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Risk Estimates

Remind: we want to learn f which minimizes risk R(f ).

Estimates of R(f )
theoretical
a function of properties

such as m, V(F ), δ

empirical
a number computed for

a particular sample and

learner
worst-case
an upper bound on R(f )

PAC-theory not interesting

average-case
the expected value of R(f )

not available this lecture

Theoretical: reveal relationships, useful for the design of learning
algorithms or experiments.

Expected-case: useful in applications of existing algorithms.
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Risk Estimator

Let S be a set of possible i.i.d samples. Let L : S → F be a
(deterministic) learning algorithm.

A risk estimator takes L and S and produces a number R̂(L,S) that should
approximate R(L(S)), i.e. minimize

ES [(R(L(S))− R̂(L,S))2]

Since S is drawn randomly, L(S) is random, and thus R(L(S)) and R̂(L,S)
are also random.

The expectation is over a probability distribution PS on samples.

For a fixed |S| = m, PS can be derived from PX.

Our subsequent analyses of estimators will relate to any PS so we do not
need to specify it.
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Bias and Variance of Risk Estimates

For clarity, denote f S ≡ L(S) and R̂ ≡ R̂(L,S).

The error of an estimator can be decomposed into two components:

Bias:
bias(R̂) = ES [R̂− R(f S)]

Variance:
var(R̂) = ES [

(

ES [R̂] − R̂
)2

]

This can be shown the same way we used in deriving the bias-variance
trade-off in regression.

Risk estimators are usually characterized in terms of their bias and
variance.
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Split Sample Estimator

1 Randomly splits S into Strain and Stest

2 Learns f = L(Strain) and outputs R̂ss = R(Stest, f )

Strain Stest

S

f
Learn f Calculate R(Stest, f )

f and R̂ss here depend on the outcome of two random events:

1 sampling of S from X

2 splitting of S, i.e. ‘subsampling’ Stest from S and letting
Strain = S \ Stest

Filip Železný (ČVUT) Empirical Validation January 6, 2012 5 / 29



Split-Sample Estimator Bias and Variance

A split where µ = |Stest|/|S| will be called a µ-split.

Given the additional random event (sample splitting), we define the
conditional bias of R̂ss

biasµ,S(R̂ss) = Eµ,S[R̂ss] − R(f S)

where Eµ,S denotes the expectation over all µ-splits of a fixed sample S.

The (unconditional) bias can be expressed as

bias(R̂ss) = ESEµ,S[R̂ss − R(f S)]

over all samples S ∈ S and all their µ-splits.

Analogically for the conditional and unconditional variance.
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Bias of R̂ss

Assuming that more examples allow learning a better classifier implies that

R(f ) > R(f S) (1)

since f is trained on Strain, |Strain| < |S|.

Since R̂ss is the empirical risk of f is tested on a sample independent from
Strain, R̂ss is an unbiased estimator of R(f ):

ESEµ,S[R̂ss − R(f )] = 0

Considering Eq. 1, R̂ss thus has a positive bias in estimating R(f S), i.e.

bias(R̂ss) > 0
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Estimating R(f S) or R(f )

Given that R̂ss is an unbiased estimate of R(f ), we may choose to simply
output f with R̂ss as the validated product of learning.

This is a compromise since f S would have likely been a better classifier
than f .

It is a reasonable approach when R(f ) is not too much higher than R(f S).
This occurs when Strain is large enough so that additional data do not
contribute significantly to improve f , i.e. the learner is saturated.

In other cases it is preferable to produce f S even if its risk estimate R̂ss is
biased.

Whether a learner is saturated follows from the learning curve.
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Learner Saturation

|S|

R

|Strain|
|S|

large

difference
not saturated

|S′train| |S′|

small

difference

almost saturated

min. R of L
Bayes R
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Distribution of R̂ss

Assume a fixed S and µ. R̂ss is an outcome of µ|S| Bernoulli trials
(correct/incorrect classification) and for sufficiently large S, it is
distributed normally.

P(R̂ss|µ,S)

0 1R(f S) Eµ,S[R̂ss]

biasµ,S(R̂ss)

varµ,S(R̂ss)
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Bias of R̂ss

The conditional bias
biasµ,S(R̂ss)

grows with growing µ since also |Strain| decays.

The trend holds as well for the unconditional bias

bias(R̂ss)

i.e. when the conditional biases are aggregated over all samples S ∈ S .

The rate of decay depends on the learning curve of the learner L.
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Bias of R̂ss (cont’d)

Consider two samples S1, S2 from the same distribution PXY.

|S1| = 10, |S2| = 60, µ = 0.5.

|S|

R

µ|S1|
|S1|

large
bias

µ|S2| |S2|

small
bias
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Conditional Variance of R̂ss

Assuming (for simplicity) that the same classifier is learned for all µ-splits,
the conditional variance of R̂ss would decay with growing µ|S| as

varµ,S(R̂ss) =
R(f )(1− R(f ))

µ|S|

Rephrased: with larger test splits, estimates of R̂ss are more reliable.

However, the assumption holds (approximately) only if
|Strain| = (1− µ)|S| is large enough so that L is saturated.

Otherwise, different f are learned from different µ-splits. Since R̂ss

depends on f , varµ,S(R̂ss) also grows with varµ,S(R(f )). That in turn
grows with µ with a rate depending on the learner L.

Thus if |Strain| = (1− µ)|S| is small so that L is not saturated, the trends
in conditional variance cannot be predicted.
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Unconditional Variance of R̂ss (cont’d)

According to [Hastie et al., Elements of Statistical Learning, Springer, 2009], the
unconditional variance

var(R̂ss)

typically decays with growing µ.

This is because for small µ, the individual train splits Strain are very similar
to each other, causing high positive correlation of the measurements
e(Stest, f ).

The estimate R̂ss is thus ‘overfit’ to sample S. This implies large variance
over different samples, i.e. high unconditional variance.

Note: Since part of the variance is due to the conditional variance, decay
of var(R̂ss) with µ may be overridden by the possible growth of varµ,S(R̂ss)
with µ when the learner is not saturated. (We will see an example later).
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Bias-Variance Trade-off in Risk Estimation (cont’d)

P(R̂ss)

0 1R(f S)

small µ
small bias

large variance

large µ
large bias

small variance

Usual choice µ = 0.3.
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Variance of R̂ss due to Sample Splitting

Part of the variance var(R̂ss) is the conditional variance varµ,S(R̂ss) which
is due to the random splitting of S.

P(R̂ss|µ,S)

0 1R(f S)
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Complete Subsampling

varµ,S(R̂ss) can be completely eliminated by averaging estimates over all
possible µ-splits of S

R̂cs =
1

K ∑
Stest ⊂ 2S

|Stest| = µ|S|

R(Stest,L(S \ Stest))

where

K =

(

|S|
µ|S|

)

R̂cs is the complete subsampling estimate.

varµ,S(R̂cs) = 0, but (conditional) bias remains,

biasµ,S(R̂cs) = biasµ,S(R̂ss), bias(R̂cs) = bias(R̂ss)
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Split Sample vs. Complete Subsampling

Split sample Complete Subsampling

P(R̂ss|µ,S)
R(f )

P(R̂ss|µ,S)

R(f )

↑ varµ,S(R̂ss) ≤ var(R̂ss) ↓ ↑ 0 = varµ,S(R̂cs) ≤ var(R̂cs) ↓

P(R̂ss)

ES [R(f )]

P(R̂ss)

ES [R(f )]
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Complete Subsampling and Leave-One-Out Estimate

Complete subsampling is extremely computationally difficult. Requires
(

|S|
µ|S|

)

learning and testing sessions.

The easiest are the two extreme cases µ|S| = 1 and µ|S| = |S| − 1
requiring ‘only’ |S| learning and testing sessions.

µ|S| = |S| − 1 is not useful due to the extremely high bias (learning from
1 example).

The µ|S| = 1 case is known as leave one out estimate. We denote it R̂lo.
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Leave-One-Out: Bias and Variance

R̂lo has the smallest possible bias (all but one examples used to learn f ).

Compared to other complete subsampling cases, it has high variance
var(R̂lo) due to

The positive correlations of the summands

R(Stest,L(S \ Stest))

caused by the extreme similarity of the training subsamples
Strain = S \ Stest), each two differing only by 2 examples. (The
estimate is ‘overfit’ to S).

The low number |S| of summands, compared to

(

|S|
µ|S|

)

.
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Cross-Validation

N-fold cross-validation is a computationally feasible approximation to
complete subsampling with 1/N-splits.

S is randomly partitioned into sets (folds) S1,S2, . . . SN of approximately
equal size and the estimate is computed as the average

R̂cv =
1

N

N

∑
i=1

R(Si,L(S \ Si))

Cross-validation thus requires N sessions of learning and testing.

1 2 3 4 5

learn learntest

For N = |S|, N-fold crossvalidation R̂cv is the leave-one-out estimate Rlo.
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Cross-Validation: Variance

R̂cv has non-zero conditional variance varN,S(R̂cv) due to the random
splitting into folds, up to the leave-one-out case where N = |S| and
varN,S(R̂cv) = 0.

The conditional variance (and consequently also the unconditional
variance) can be reduced by averaging the results of L cross-validations
with different splittings. This repeated N-fold cross-validation estimate

R̂rcv approaches complete subsampling with 1/N-splits as L → ∞ and

lim
L→∞

varN,S(R̂cv) = 0

According to experimental results [Molinaro et al., Bioinformatics, 2005] with
real-life data and conventional learners, the unconditional variance

var(R̂cv) of 10-fold cross-validation is comparable to var(R̂lo), however,
much less computation is required (10 vs. N learning sessions).
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Cross-Validation: Bias

biasN,S(R̂cv) decays with increasing number of folds N (since the training
subsamples grow) to the minimum

biasN,S(R̂lo) > 0

achieved the leave-one-out case.

For |S| >> N, the conditional bias can be reduced by stratification.
Stratification is an adjustment of random splitting into folds making sure
that the distribution of example classes in each fold is (approximately)
equal to the class distribution in S.

Filip Železný (ČVUT) Empirical Validation January 6, 2012 23 / 29



Leave-one-out vs. 10-fold cross-validation

According to [Molinaro et al.,

Bioinformatics, 2005], the
leave-one-out estimate has
smaller error

ES [(R(f S) − R̂)2]

than the 10-fold cross-validation
estimate (and all other estimates)
on real-life (genomic) data sets.
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Leave-one-out vs. 10-fold cross-validation (cont’d)

According to [Hastie et al., Springer,

2009], the leave-one-out estimate
has larger conditional absolute
error

EN,S[|(R(f S) − R̂)|]

than the 10-fold cross-validation
estimate on simulated data sets.

However, both sources recommend the 10-fold cross-validation (preferably
stratified and repeated) as a good trade-off between estimate error and
computational complexity.
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Selection of Learners or Parameters

A set of learners is available L = {L1, . . . Ll}. L may refer to a single
algorithm with l different values of a parameter (e.g. the maximum
number of literals in a conjunction).

The best learner for the available sample S may be selected as

argmin
Li∈L

R̂(Li,S)

Since test splits were used for the selection, R̂(Li,S) would no longer be
valid risk estimate of Li (it will typically have a negative bias).

Therefore, selection must be based on internal estimation.
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Internal and External Estimation

When selection of a learner from a set L = {L1, . . . ,Ll} (Li may
correspond to different parameter values of different kind of algorithms) is
part of learning, we formally consider a learner LL that learns

f S = LL(S) = L(S)

where
L = argmin

Li∈L
R̂(Li,S)

R̂ is some risk estimate (usually cross-validation), called the internal

estimate. Risk of f S is estimated as

R̂(LL,S)

where R̂ is some risk estimate (usually split-sample), called the external

estimate. Note that computation of R̂(LL,S) involves splitting of S, and
then splitting the splits of S!
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Example: Learner/Parameter Selection

Goal: Given sample S, select a learner (or parameter) and learn a classifier.

Case 1: we are not interested in the risk of f S.

Using 5-fold cross-validation:

1 Perform cross-validation on S for each L ∈ L

1 2 3 4 5

Select Li that minimizes cross-validation error
2 With Li, learn classifier on the entire sample S, i.e. f S = Li(S)
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Example: Learner/Parameter Selection

Case 2: we are interested in the risk of f S. Now we must apply both
external and internal validation.

1 External validation using split-sample method:

Strain Stest

2 Perform internal cross-validation on Strain for each L ∈ L

1 2 3 4 5

Select Li that minimizes cross-validation error
3 With Li, learn classifier on sample Strain, i.e. f = Li(Strain)

4 Risk of f S estimated as e(Stest, f )

5 With Li, learn classifier on sample S, i.e. f S = Li(S)
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