

OPPA European Social Fund Prague & EU: We invest in your future.

Cluster analysis – advanced and special algorithms

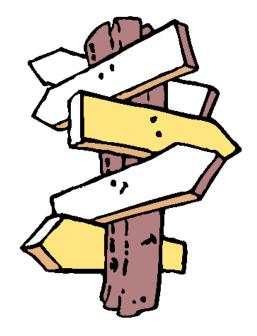
Jiří Kléma

Department of Cybernetics, Czech Technical University in Prague

http://ida.felk.cvut.cz

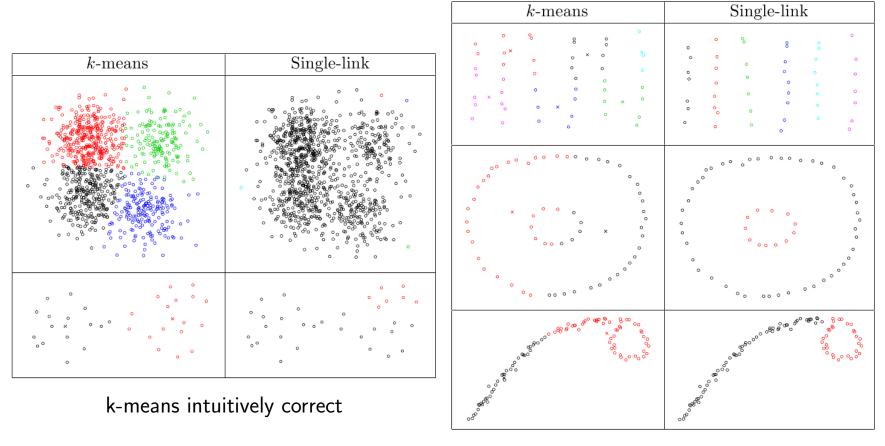
Outline

- robustness of the introduced methods examples,
- k-means and hierarchical agglomerative clustering complexity,
- clustering quality evaluation
 - internal versus external partitioning evaluation,
- clustering definition?
- an advanced method
 - spectral clustering,
- special methods
 - conceptual clustering,
 - bi-clustering,
 - semi-supervised clustering.

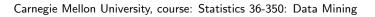


Comparison: k-means and hierarchical single-link

- single linkage tends to generate longer non-compact clusters,
- k-means makes compact clusters, complete linkage is outlier sensitive,



single linkage intuitively correct



Complexity – comparison

- assumed: $d(x_i, x_j) \in \mathcal{O}(n)$,
- k-means algorithm
 - assign instances into clusters: $\mathcal{O}(km)$ distance computations $ightarrow f_E \in \mathcal{O}(knm)$,
 - modify centroids: $f_M \in \mathcal{O}(nm)$ (each instance used exactly once in one of the centroid),
 - unknown iteration number before stop: i (estimates vary from the constant with m up to $\mathcal{O}(m^{kn})$),
 - summary: $f = i(f_E + f_M) \in \mathcal{O}(iknm)$,
- hierarchical agglomerative clustering (single link)
 - initialize
 - * compute distances among all instance pairs $f_I \in \mathcal{O}(m^2 n)$,
 - *next-best-merge* array the nearest neighbor with its distance for each cluster (complexity hidden in the previous line),
 - $-\ m-1$ iterations to complete the dendrogram
 - * find the smallest distance in the next-best-merge array $f_{E_0} \in \mathcal{O}(m)$,
 - * adjust the distance matrix $f_{E_1} \in \mathcal{O}(m)$,
 - * adjust the next-best-merge array $f_{E_2} \in \mathcal{O}(m)$,
 - summary: $f = f_I + (m-1)(f_{E_0} + f_{E_1} + f_{E_2}) \in \mathcal{O}(m^2n).$

Clustering quality – evaluation

- internal: quantifies three partitioning characteristics
 - homogeneity are instances within clusters similar?

 $hom = \frac{1}{m} \sum_{i=1}^{k} \sum_{x_j \in C_i} d(x_j, \mu_i),$

- separability - are instances in different clusters dissimilar?

$$sep = \frac{1}{k(k-1)} \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} \exp\left(-\frac{d^2(\mu_i, \mu_j)}{2\sigma^2}\right)$$
,

- stability how many relations brakes by adding noise or random instance sampling?
- internal evaluation criteria in the clustering algorithms
 - intra-cluster variability: (see homogeneity for k-means),
 - model likelihood: (for probabilistic models, see EM GMM),
 - the size of the balanced cut of similarity graph: (see spectral clustering later) $\frac{1}{2}\sum_{ij} s(x_i, x_j)(1 \delta(C_i C_j))(\frac{1}{|C_i|} + \frac{1}{|C_j|})$,
- clustering is subjective, the "objective" internal measure can be improper.

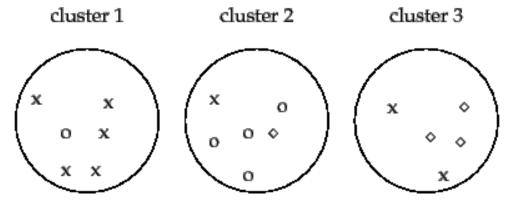
Clustering quality – evaluation

- external: match the partitioning Ω with a known annotation $G = \{G_1, \ldots, G_c\}$ (gold standard),
- basic external evaluation criteria
 - purity
 - * the total major instance class ratio across clusters

(each cluster has a major class, the higher its ratio in the cluster the better), $purity(\Omega, G) = \frac{1}{m} \sum_{i=1...k} \max_{j=1...k} |C_i \cap G_j|$

* disadvantage: cannot compare partitionings with different k,

* example (figure): $purity = \frac{5+4+3}{17} = 0.71$



Manning et al.: Introduction to Information Retrieval. http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

Clustering quality – evaluation

basic external evaluation criteria (continuation)

- normalized mutual information

* based on information entropy,

$$NMI(\Omega, G) = \frac{2I(\Omega, G)}{H(\Omega)H(G)}$$

 $I(\Omega, G) = -\sum_{i=1...k} \sum_{j=1...c} P(C_i \cap G_j) \log_2(\frac{P(C_i \cap G_j)}{P(C_i)P(G_j)})$
 $H(\Omega) = -\sum_{i=1...k} P(C_i) \log_2(P(C_i)), H(G) = -\sum_{j=1...c} P(G_j) \log_2(P(G_j))$
* example (figure): $H(\Omega) = -2\frac{6}{17}log_2(\frac{6}{17}) - \frac{5}{17}log_2(\frac{5}{17}) = 1.58, H(G) = 1.52$
 $NMI = \frac{2 \times 0.96}{1.58 \times 1.52} = 0.8$

- rand index

* clustering is interpreted as a sequence of $\frac{m(m-1)}{2}$ decisions,

* decision = the partitioning either puts a instance pair into the same cluster or not,

 $*TP\ldots$ an instance pair in the same cluster in Ω and the same class in G,

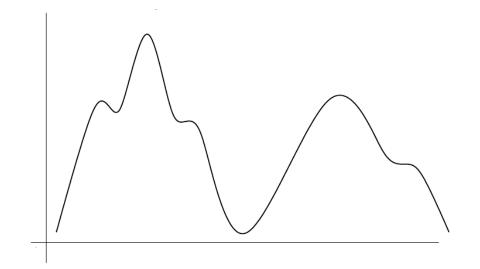
 $* \; TN \ldots$ an instance pair in different clusters in Ω and different classes in G,

*
$$RI(\Omega, G) = \frac{TP + TN}{TP + TN + FP + FN} = \frac{2(TP + TN)}{m(m-1)}$$

* example (figure): $RI = \frac{2(\binom{5}{2} + \binom{4}{2} + \binom{3}{2} + \binom{2}{2} + 5 \times 8 + 1 \times 7 + 4 \times 5 + 1 \times 2 + 1 \times 3)}{17 \times 16} = 0.68$

Defining clustering by ...

- a quality function see the previous slides
 - + can use standard optimization techniques,
 - heuristic choice of quality function, usually NP hard,
- high density areas
 - a cluster is a high density area, clusters are separated by low density areas,
 - + intuitively makes sense, density estimation is the well-known problem,
 - for non-trivial dimension even more demanding than clustering itself,

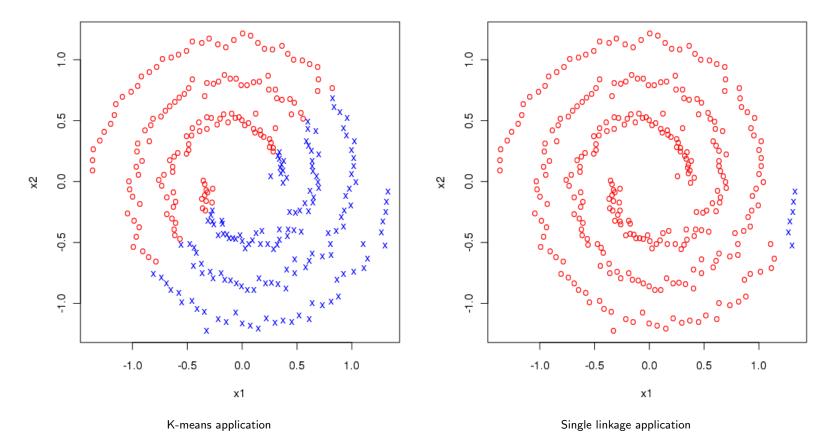


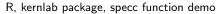
Defining clustering by ...

- a model-based approach
 - assumed that data were generated by a (probabilistic) model
 - the model implicitly defines clusters,
 - + model more than a partitioning = a clear interpretation,
 - + standard techniques such as ML, EM, Bayesian approaches available,
 - often too strong assumptions eventually unsatisfied, parameter estimation is not easy,
- an axiomatic view
 - clustering function from the distance matrix to partitioning defined indirectly by properties,
 - an axiomatic system example:
 - * scale invariance: distance scaling does not change the partitioning,
 - * richness: for any clustering there exists a distance matrix which induces it,
 - * consistency: shrink/expand distances inside/outside cluster \rightarrow partition unchanged,
 - + an elegant way of definition,
 - seemingly harmless axiom sets contradictory, ad hoc choice, often not pract. helpful,
- information theory
 - clustering=lossy compression, defined by acceptable amount of loss or code length,
 - what is the "original information"? cannot be solved analytically.

Spectral clustering – motivation

- clustering algorithms assume certain cluster shapes
 - unexpected shapes cause difficulties (eg. linearly non-separable clusters),
 - "classical pairwise similarity" can be insufficient.





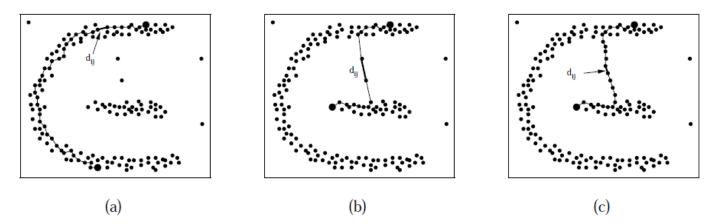
- frequent solution is a feature space transformation,
- a domain independent clustering algorithm, the transformation tuned for the domain
 - explicit transformation
 - * get the object coordinates in the new feature space,
 - * traditional clustering in the new space,
 - * illustrative, but impractical,
 - implicit transformation
 - * via similarity resp. kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$,
 - * purely a function of object pairs, no object coordinates in the new space,
 - * very natural for clustering, similarity/distance its essential part anyway,

* kernel trick analogy (SVM classification),

* an implicit high-dimensional space, clusters (classes) potentially easily separable,

* kernel PCA – kernel matrix \rightarrow PCA \rightarrow a low-dimensional feature space.

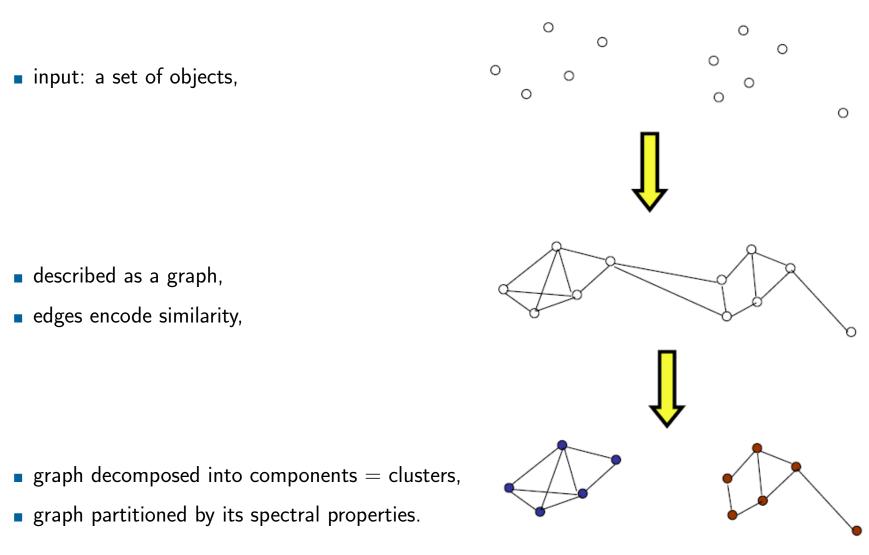
- connectivity kernel
 - the object pair distance given by the max edge on the path connecting the objects,
 - if there are more paths, the one minimizing the criterion above is taken,
 - more robust than single linkage,

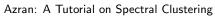


Fischer et al.: Clustering with the Connectivity Kernel

- Gaussian (RBF) kernel
 - $-s(x_i, x_j) = \exp(-||x_i x_j||/\sigma^2),$
 - $-\sigma$ set to have a "tight" object neighborhood,
 - an implicit feature space (infinite dimension).

Spectral clustering in a nutshell

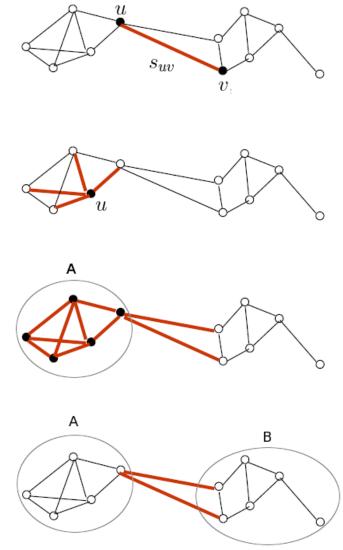




Graph theory – **basic terms**

- vertex (object) similarity (affinity)
 - $-s_{uv}=\langle u,v
 angle$,
- vertex degree (volume), degree matrix $- d_u = \sum_{v=1}^m s_{uv},$ $- \mathcal{D} = diag(d_1, \dots, d_m),$
- size and degree of a vertex set (cluster) $-|A| \dots$ the number of vertices in A, $-vol(A) = \sum_{u \in A} d_u$,
- an edge cut between two components

$$- cut(A, B) = \sum_{u \in A} \sum_{v \in B} s_{uv}.$$

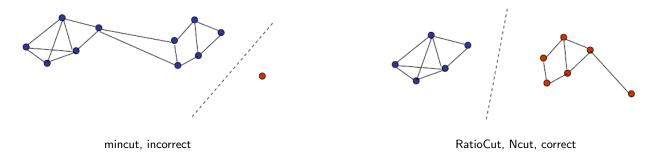


Azran: A Tutorial on Spectral Clustering

Spectral clustering as an approximated minimum graph cut

- $\scriptstyle \bullet \,$ clustering \sim partition the similarity graph into components,
- can be solved as an optimization problem
 - search for a minimum edge cut in the similarity graph S to make it disconnected $* \min_{A \subset S} cut(A, \overline{A})$,

 \ast a computationally feasible problem, but rather unsatisfactory partitionings,



- a "reasonable" size of the components needs to be required

* minimize one of the balanced cut criteria,

*
$$RatioCut(A, B) = cut(A, B)\left(\frac{1}{|A|} + \frac{1}{|B|}\right)$$
,
* $Ncut(A, B) = cut(A, B)\left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right)$,
* the dark side of the coin: NP-hard problems,

• spectral clustering provides a relaxed and feasible solution to the balanced cut problem.

- inputs: $\mathcal{X} = [x_{ij}]_{m \times n} = \{x_1, \dots, x_m\} \subset \mathbb{R}^n$, k
 - 1. select the similarity function
 - linear, RBF, polynomial, etc.
 - a general rule assigning functions to problems does not exist,
 - 2. compute the similarity (adjacency) matrix $\mathcal{S} = [s_{ij}]_{m imes m}$
 - (a new implicit feature space originates),
 - 3. construct a "reasonable" similarity graph by editing ${\cal S}$
 - \mathcal{S} is a complete graph, vertices \sim objects, similarities \sim edges,
 - remove long (improper) edges,
 - 4. derive the Laplace matrix ${\cal L}$ out of the similarity matrix ${\cal S}$
 - unnormalized: $\mathcal{L} = \mathcal{D} \mathcal{S}$,
 - normalized: $\mathcal{L}_{rw} = \mathcal{D}^{-1}\mathcal{L} = \mathcal{I} \mathcal{D}^{-1}\mathcal{S}$,
 - 5. project into an explicit space of k first eigenvectors of \mathcal{L} ,
 - $v_{ij} \mathcal{V} = [v_{ij}]_{m imes k}$, eigenvectors of \mathcal{L} as columns,
 - 6. k-means clustering in $\ensuremath{\mathcal{V}}$ matrix

 $- \mathcal{V}$ rows interpreted as new object positions in k-dimensional space.

Spectral clustering – similarity graph

- reduce the complete graph to an unoriented graph concerning local neighborhoods,
- vertices shall have a reasonable degree ($\ll m$),
- basic approaches
 - $-\epsilon$ -neighborhood

 $* s_{ij} > \epsilon \rightarrow$ vertices i and j connected by an edge, otherwise $s_{ij} = 0$,

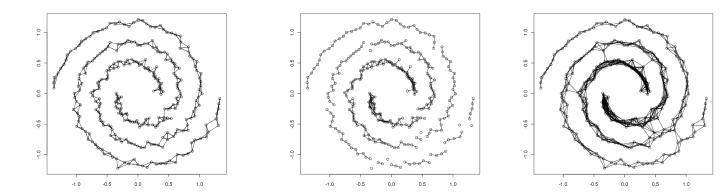
- k-nearest neighbors

 \ast symmetric: connect i and j if i belongs to k nearest neighbors of j or vice versa,

* mutual: connect i and j if i belongs to k nearest neighbors of j and vice versa,

- keep the complete graph

* usually with the RBF or other strictly local kernel.



Euclidean similarity, 3 nearest neighbors (var sym)

RBF kernel, too small ϵ

RBF kernel, a suitable ϵ

Spectral clustering – graph Laplacian

- ${\scriptstyle \bullet}$ concern the unnormalized option: ${\cal L}={\cal D}-{\cal S}$
- then for $\forall f \in \mathbb{R}^m$

$$\begin{aligned} f'\mathcal{L}f &= f'\mathcal{D}f - f'\mathcal{S}f = \\ &= \sum_{i=1}^{m} d_i f_i^2 - \sum_{i,j=1}^{m} f_i f_j s_{ij} = \\ &= \frac{1}{2} \Big(\sum_{i=1}^{m} (\sum_{j=1}^{m} s_{ij}) f_i^2 - 2 \sum_{i,j=1}^{m} f_i f_j s_{ij} + \sum_{j=1}^{m} (\sum_{i=1}^{m} s_{ij}) f_j^2 \Big) = \\ &= \frac{1}{2} \sum_{i,j=1}^{m} s_{ij} (f_i - f_j)^2 \end{aligned}$$

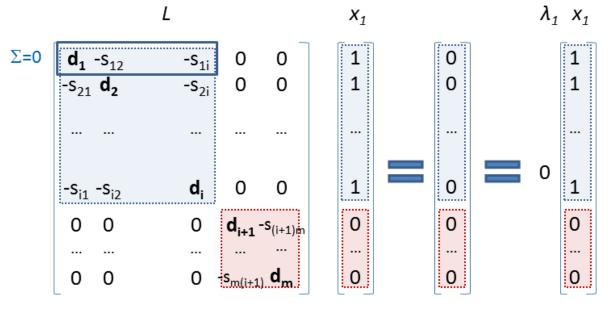
- measures the variation of function f along the graph
 - the value $f' \mathcal{L} f$ is low when close vertices agree in their f_i ,
 - assumes that near objects shall have close function values (f),
- the discrete Laplace operator encodes the same property,
- an interesting case: $f = \mathbb{1}_A$ ($f_i = 1$ if $v_i \in A$ jinak $f_i = 0$), A is a graph component.

Spectral clustering – eigenvectors of \mathcal{L}

- eigenvectors x of \mathcal{L} matix ($\mathcal{L}x = \lambda x$) provide a good graph partitioning indication,
- an ultimate (ideal) case: graph has exactly k components
 - -k smallest eigenvectors ideally split k clusters,

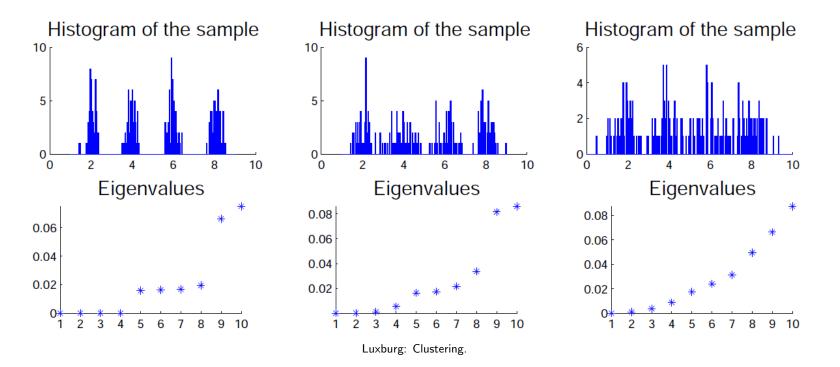
 $-\lambda_1 = \cdots = \lambda_k = 0 < \lambda_{k+1} \leq \cdots \leq \lambda_m \to x_1, \ldots, x_k,$

- other (usual) cases: a connected graph, k component candidates exist
 - the space of k smallest eigenvectors (with nonzero λ) allows to form k clusters.



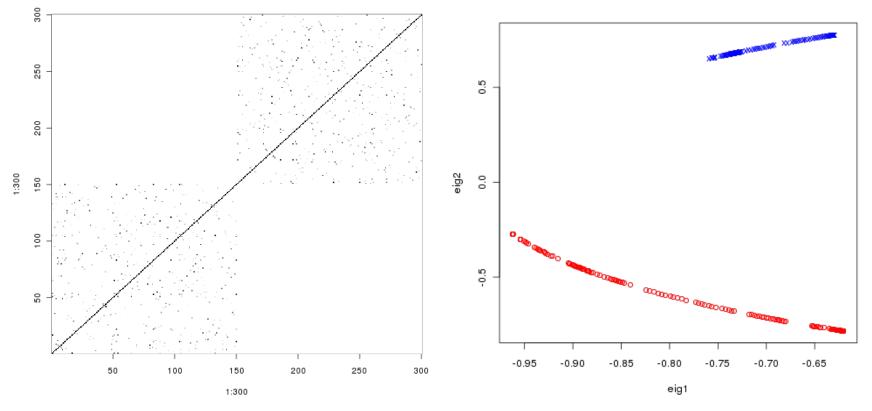
The ideal case for k = 2.

- provided k is unknown, eigengap statistic
 - a k-means gap heuristic analogy,
 - concern only small eigenvectors before the first jump in eigenvalues,
 - the number of clusters matches the number of selected eigenvectors.



Example: spirals – eigenvectors

- similarity matrix splits the graph into components nearly ideally,
- the second eigenvector of \mathcal{L} is a perfect component indicator.



Similarity matrix for RBF kernel with a suitable σ the instance order is illustrative and keeps the real spiral membership

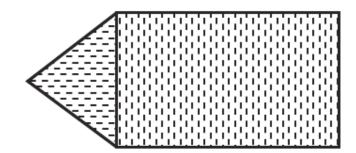
 $\label{eq:projection-the} \begin{array}{l} \mbox{Projection-the first and second eigenvector space \mathcal{S}} \\ \mbox{colors give the real spiral membership, k-means clustering is trivial} \end{array}$

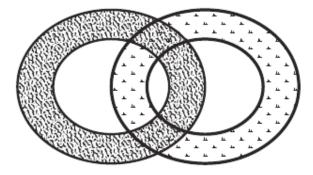
advantages

- does not make strong assumptions on cluster shape,
- simple to implement uses existing algorithms,
- does not have a local optima, cannot stuck,
- a modular approach applicable in a range of problems
 - * modify the kernel or similarity graph to adapt to a new problem,
- eigengap heuristic to find an optimal cluster number,
- successful in a range of real problems,
- disadvantages
 - can be sensitive to choice of parameters, unclear how to set them,
 - * kernels (eg. σ for RBF), graph similarity (ϵ or k),
 - computationally expensive on large non-sparse graphs,
 - * use only after simpler algorithms fail,
 - not really clear what it does on non-regular graphs (e.g. power law graphs),
- demo
 - http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html.

Conceptual clustering – motivation

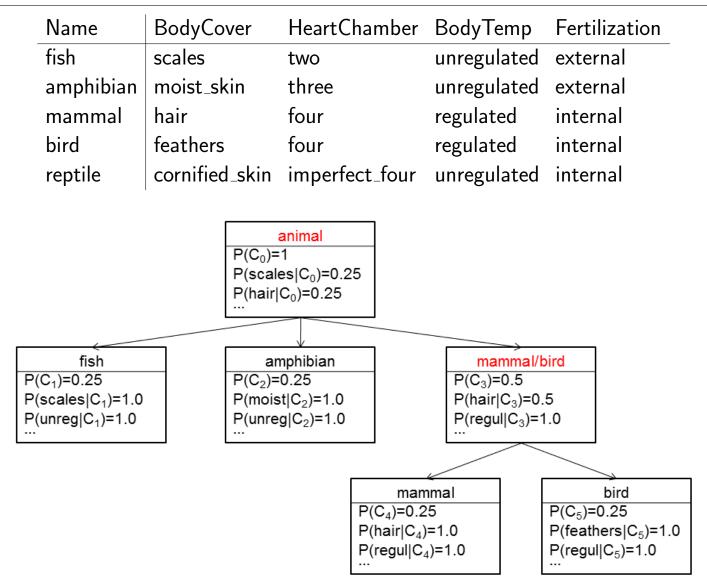
- the objects in one cluster share a property
 - it generalizes the earlier similarity-based cluster definition,
 - (the common property was e.g. the proximity to a cluster centroid),
- besides the partitioning it also generates a cluster description
 - concept (= a definition of a subset of instance space in a language),
 - (it is big, yellow, fast, it makes noise, five people fits in ... it is a car),
- refers both to clustering and recognition
 - the property defining a cluster can be complex.





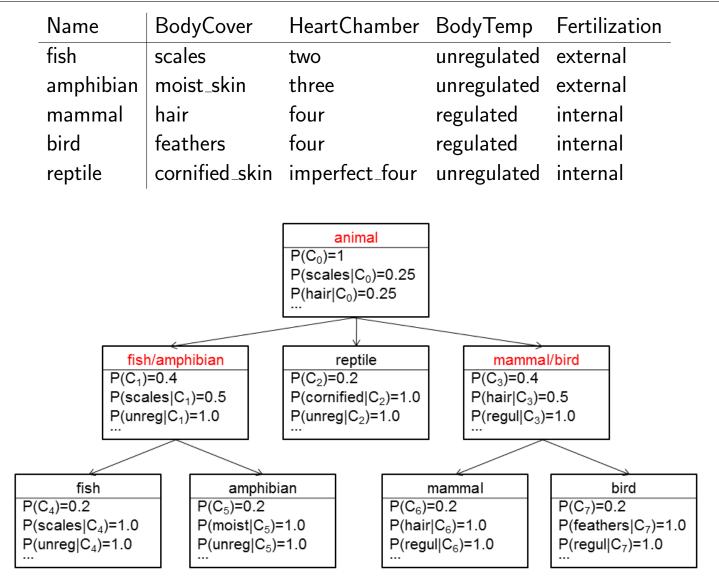
Tan et al.: Introduction to Data Mining

Conceptual clustering: COBWEB (Fisher, 1987)



Fisher: Conceptual Acquisition Via Incremental Conceptual Clustering

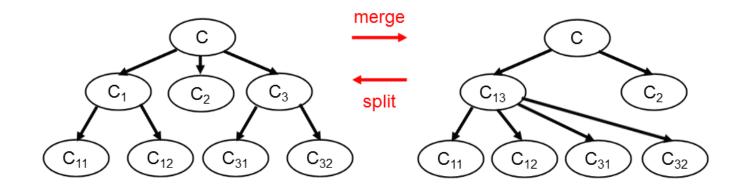
Conceptual clustering: COBWEB (Fisher, 1987)



Fisher: Conceptual Acquisition Via Incremental Conceptual Clustering

COBWEB algorithm

- instance by instance makes a (classification) tree,
 - internal node = (probabilistic) concept, leaf = instance,
- for each instance takes one of the following operators
 - create a new class find a position in the hierarchy for a new subclass,
 - assign the instance into an existing class an object is similar with the objects belonging to one of the classes,
- to minimize the influence of instance ordering, concern the learning operators
 - merge classes two classes replaced by one class,
 - split class one class breaks to subclasses or individual objects,
- bi-directional hill-climbing search driven by the category utility function.



COBWEB: evaluation function

What is a good clustering result/partitioning?

- feature values are **predictable** within a class

* "It is a taxi." \Rightarrow "It is yellow.",

- * expressed by $Pr(f_i = v_{ij}|C_c)$ (example with high $Pr(f_{color} = yellow|C_{taxi})$)
 - $\cdot F = \{f_1, \ldots, f_n\} \ldots$ a feature set,

 $\cdot V_i = \{v_{i1}, \ldots, v_{il}\} \ldots$ the values of the i-th feature,

$$\cdot \Omega = \{C_1, \ldots, C_k\} \ldots$$
 the partitioning of \mathcal{X} set,

- * corresponds to homogeneity shown earlier,
- feature values are predictive for classes
 - * "It has a hair." \Rightarrow "It is a mammal.",

* expressed by $Pr(C_c|f_i = v_{ij})$ (example with high $Pr(C_{mammal}|f_{bodyCover} = hair)$), * corresponds to separability shown earlier,

- the feature values with the above-mention properties shall be frequent
 - * "It uses ultrasound to navigate." \Rightarrow "It is a mammal.",
 - * of limited use since $Pr(f_{navigation} = ultrasound) \rightarrow 0$,
- the partitioning is compact/brief
 - * the fewer categories/concepts, the better.

COBWEB: evaluation function

COBWEB measures partitioning quality with category utility

- summarizes the properties mentioned on the previous slide,
- it is a mutual information modification,

• partitioning quality – feature frequency \times class predictiveness \times feature predictability

$$\sum_{c=1}^{k} \sum_{i=1}^{n} \sum_{j=1}^{|V_i|} Pr(f_i = v_{ij}) Pr(C_c | f_i = v_{ij}) Pr(f_i = v_{ij} | C_c) =$$

$$= \sum_{c=1}^{k} \sum_{i=1}^{n} \sum_{j=1}^{|V_i|} Pr(C_c) Pr(f_i = v_{ij} | C_c) Pr(f_i = v_{ij} | C_c) = \sum_{c=1}^{k} Pr(C_c) \sum_{i=1}^{n} \sum_{j=1}^{|V_i|} Pr(f_i = v_{ij} | C_c)^2$$

- the category utility function shall also concern
 - partitioning brevity normalize by the number of clusters,
 - the referential information carried by the original (unclustered) data.

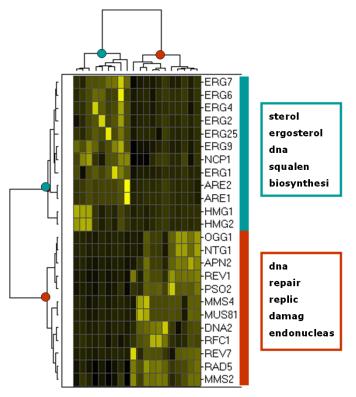
$$UC(\Omega, \mathcal{X}) = \frac{1}{k} \sum_{c=1}^{k} Pr(C_c) \left(\sum_{i=1}^{n} \sum_{j=1}^{|V_i|} Pr(f_i = v_{ij} | C_c)^2 - \sum_{i=1}^{n} \sum_{j=1}^{|V_i|} Pr(f_i = v_{ij})^2 \right)$$

COBWEB: summary

- algorithm properties
 - symbolic: nominal features,
 - hierarchical: creates a taxonomy,
 - incremental: the output made gradually, instance by instance,
- what language it works with?
 - the probabilistic concept description is a weak language (a vague one),
 - it permits an arbitrary concept
 - * an example for three binary features: $Pr(x|C_j) = [0.6, 0.5, 0.7]$,
 - when enhanced by constraints it is a stronger language
 - * define α factor for minimum deviation from 0.5,
 - * the constraint can apply to the maximum deviation or all the deviations (features),
 - * $\alpha=0.3$ for one feature at least
 - \cdot the vector [0.6, 0.5, 0.7] is not a concept, [0.6, 0.5, 0.9] vice versa,
 - \ast the ultimate case $\alpha=0.5$ for all the features
 - \cdot the language of logical conjunctions,
- how would you classify an unseen example?

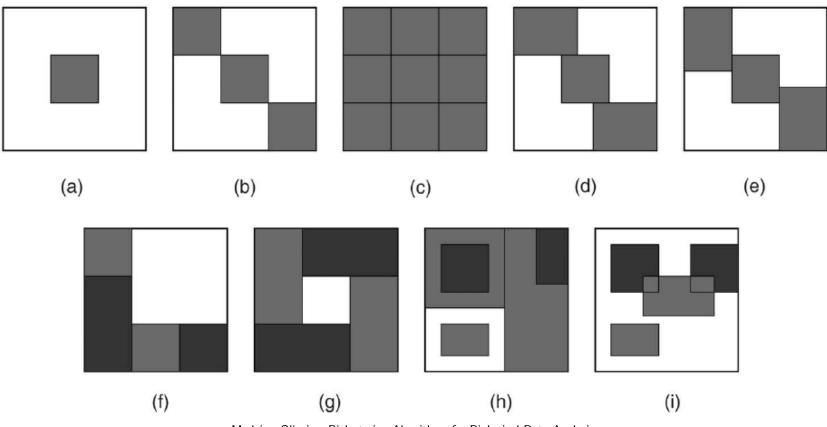
Bi-clustering (co-clustering)

- (hierarchical) both for instances and features,
- frequent in gene expression data analysis or text mining,
 - instances: tissues, features: genes,
- figure: two-way clustering carried out independently (successively) in both dimensions
 - comprehensible visualisation,
 - a global model
 - * all tissues used to cluster genes,
 - * all genes used to cluster tissues,
- bi-clustering clusters concurrently in both dimensions
 - a local model
 - * only relevant tissues to cluster particular genes,* only relevant genes to cluster particular tissues,
 - genes can have multiple functions, different biological conditions trigger different functions,
 - incomplete and inexclusive (skip object/feature, cluster overlaps).



Bi-clustering – cluster structures

- (a) single bi-cluster, (b) exclusive rows and columns, (c) checkerboard, (d) exclusive rows,
- (e) exclusive columns, (f) hierarchical nonoverlapping, (g) nonoverlapping nonexclusive,
- (h) hierarchical overlapping, (i) arbitrarily positioned overlapping.



Madeira, Oliveira: Biclustering Algorithms for Biological Data Analysis.

Bi-clustering – an algorithm example

block clustering (also direct clustering, Hartigan)

- 1. order rows (columns) by row (column) means,
- 2. find the best row or column split,
 - (a) criterion is the decrease in the internal block variance,

$$\sum_{c=1}^{k} \sum_{i \in I, j \in J} (x_{ij} - x_{IJ})^2$$

(I,J) is a bi-cluster, $I \subseteq \{1 \dots m\}$, $I \subseteq \{1 \dots n\}$, x_{IJ} is the bi-cluster mean,

(b) splits always keep the row/column order – the linear number of tests with m and n,

- 3. repeat the previous step in both sub-blocks until the given k is reached,
- hierarchical divide and conquer approach,
- trivial, fast algorithm with roughly suboptimal solutions,
- searches for (f) type bi-clusters, ie. hierarchical nonoverlapping,
- preference for constant bi-clusters ideally the only value in whole bi-cluster.

Block clustering – US presidential elections

- the republican vote for president (the republican candidate vote percentage),
- the southern US states in 1900-1968.

State	Year																	
Duale	12	36	32	40	44	48	16	04	68	08	24	00	20	28	56	60	52	64
SC	1	1	2	4	4	4	2	5	39	6	2	7	4	9	25	49	49	59
MI	2	3	4	4	6	3	5	5	14	7	8	10	14	18	24	25	40	87
GA	4	13	8	15	18	18	7	18	30	31	18	29	29	45	33	37	30	54
LA	5	11	7	14	19	17	7	10	23	12	20	21	31	24	53	29	47	57
AA	8	13	14	14	18	19	22	21	14	24	27	35	31	48	39	42	35	70
TS	9	12	11	19	17	25	17	22	40	22	20	31	24	52	55	49	53	37
FA	8	24	25	26	30	34	18	21	41	22	28	19	31	57	57	52	55	48
AS	20	18	13	21	30	21	28	40	31	37	29	35	35	39	46	43	44	44
VA	17	29	30	32	37	41	32	37	43	38	33	44	38	54	55	52	56	46
NC	12	27	29	26	33	33	42	40	40	46	40	45	43	55	49	48	46	44
TE	24	31	32	33	39	37	43	43	38	46	44	45	51	54	49	53	50	44
КY	25	40	40	42	45	41	47	47	44	48	49	49	49	59	54	54	50	36
MD	24	37	36	41	48	49	45	49	42	49	45	52	55	57	60	46	55	35
MO	30	38	35	48	48	42	47	50	45	49	50	46	55	56	50	50	51	3 6
wv	21	39	44	43	45	42	49	55	40	53	49	54	55	58	54	47	48	32
DE	33	43	51	45	45	50	50	54	45	52	58	54	56	65	55	49	52	39

Hartigan: Direct Clustering of a Data Matrix.

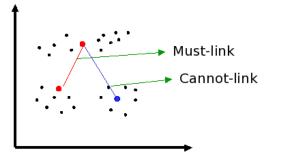
Cheng and Church

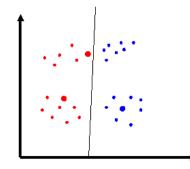
- the first bi-clustering algorithm used for microarray data,
- stems from the modified variance definition (residues)
 - $\sum_{c=1}^{k} \frac{1}{|I||J|} \sum_{i \in I, j \in J} (x_{ij} x_{Ij} x_{iJ} + x_{IJ})^2$
 - * superpose background (x_{IJ}) , gene effect (x_{iJ}) and effect of biological conditions (x_{Ij}) ,
- problem: some trivial bi-clusters having zero residue (1 imes m or 1 imes n)
 - * introduces a threshold residue δ , searches for the largests bi-clusters having residue < δ ,
- greedy algorithm (bi-clusters of the type (i))
 - 1. start with the whole matrix,
 - 2. remove a row or column causing the top residual decrease,
 - 3. repeat step 2 until the residue cannot be further decreased or it is $<\delta$,
 - 4. randomize the values in the found bi-cluster, repeat (1-3) for k bi-clusters.
- figure: additive (left pane) a multiplicative (right pane) bi-cluster.

1.0	2.0	5.0	0.0
2.0	3.0	6.0	1.0
4.0	5.0	8.0	3.0
5.0	6.0	9.0	4.0

Semi-supervised clustering

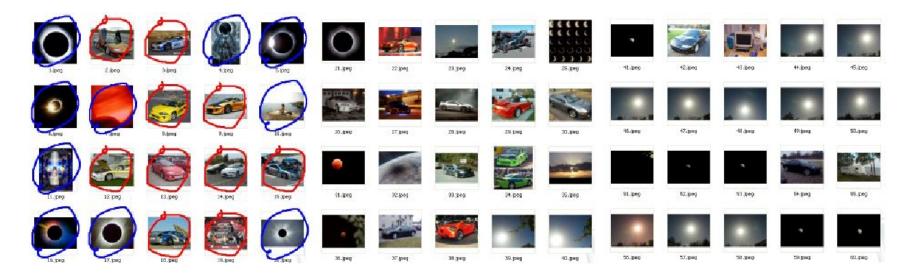
- besides (unannotated) instances takes a prior knowledge as an input
 - a few annotated (classified) instances (cluster seeds),
 - constrains (usually **must-link** or **cannot-link** relations),
- modifies the classic clustering algorithms
 - EM clustering for both classified and unclassified instances
 - 1. construct a probabilistic model using the initial classified sample set,
 - 2. standard EM iterations, the classified instances get "frozen"
 - (ie. cannot change cluster),
 - modify qualitative evaluation of the partitioning
 - * homogeneity as well as reward for keeping must-link and penalty for violating cannot-link,





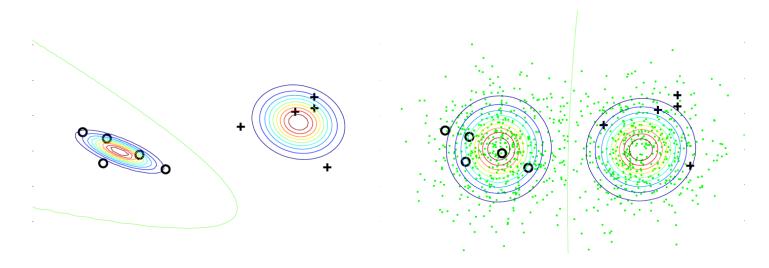
Semi-supervised clustering

how to learn to recognize eclipse photographs in reasonable time?



Semi-supervised clustering

- success story: document classification into 20 discussion groups [Nigam, 2006]
 - -2 classified training instances per discusiion group available only,
 - further we have 10000 unclassified instances,
 - naïve Bayes model made from 40 documents (without clustering): 27% class. accuracy,
 - the same model type for 10040 documents (with clustering): 43% classification accuracy,
 - necessary condition to succeed: data clusters must match classes.
- an explanation for 16% increase in accuracy?

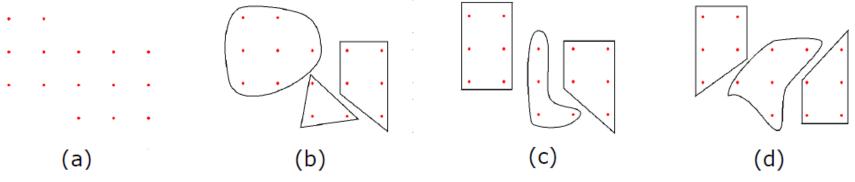


Decision boundary for annotated instances only

Decision boundary with unannotated instances

Advanced clustering – summary

- Clustering covers a wide range of methods
 - not merely an instance set partitioning in \mathbb{R}^n dealing with disjoint clusters,
 - in general, it discovers arbitrary frequent co-occurrence of events in data,
- unsupervised = subjective approach
 - "gold true" does not exist (compare with classification),
 - the outcome is influenced by the employed implicit and explicit knowledge,

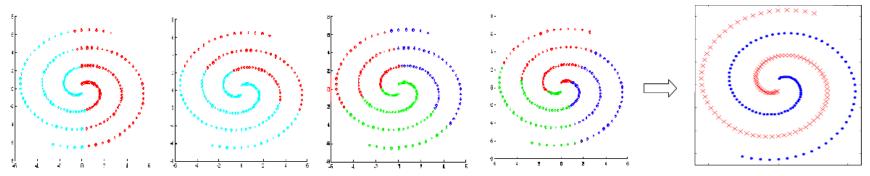


Jain: Data Clustering: 50 Years Beyond K-Means, modified

- tightly related to learning
 - conceptual clustering knowledge-based with cluster/concept descriptions,
 - semi-supervised clustering both annotated and unannotated instances,

Advanced clustering – summary

- exists in many modifications
 - bi-clustering
 - * rather the local (context-sensitive) than global similarity.
- topics not covered
 - heterogenous data
 - * that cannot be represented as a constant-size feature vector,
 - large scale clustering
 - * efficient NN, incremental clustering, sampling, prior data summarization,
 - clustering ensembles
 - * the result obtained by combining multiple partitions.



Jain: Data Clustering: 50 Years Beyond K-Means, modified

Recommended reading, lecture resources

:: Reading

von Luxburg: Lectures on Clustering.

– PASCAL Bootcamp in Machine Learning, Vilanova (Barcelona), 2007,

http://videolectures.net/bootcamp07_luxburg_clu/,

Fisher: Knowledge Acquisition Via Incremental Conceptual Clustering.

- Machine Learning 2, 139-172, 1987.
- http://www.springerlink.com/index/X8552PPN35245112.pdf,
- Madeira, Oliveira: Biclustering Algorithms for Biological Data Analysis.
 - IEEE/ACM Trans Comput Biol Bioinform. Jan-Mar 1(1):24-45, 2004.
 - http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.3943,
- Zhu: Semi-Supervised Learning Tutorial.
 - http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf.
- Nigam, McCallum, Mitchell: Semi-Supervised Text Classification Using EM.
 - In Chapelle, Zien, Scholkopf (eds.) Semi-Supervised Learning. MIT Press, 2006.

OPPA European Social Fund Prague & EU: We invest in your future.