
OPPA European Social Fund
Prague & EU: We invest in your future.



Frequent Itemsets, Association Rules

16. ř́ıjna 2012

Introduction

The aim of this tutorial is to use algorithm apriori for mining frequent item-
sets from data and subsequently from them association rules.

1 Data

1. Load file ”marketBasket.mat”in Matlab (it contains transaction database
of market baskets of customers of a supermarket). Variable ”tranDb”is
transaction database Boolean matrix form. Every row is a transaction
- one market basket of one customer. Every column is one possible
item in the market basket. The description of these items is in variable
”info”.

2 Frequent Itemsets

2. First, complete the main loop of the algorithm apriori in the
function my apriori :

function [frequent itemsets] = my apriori(database, min frequency)
candidates = {};
for i = 1:size(database,2)

candidates{i} = [i];
end
candidates = prune patterns(candidates, database, min frequency);
frequent itemsets = candidates;

% Here, you should fill in the code of the apriori algorithm
% (see slides of the lecture: "APRIORI algorithm")
while ...

1



end

On the input of the function my apriori there is a transaction database
in Boolean form (database) and minimum support (min frequency).
On the output of the function there are frequent itemsets. Itemsets are
represented as vectors of numbers. For example itemset = [1 3 5];

is a set containing items 1, 3, 5, i.e. items represented in transaction
database by columns 1, 3 and 5. Since we can have itemsets of different
length, we will use Matlab data structure cell array to store them (you
can read about cell arrays at the end of this document or in Matlab
help). An example of storing two itemsets in a cell array is shown here:

a = {}; a{1} = [1 3 5]; a{2} = [1 5 7];

There are functions apriori gen and prune itemsets in file my apriori.m
that you can use for implementation. Function apriori gen generates
new candidates of itemsets. It corresponds to the function Apriori-Gen
from lecture slides. Function prune itemsets removes from a cell array
of itemsets those itemsets, which are not frequent (minimum support
is an input parameter of this function).

Run function my apriori for minimum support 0.03. If you
did everything correctly, you should get 305 frequent itemsets.

3. Function apriori gen works correctly, nevertheless, it does not contain
the step in which the itemsets which have an infrequent subset are re-
moved (see lectures). For example if we have itemset itemset = [1 3 5 7 8];

and we know that set [1 5 7 8] is not a frequent itemset, then
[1 3 5 7 8] cannot be frequent and we can remove it from the list
of candidate itemsets. We can do this without computing the support
explicitly, because this could be computationally expensive in case of
big databases. Implement this pruning method into the function
apriori gen and check if you can improve runtime. If you did
not succeed, explain why.

3 Association Rules

4. Implement function associationRules.m, which will generate
association rules from frequent itemsets. Input of the function
associationRules.m: list of frequent itemsets from the output of function
my apriori, minimum confidence and transaction database. There will
be association rules on the output in cell array form. In the first column

2



there will be the vector of antecedents, in the second column the vector
of succedents, in the third column the corresponding support and in
the fourth the corresponding confidence.

There is function newGenerationRules that you can use for implemen-
tation. Function creates ”new”association rules from ”old”by moving
items from antecedents to consequents (always one item). This func-
tion can be used for iterative generation of association rules. It holds
that it is not possible to increase confidence by moving items from an-
tecedent to consequent (i.e. we can use pruning similarly as we did it
with minimum support in the case of frequent itemsets).

Run function asociationRules.m for minimum confidence 0.7.
Print association rules using function printRules.

You should get a set of rules such that the rule with the highest confi-
dence will be: (Hot Dog Buns and Sweet Relish) → (Hot Dogs), Support
= 0.03, Confidence = 0.84, and the rule with the lowest confidence will
be: (White Bread and 2pct. Milk) → (Eggs), Support = 0.04, Confi-
dence = 0.70.

3.1 Some useful tip for work with cell-arrays

Cell arrays differ from matrices in such way that they can contain not only
numbers, but also text strings or structures or other nested arrays. We can
create an empty array as a = {};, which is very similar to the way we create
empty vectors/matrices in Matlab.

We access the entries of an array as follows: a = {'a', 'b', 'c'}; x = a{1};
% x = 'a'. Notice that unlike for matrices we need to use curly brackets.

Sometimes you may need to concatenate arrays. For example:
a = {'a','b'}; b = {'c','d'}; merged = [a b];.

If we used parentheses instead of curly brackets, i.e. merged = {a b};, then
we would not get an array with 4 elements, but an array containing two nested
arrays.

3



OPPA European Social Fund
Prague & EU: We invest in your future.


