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Agenda

= Motivation for learning from data
knowledge is hard to obtain x data of sufficient size often at hand,
m structure of training data

is commonly sufficient,

incomplete data make learning harder,

easier (sub)task,
MLE algorithm (+ EM for incomplete data),
data quantity — demonstration of requirements

* original (known) network — training samples — learned network — comparison with
the original one,

more difficult task,
structure selection criteria? likelihood, MAP score, BIC,
naive approach, K2 and MCMC algorithms,

illustrative examples.




Learning Bayesian networks from data

s format of training data?

sample set D contains M samples = concurrent observations of all the variables,
FAMILY example: d,, = {FO,,, BP,,, LO,,, DO,,, HB,,}, m=1... M,

no missing values concerned yet for simplicity,
= frequency table (hypercube) provides sufficient statistics (representation)

gives the number of samples with particular configuration (frequency over sample space),
2° entries N ({fo,bp, do,lo,hb}), ..., N({—fo,—=bp, ~do, —lo, =hb}),

representation close to the joint probability distribution.

fo —fo

bp —bp bp —bp

4o o1 56 0 106

4 P 0 0 0 4

— —do

dy = {f 02, 7bpy, ~loz, dog, by } —hb 1 9 0 349
. do hb 0 37 dM 5 +1 d2 71 +1

dyr = {~four, bpar, =loar, doyr, hby} o b2 difte [t 2 30

do hb 0 1 0 2

—hb 0 6 0 233




Learning Bayesian network parameters from data

m network structure is known, we search for CPTs in the individual nodes,

s maximum likelihood estimate (MLE) of unknown parameters ©

FAMILY example

M M
L©:D) = |] Pr(dn:0) =[] Pr(FOn, BPy, LOy, DO, HB,, : ©) =
m=1

M
= |[ Pr(FO,. : ©)Pr(BP, : ©)Pr(LO,|FO,, : ©) ... Pr(HBy,| DO, : ©)

M M

(©:D) H Pr(d, :©)= H Pr(Pip, Popy ..y Py - O) =
m=1 m=1
n M
H H Pr(Pj|parents(P H L;(©;:D)
7=1 m=1

= under the assumption of independence of parameters, likelihood can be decomposed

contribution of each network node L;(©; : D) is determined (maximized) independently.




Learning Bayesian network parameters from data

—

= the optimization task: ©; = argmax L;(©; : D) is solved for each node,

= let us demonstrate for FO node, where ©pp = {Pr(fo)}
let N(fo) be the number of samples, where FO; = TRUFE

Lo is maximized by putting its first derivative equal to 0

Lro(Opo : D) = H Pr(FO : ©pp) = Pr(fo)NU(1 — Pr(fo))M-~Uo)
OLpo(Pr(fo): D) ~ N(fo)
0 Pr(fo) =0 = Prifo) = M

m the generalized formula for ML parameter estimation is intuitively obvious

f, _ N(Pj, parents(F))
Pj|parents(P;) — N(parentS(P ))

~ Pr(P;|parents(Pj))

= however, this estimate is imprecise/impossible for sparse/incomplete data

sparse data — Dirichlet priors and maximum a posteriori (MAP) probability method,

missing data — Monte-Carlo sampling, or
— EM optimization of multimodal likelihood function.




Parameter learning from a small number of observations

m ill-posed problem
overfitting, division by zero, zero probabilities learned,

= regularization
introducing additional information in order to resolve an ill-posed problem,
Bayesian learning makes use of prior probability

Pr(D|©) x Pr(©) likelihood X prior

Pr(©|D) = Pr(D) & posterior =

prob of data
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= MAP estimate of parameters: Op,|purents(p;) =




Parameter learning from incomplete data

= missing values completely at random

the simplest option — independent of variable states, no hidden parameters used,

m it is not advisable to ignore the missing values
loses existing observations as well,

s MLE combined with algorithm:

1. initialize network parameters (typically using available training data or randomly),

2. take the existing network and compute the missing values (inference),

3. modify the network parameters according to the current complete observations,
use MLE,

4. repeat steps 2 and 3

(a) for the given prior number of iterations (in this experiment 10),
(b) until convergence of MLE criterion (log L change between consecutive steps < 0.001).




Parameter learning from data — illustration of convergence

1. take existing (original) network and generate training data (a sample set)

s FAMILY network, consider different M values (sample set sizes),
= in which way to generate the data?

no evidence, thus . see inference

Gibbs sampling is also possible,
2. randomize quantitative network parameters

m the network structure is preserved,
m the original CPTs lost,

3. parameter values are learned from training data

= complete observations — maximum likelihood estimate (MLE),

m incomplete observations — combination of MLE and EM algorithm,
4. compare the original and learned CPTs for different sample set sizes M

= why is it easier to estimate Pr(fo) then Pr(do|fo,bp)? see graphs ...




Parameter learning from data — complete observations

s What is the probability that family is out?

Pr(fo) ="

= all samples can be used ...

M m
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s What is the dog out prob given fo and bp?

Pr(do|fo,bp) =7
= Condition is met only in 1.5 0/y of samples.

Pr(fo) = 0.15, Pr(bp) = 0.01,
F'O and BP independent variables.
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Parameter learning from data — incomplete observations (560% loss)

s What is the probability that family is out?
Pr(fo) ="
m Incomplete data = less information

considerably longer computational time,

the final estimate “a bit less exact only”.

0.35
—* ~compleie
03t — partial
0231
— D.2 B
<
|-
0.1+ i
0035

D 1 1 1 1 1 1
10 20 a0 00 200 500 1000 2000 5000 10000
# samples

s What is the dog out prob given fo and bp?
Pr(do|fo,bp) =7
m Incomplete data = less information

comparison is inconclusive.
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Structure learning — naive approach

m two steps are sufficient to construct the network:

1. define a sort of n variables,
2. gradually find subsets of variables that satisfy conditional independence relationship
Pr(Pj1|Py, ..., Pj) = Pr(Pjsi|parents(Pjs1)), parents(Pj+1) € {Py, ..., P;},
m the algorithm can be illustrated on a simple three variable example:
1. select a permutation 7: w(P)) =1, m(P) =2 a w(P3) = 3,

2. gradually build a network, add nodes one by one, conditional independence test underlies
the local decision.




Structure learning — naive approach

m two steps are sufficient to construct the network:

1. define a sort of n variables,
2. gradually find subsets of variables that satisfy conditional independence relationship
Pr(Pj1|Py, ..., Pj) = Pr(Pjsi|parents(Pjs1)), parents(Pj+1) € {Py, ..., P;},
m the algorithm can be illustrated on a simple three variable example:

1. select a permutation 7: w(P)) =1, m(P) =2 a w(P3) = 3,
2. gradually build a network, add nodes one by one, conditional independence test underlies
the local decision.

m cannot be implemented in this easy form:

variable ordering influences the resulting network — there is n! distinct permutations

* the complete graph can originate from an improper ordering, however, all permutations
cannot be checked,

independence tests also non-trivial

* for binary variables definitely O(2") operations per single permutation,
* among others, the conditional probability Pr(P,|P, ..., P,_1) needs to be enumerated.




Structure learning — naive approach

2

P,: two options
Pr(p1) Pr(p,)

Pr(p,)=Pr(p,|p1)=Pr(pz|-p1)

Pr(p,)

Pr(p,|p1)
Pr(p;|—p1)

P, ad 1: four options

11 Pr(p;) Pr(py) Pr(ps)

Pr(p3)=Pr(ps|p1,p2)=Pr(ps|...)

Pr(ps |p1)= Pr(ps |p2)=

Prob
Pr(palp1po)=  Pr(pslpspo)= 1o
Pr(ps|py,—p2)  Pr(ps|—pi,p2)




Structure learning — more feasible implementations

m score-based learning, maximizes an
the function quantifies how well a structure matches the data,
= straightforward likelihood function selects the fully connected network (complete graph)

the more parameters, the better match with data,

results in overfitting — improper when comparing structures of different size,

log L(G : D) = log H Pr(d =M Z(](PJ - parents(P;)%) — H(P;))
j=1
= evaluation function often based on that stems from posterior probability
Pr(D|G)P
Pr(G|D) = r(DIG)Pr(G) — log Pr(G|D) = log Pr(D|G) + log Pr(G) + ¢

Pr(D)

unlike MLE, it integrates over all parametrizations of given structure
Pr(D|G) = /Pr(D|G, Oq) X Pr(B¢|G)dO

MLE concerns solely the best parametrization

L(G: D) = Pr(D|G,0¢)




Structure learning — more feasible implementations

= Bayesian Information Criterion (BIC) represents another frequent evaluation function

a heuristic criterion, easier to compute than the Bayesian one,
a MDL principle analogy — the best model is both compact and accurate,

let us have: ¢; ...the number of unique instantiations of P, parents,
..the number of distinct P, values,

then, a network has: K = > " | ¢;(r; — 1) independent parameters,

K K .
BIC = —=-log, M +log, L(G : D) = ——logy M — M > " H(Pparents(P,)")
1=1
first addend: network complexity penalty (K T BIC |),

second addend: network likelihood
(mutual information between nodes and their parents T H(|) | BIC T),

how to enumerate conditional entropy?
% Nj; ...the number of samples, where parents(F;) take the j-th instantiation of values,

% Niji ...the number of samples, where P, takes the k-th value and parents(F;) the j-th
instantiation of values,

zyk _ Z Z zyk zyk

]114;1 j=1 k=1 Nij

H(P;|parents(P,




Structure learning — more feasible implementations

: : : 2 :
= however, no evaluation function can be applied to all 2 candidate graphs,
m heuristics and metaheuristics known for difficult tasks need to be employed

metaheuristic example —

* it starts with a given network (empty, expert’s, random),

* it construct all the “near” networks, evaluates them and goes to the best of them,
* it repeats the previous step if the local change increases score, otherwise it stops,
auxiliary heuristics examples

x definition of “near” network,

* how to avoid getting stuck in local minima or on plateaux

- random restarts, simulated annealing, TABU search.




Structure learning — K2 algorithm

s Cooper and Herskovitz (1992), it approaches the naive approach mentioned above,
m advantage

complexity is O(m,u?,n%, 1), u < n — O(m,n,r)

x m ...the number of samples, n ...the number of variables,

* 1 ...max number of distinct variable values, u ... max number of parents,

= disadvantages

topological sort of network variables m must be given/known,

greedy search results in locally optimal solution.

= it expresses the prob Pr(G, D) as the following function

4q; Ty
r; — 1)!
g(P;, parents(P;)) = H ( ' ) ' H Niji!

q; ...number of unique instantiations of parents(P;), r; ...number of distinct P; values,

N;; ...number of samples, where parents(P;) take j-th instantiation of values,

Nijk ...number of samples, where P, takes k-th value and parents(F;) j-th instantiation

of values,

criterion — it can be computed node by node.




Structure learning — K2 algorithm

= algorithm K2 (7,u,D):
for i=1:n % follow the topological sort of variables 7

parents(P;)=0% in the beginning, the set of parents is always empty
Goi=g(Fr, ,parents(F;)) % initialize the node value
while |parents(F;)|< u % the number of parents must not exceed u
jr = arg max 9(Pr,, parents(Pr,) U Pr)
j=1.i—1,Pr ¢parents(Pr,)
A }%; is the parent maximizing the value of g
%» the parent must have a lower topological index -- by definition
%» omit the candidates already belonging to the set of parents
Grew=g(Py, ,parents(P;,) U Pﬁ;f)
if Grew > Goq then

Gold — Gnew
parents(F%)=parents(f}iLJP%Q
else

STOP % the node value cannot be further improved, stop its processing




K2 — locality of greedy search, illustration

= let us have binary variables Py, P, P;, let 7={1,2,3} and D is given in the table

REAL: Pr(p,)=.5
PP P r g(Py, ) = 441 _ 4! _ L
F F F PV(P3|P1 py)=0 . o 2!§!X§X7X6X15 2 60 1
FF F Pr(p-lpop)=1 92 AP1}) = (57)" = (555)” = s2am0
E T T Pr(p,)=.5 F’PE p3||_'p1;p2))= K2: STOP, no edge from P; to P,

r - -

FoToT ST RO el
T F T K2: Pr(p;)=.5 o AP = (5 = () = o
TE T ' 1)=- 9(Ps, {P2}) = g(Ps, {P1})
T T F K2: STOP, no edge to P3, however
L 9Py (PLPsY) = () = (1) = &

Pr(p,)=.5 e Pr(ps)=.5

= minor improvements

apply K2 and K2Reverse and take the better solution

x K2Reverse starts with the complete graph and greedily deletes edges,
* solves the particular problem shown above, but not a general solution,

randomly restart the algorithm (various node orderings and initial graphs).




Structure learning — MCMC approach

o = Markov chain Monte-Carlo (for meaning see Gibbs sampling),

= applies (MH) algorithm to search the candidate graph/network space
1. take an initial graph G

user-defined /informed, random, empty with no edges,

2. evaluate the graph P(G)

\'\
/

use samples, apply criteria such as BIC or Bayesian,
3. generate a “neighbor” S of the given graph G

insert /remove an edge, change edge direction,
check the graph acyclicity constraint,
prob of transition from G to S is function of Q(G, 5),

4. evaluate the neighbor graph P(.5),

5. accept or reject the transition to S

generate a from U(0,1) (uniform distribution),

P(S)Q(G,5)

if a < P0G then accept the transition G — S,

6. repeat steps 3-5 until convergence or the given number of iterations.




Structure learning — MCMC approach

m graph frequency helps to assume on their posterior probability
a sequence beginning is ignored for random inits,

= the sequence of graphs can be used both for point and estimation

point estimation — e.g., only the network with the highest score is concerned (MAP),

Bayesian estimation — all the networks concerned and weighted by their score,
= convergence (frequency proportional to the real score)

theoretically converges in polynomial time wrt size of graph space,

practically difficult for domains with more than 10 variables.
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Structure learning — 3DAG example

m let us concern a 3 node trial network and generate 16 samples of it,
= score a member of each Markov equivalence class (complete search, 11 graphs),

= apply 3 distinct criteria (max likelihood, Bayesian MAP and BIC) to identify the best model.

"""""""""""""""""""""""""""""""""""""

G, o > Gs Gy o 'Gs
pl Apl ! ! !
:-Pl-lo’}olc .—Hoébo
o p3 0 2 Py Pei
P, p2 \Ge | CF: Gg Gyq Gy i
— —p3 3 4 =) | ! ! : :
P ¥ L“AIA«A-&
P2 P2 p3 0 0 ; | I Rt SR
ap2 G11
RS ! /_'E. MLE | | Bayesian | | BIC

s (1 gradually evaluated by three criteria:
likelihood: ML parameters first Pr(p1) = Pr(ps) = <, Pr(ps) = 3

In L(G ZPT

|
_ zln(13—> +30n (333) +10In (212) +n (113) — 27.96
16163 16163 16163 16163




Structure learning — 3DAG example

the identical likelihood value can also be reached through conditional entropy

3
InL(Gy : D) = =My H(Pj|parents(P)"") =

1=1

:—16[—2(31n2 llnl> (1n1+zln7)]:—27.96
616 16 16 s s T3y

BIC determined by subtracting the network complexity penalty from the value of network

likelihood
K 3
BIC(Gy: D)= —glnM +InL(Gy: D) = —iln 16 —27.96 = —32.12
Bayesian score

In Pr(D|G) lan P;, parents(P, YYSW o f':_—ml) )'N ikl =

1=1 1=1 j5=1 k=1
=2(—In17"+ 9 +In7) —In17 +In2! + In 14! = —31.98

Natural logarithm is applied to match Matlab BN Toolbox.

Logarithm base change does not change ordering of model evaluations.




Structure learning — 3DAG

example

Gs

Pr(p,)=.5

P,
.'é... Pr(ps|pz)=.2

P, Py Pr(psl-pz)=.1

Pr(pzlp.)=.25
Pr(pz|—p;)=.75

G Gz Gz G iGs |
| -27.96 | -25.59-26.12 | -26.70 | -24.33
' -31.98 | -30.56-31.78 {-32.32 | -30.92
| -32.12 | -31.14{-31.67 |-32.25 | -31.26
Gs  iG,  1Gg Gy Gy

| -25.32! -23.75}-24.64 {-24.86 | -25.75
' -31.03}-30.36 -30.56 ;-31.33 | -33.04 |
| -33.64/-30.68!-32.96 {-31.79 | -34.07
i Giy

| -23.38! .

i -31.62: |MLE | | Bayesian | | BIC

| -33.08 |

= none of three criteria identified the correct graph class

— MLE overfits the sample set as expected,

— BIC and MAP suffer from insufficient data (a too small sample set).

H E E B B BN EEEEEEEEEEEEEE OO

A4M33RZN



Summary

= Estimation of (quantitative) Bayesian network parameters

relatively easy — ML or MAP estimate,

* they agree for large samples, differ for small ones, MAP preferable when a prior distri-
bution exists,

gets more difficult with small or incomplete sample sets

* prior knowledge resp. iterative EM refinement (parameters < observations),
m BN structure discovery as score-based learning

several scores to evaluate how well a structure matches the data

* likelihood, resp. log likelihood (two ways to compute available) — bad idea, overfits,
+ Bayesian score, BIC based on likelihood,

* other options — among others local conditional independence tests,

the space of candidate structures is huge

* the space cannot be exhaustively searched, i.e., the scores computed for all candidates,
x consequently, even the naive approach cannot be considered,

x K2 — a greedy, locally optimal search,

x MCMC — a stochastic search similar to simulated annealing.




Recommended reading, lecture resources

Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

a practical overview from the author of BN toolbox,

http://www.cs.ubc.ca/~“murphyk/Bayes/bayes.html#learn,

Friedman, Koller: Learning Bayesian Networks from Data.

Neural Information Processing Systems conference tutorial, a presentation,
http://www.cs.huji.ac.il/~nirf /Nips01-Tutorial /,

Cooper, Herskovits: A Bayesian Method for the Induction of P.Networks from Data.

theory + K2 algorithm,
www.genetics.ucla.edu/labs/sabatti /Stat180/bayesNet.pdf,

s Heckerman: A Tutorial on Learning With Bayesian Networks.

a theoretical paper, “easy to read”

research.microsoft.com /apps/pubs/default.aspx?id=69588,
= Buntine: Operations for Learning with Graphical Models.

a general, complete and extensive description,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.696& rep=rep1&type=pdf.
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