frequent. (anti-monotone)
 - No supergraph of an infrequent (sub)graph can be frequent. (monotone)
 - $\forall S : \forall R \supseteq S : \quad s_{\mathcal{G}}(R) \le s_{\mathcal{G}}(S).$

Frequent subgraphs: example

- \mathcal{G} contains three molecules, minimum support $s_{min} = 2$,
- 15 frequent subgraphs exist,
- empty graph is properly contained in all graphs by definition.



Types of frequent subgraphs – closed and maximal

maximal subgraph

- is frequent but none of its proper supergraphs is frequent, the set of maximal (sub)graphs: $M_{\mathcal{G}}(s_{\min}) = \{S \mid s_{\mathcal{G}}(S) \ge s_{\min} \land \forall R \supset S : s_{\mathcal{G}}(R) < s_{\min}\},\$
- every frequent (sub)graph has a maximal supergraph,
- no supergraph of a maximal (sub)graph is frequent,
- $-M_{\mathcal{G}}(s_{\min})$ (and their support) does not preserve knowledge of all support values * meaning support values of all frequent subgraphs,

closed subgraph

- is frequent but none of its proper supergraphs has the same support,
- the set of closed (sub)graphs:

 $C_{\mathcal{G}}(s_{\min}) = \{ S \mid s_{\mathcal{G}}(S) \ge s_{\min} \land \forall R \supset S : s_{\mathcal{G}}(R) < s_{\mathcal{G}}(S) \},\$

- every frequent (sub)graph has a closed supergraph (with the identical support),
- $-C_{\mathcal{G}}(s_{\min})$ (and their support) preserves knowledge of all support values,
- relations among graph types
 - every maximal or closed subgraph is automatically frequent,
 - every maximal subgraph is also closed.

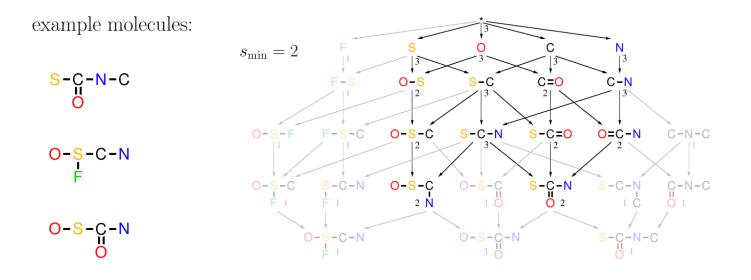
Closed and maximal subgraphs: example

- \mathcal{G} contains three molecules, $s_{min} = 2$,
- 4 closed subgraphs exist, 2 of them are maximal too.



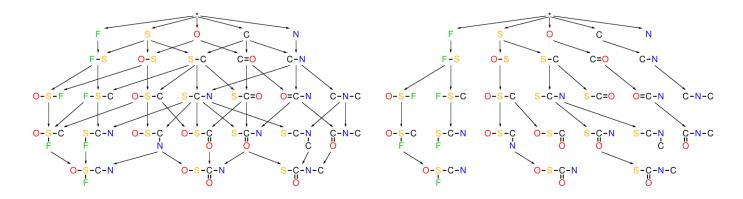
Partially ordered set of subgraphs and its search

- subgraph (isomorphism) relationship defines a partial order on subgraphs
 - Hasse diagram exists, the empty graph makes its infimum, no natural supremum exists,
 - diagram can be completely searched top-down from the empty graph,
 - branching factor is large, the depth-first search is usually preferable.
- the main problem
 - a (sub)graph can be grown in several different ways,
 - diagram must be turned into a tree each subgraph has a unique parent.



Partially ordered set of subgraphs and its search

- Searching for frequent (sub)graphs
 - (subgraphs with a unique parent),
- base loop
 - traverse all possible vertex attributes (their unique parent is the empty graph).
 - recursively process all vertex attributes that are frequent,
- Recursive processing for a given frequent (sub)graph S
 - generate all extensions R of S by an edge or by an edge and a vertex
 - * edge addition $(u, v) \not\in E_S$, $u \in V_S \lor v \in V_S$,
 - * if $u \notin V_S \lor v \notin V_S$, the missing node is added too,
 - -S must be the unique parent of R,
 - if R is frequent, further extend it, otherwise STOP.



Assigning unique parents

- How can we formally define the set of parents of subgraph S?
 - subgraphs that contain exactly one edge less than the subgraph S,
 - in other words, all the maximal proper subgraphs,
- canonical (unique) parent $p_c(S)$ of subgraph S
 - an order on the edges of the (sub)graph S must be given before,
 - let e^* be the last edge in the order that is not a proper bridge in S,

* then $p_c(S)$ is the graph S without the edge e^* ,

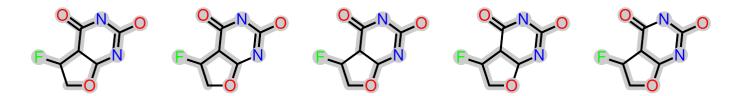
- * if e^* is a leaf bridge, we also have to remove the created isolated node,
- if e^{\ast} is the only edge of S, we also need an order of the nodes,
- in order to define an order of the edges we will rely on a canonical form of (sub)graphs
 - each (sub)graph is described by a code word,
 - it unambiguously identifies the (sub)graph (up to automorphism = symmetries),
 - having multiple code words per graph
 - * one of them is (lexicographically) singled out as the canonical code word.

Basic idea

- the characters of the code word describe the edges of the graph,
- vertex labels need not be unique, they must be endowed with unique labels (numbers),
- usual requirement on canonical form
 - prefix property every prefix of a canonical code word is a canonical code word itself,
 - when the last edge e^* is removed, the canonical word of the canonical parent originates,
- assuming the prefix property holds, search algorithm takes the canonical word of a parent and
 - generates all possible extensions by an edge (and maybe a vertex),
 - checks whether the extended code words are the canonical code words,
 - consequence: easy and non-redundant access to children,
- the most common canonical forms
 - spanning tree,
 - adjacency matrix.

Canonical forms based on spanning trees

- Graph code word is created when constructing a spanning tree of the graph
 - numbering the vertices in the order in which they are visited,
 - describing each edge by the numbers of incident vertices, the edge and vertex labels,
 - listing the edge descriptions in the order in which the edges are visited (edges closing cycles may need special treatment),
- the most common ways of constructing a spanning tree are
 - search: depth-first \times breath-first,
 - both approaches ask for their own way of code word construction,
- one graph may be described by a large number of code words
 - a graph has multiple spanning trees (initial vertex, branching options),
 - how to find the lexicographically smallest = canonical word quickly?
 - prefix property holds, edges listed in the order they are visited during the s.tree construction,
 - one only needs to verify that the extension is also canonical.

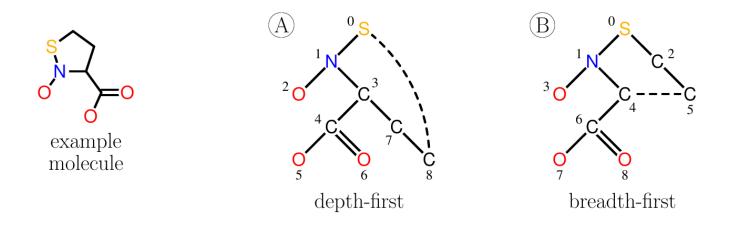


Canonical forms based on spanning trees

- A precedence order of labels is introduced
 - due to efficiency, frequency of labels shall be concerned,
 - vertex labels are recommended to be in ascending order,
- Regular expressions for code words
 - depth-first: $a (i_d \underline{i_s} b a)^m$, (exception: indices in decreasing order)
 - breadth-first: $a (i_s b a i_d)^m$ (or $a (i_s i_d b a)^m$),
 - meaning of symbols:
 - n the number of vertices of the graph,
 - m the number of edges of the graph,
 - i_s index of the source vertex of an edge, $i_s \in \{0, \ldots, n-1\}$,
 - i_d index of the destination vertex of an edge, $i_d \in \{0, \ldots, n-1\}$,
 - a the attribute of a vertex,
 - *b* the attribute of an edge.

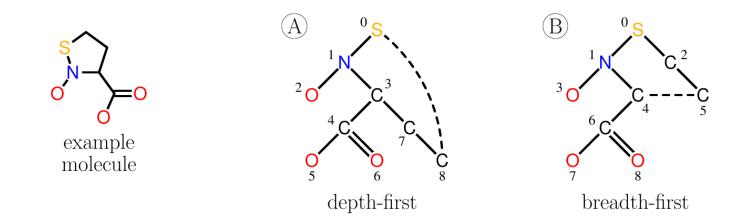
Canonical spanning tree: example

- Order of labels
 - elements (vertices): $S \prec N \prec O \prec C$, bonds (edges): $\prec =$,
- Code words
 - A: S 10-N 21-O 31-C 43-C 54-O 64=O 73-C 87-C 80-C
 - B: S 0-N1 0-C2 1-O3 1-C4 2-C5 4-C5 4-C6 6-O7 6=O8



Recursive checking for canonical form

- traverse all vertices with a label no less than the current spanning tree root vertex,
- recursively add edges, compare the code word with the checked one (potentially canonical)
 - if the new edge description is larger, the edge can be skipped (backtrack),
 - if the new edge description is smaller, the checked code word is not canonical,
 - if the new edge description is equal, the rest of the code word is processed recursively.
 - A: S 10-N 21-O 31-C 43-C 54-O 64=O 73-C 87-C 80-C
 - B: S 0-N1 0-C2 1-O3 1-C4 2-C5 4-C5 4-C6 6-O7 6=O8



- Principle of recursive search of subgraph tree
 - generate all possible extensions of a given canonical code word (of a frequent parent),
 - extensions adds the description of an edge that extends the described (sub)graph,
 - prefix representation: the edge description added at the end of code word,
 - canonical form is checked, if met then proceed recursively, otherwise the word is discarded,
- how to verify efficiently whether a word is canonical?
 - in general, a lex. smaller word with the same root vertex needs to be found,
 - simple local rules can be found, the rules reject extensions locally = immediately
 - * only certain vertices are extendable,
 - * certain cycles cannot be closed,
 - * they represent necessary canonicity conditions, not sufficient.

Depth-first: rightmost path extension

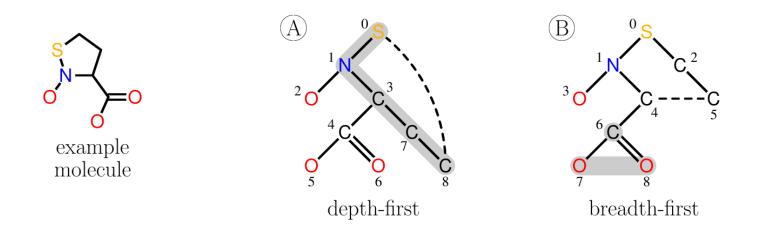
- extendable vertices

- * must be on the rightmost path of the spanning tree
 - (other vertices cannot be extended in the given search-tree branch),
- * if the source vertex of the new edge is not a leaf, the edge description must not precede the description of the downward edge on the path
 - (the edge attribute must be no less than the edge attribute of the downward edge,
 - if it is equal, the attribute of its destination vertex must be no less than the attribute of the downward edge's destination vertex),
- edges closing cycles
 - * must start at an extendable vertex,
 - * must lead to the rightmost leaf
 - (a subgraph has only one vertex meeting the condition),
 - * the index of the source vertex must precede the index of the source vertex of any edge already incident to the rightmost leaf.

Breadth-first: maximum source extension

- extendable vertices
 - * cannot have a lower index than the maximum source index of edges already used,
 - * if the source of the new edge is the one having the maximum source index, edge precedence must be checked (see depth-first option),
- edges closing cycles
 - * must start at an extendable vertex,
 - * must lead forward, that is, to a vertex having a larger index than the extended vertex.

Restricted extensions: examples



Extendability

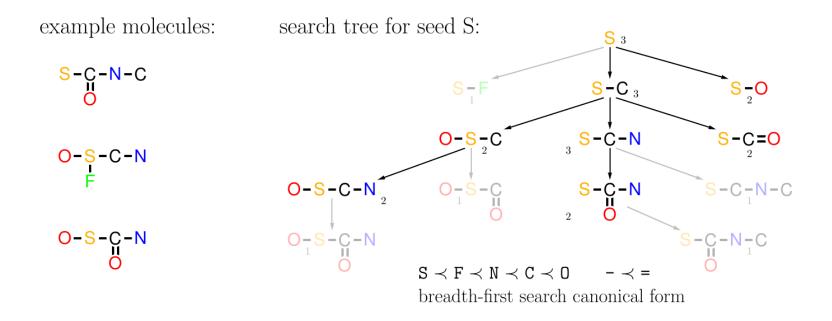
- vertices: ad A: 0, 1, 3, 7, 8, ad B: 6, 7, 8,
- edges closing cycles: ad A: none, ad B: the edge between 7 and 8,

• Extension: attach a single bond carbon atom at the leftmost oxygen atom

- A: S 10-N 21-O 31-C 43-C 54-O 64=O 73-C 87-C 80-C 92-C S 10-N 21-O 32-C ···
- B: S 0-N1 0-C2 1-O3 1-C4 2-C5 4-C5 4-C6 6-O7 6=O8 3-C9 S 0-N1 0-C2 1-O3 1-C4 2-C5 3-C6 ···

Frequent subgraphs with canonical form: example search tree

- Start with a single seed vertex,
- add an edge (and maybe a vertex) in each step (restricted extensions),
- determine the support and prune infrequent (sub)graphs (outside the code word space),
- check for canonical form and prune (sub)graphs with non-canonical code words.



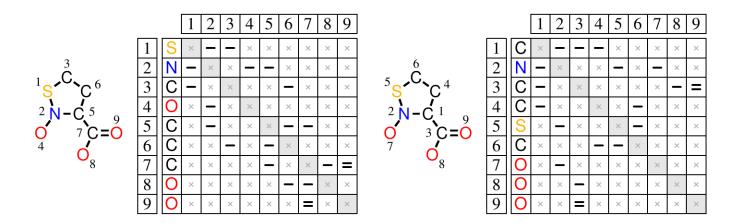
Canonical forms based on adjacency matrices

Adjacency matrix

- common graph representation,
- graph G with n vertices is captured by a $n \times n$ matrix $\mathbf{A} = (a_{ij})$,
- $-a_{ij} = 1 \Leftrightarrow$ an edge between the vertices with numbers i and j, 0 otherwise,
- however not unique, different vertex numberings lead to different matrices.

Extended adjacency matrix

- for a labeled graph G (with vertex and edge attributes),
- there is an additional column containing the vertex labels,
- $-a_{ij}$ either contains the edge label or the special empty label $a_{ij} = \times$.



From adjacency matrices to code words

- by simply listing its elements row by row,
- the matrix is symmetric for undirected graphs it suffices to list the elements of the upper triangle,
- condensed/reduced code word representation
 - only existing edges are listed,
 - column identifiers need to be added,
 - suitable for matrices.

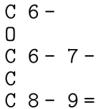


Regular expression (non-terminals): $(a (i_c b)^*)^n$

		1	2	3	4	5	6	7	8	9
1	S	×	-	-	×	×	×	×	×	×
2	Ν	-	×	×	-	-	×	×	×	×
3	С	-	×	×	\times	×	-	\times	×	\times
4	0	×		×	×	×	×	×	×	×
5	С	×	Ι	×	×	×	-	١	×	×
6	С	×	×	I	×	-	×	×	×	×
7	С	×	×	×	×	-	×	×	١	=
8	0	\times	×	×	\times	×	I	I	×	×
9	0	\times	×	×	×	×	×	Π	\times	×

S 2 - 3 -N 4 - 5 -

code word:



0

Ω

Canonical extended adjacency matrices

- the key issue is to find the canonical code word
 - it stems from lexicographical order of labels vertices: $S \prec N \prec O \prec C$, edges: $\prec =$,
 - canonical code word is lexikographically smallest,
 - adjacency matrices allow for a much larger number of code words then spanning trees,
 - the row-wise listing restricted to the upper triangle has the advantage of prefix property.
- example of canonical and non-canonical code word

- trivial observations
 - one of the vertices with minimal label must have the index 1,
 - edges with different labels define the order of further vertices unambiguously,
 - the easiest construction with unique labels, backtracking needed otherwise.

Canonical extended adjacency matrices

- how to distinguish the vertices and edges with the same label?
 - let us introduce a **vertex signature** = local code word,
 - it captures the neighborhood structure of a vertex,
 - the structure is extended until no signature pair matches,
 - we iteratively split vertex equivalence classes.

	vertex signature		vertex	signature	vertex	signature
	1	S	1	S	1	S
	2	Ν	2	Ν	2	Ν
	4	0	4	0 –	4	0 – N
3	8	0	8	0 -	8	0 - C=
¹ S ^C C ⁶	9	0	9	0 =	9	0 =
	3	С	3	С	3	C S C
$0^{-7}C=0^{-9}$	6	С	6	С	6	C C C
	5	С	5	С	5	C
8	7	С	7	C=	7	C=

Additional issues

Fragment repository

- canonical code words represent the dominant approach to redundancy reduction,
- an alternative is to store already processed subgraphs, they are not processed again,
- key efficiency issues: memory, fast access (hash),
- extensions for molecules
 - frequent molecular fragments processed en bloc,
 - ring mining, carbon chains and wildcard vertices,
- single graph only
 - distinct definition of support (more complex),

trees

- ordered \times unordered, rooted \times unrooted,
- in general easier than unrestricted graphs.

Frequent subgraphs – summary

- Problem closely related to frequent itemset mining
 - APRIORI property,
 - however, to avoid redundancy during search gets more difficult,
 - * larger branching factor,
 - * itemsets have no internal structure,
 - non-trivial canonical graph representation
 - * guarantees that subgraph support is counted at most once (additional necessary condition is parental support),
 - * choice of representation related with choice of searching algorithm,
 - * prefix property allows for early rejection of non-canonical candidates,
 - two canonical forms were introduced
 - * spanning trees,
 - * adjacency matrices,
- demo: Molecular Substructure Miner (MOSS),

Recommended reading, lecture resources

:: Reading

Borgelt: Frequent Pattern Mining.

- this lecture makes a selection of the graph part of Borgelt's course,
- http://www.borgelt.net/teach/fpm/slides.html.
- Nijssen, Kok: The Gaston Tool for Frequent Subgraph Mining.
 - frequently used tool Gaston, application on molecular databases,
 - http://www.liacs.nl/~snijssen/gaston/index.html,
- Yan, Han: gSpan: Graph-Based Substructure Pattern Mining.
 - frequently applied tool gSpan,
 - http://www.cs.ucsb.edu/~xyan/software/gSpan.htm.

OPPA European Social Fund Prague & EU: We invest in your future.