
OPPA European Social Fund
Prague & EU: We invest in your future.

Graphical probabilistic models – learning from data

Jǐŕı Kléma

Department of Cybernetics,
FEE, CTU at Prague

http://ida.felk.cvut.cz

pAgenda

� Motivation for learning from data

− knowledge is hard to obtain × data of sufficient size often at hand,

� structure of training data

− frequency table is commonly sufficient,

− incomplete data make learning harder,

� parameter learning

− easier (sub)task,

− MLE algorithm (+ EM for incomplete data),

− data quantity – demonstration of requirements

∗ original (known) network → training samples → learned network → comparison with

the original one,

� structure learning

− more difficult task,

− structure selection criteria? likelihood, MAP score, BIC,

− näıve approach, K2 and MCMC algorithms,

− illustrative examples.

� A4M33RZN

pLearning Bayesian networks from data

� format of training data?

− sample set D contains M samples = concurrent observations of all the variables,

− FAMILY example: dm = {FOm, BPm, LOm, DOm, HBm}, m = 1 . . .M ,

− no missing values concerned yet for simplicity,

� frequency table (hypercube) provides sufficient statistics (representation)

− gives the number of samples with particular configuration (frequency over sample space),

− 25 entries N({fo, bp, do, lo, hb}), . . . , N({¬fo,¬bp,¬do,¬lo,¬hb}),

− representation close to the joint probability distribution.

d1 = {fo1,¬bp1,¬lo1, do1,¬hb1}
d2 = {¬fo2,¬bp2,¬lo2, do2, hb2}
. . .

dM = {¬foM , bpM ,¬loM , doM , hbM}

� A4M33RZN

pLearning Bayesian network parameters from data

� network structure is known, we search for CPTs in the individual nodes,

� maximum likelihood estimate (MLE) of unknown parameters Θ

− FAMILY example

L(Θ : D) =

M∏
m=1

Pr(dm : Θ) =

M∏
m=1

Pr(FOm, BPm, LOm, DOm, HBm : Θ) =

=

M∏
m=1

Pr(FOm : Θ)Pr(BPm : Θ)Pr(LOm|FOm : Θ) . . . P r(HBm|DOm : Θ)

− for general Bayesian network

L(Θ : D) =

M∏
m=1

Pr(dm : Θ) =

M∏
m=1

Pr(P1m, P2m, . . . , Pnm : Θ) =

=

n∏
j=1

M∏
m=1

Pr(Pj|parents(Pj) : Θj) =

n∏
j=1

Lj(Θj : D)

� under the assumption of independence of parameters, likelihood can be decomposed

− contribution of each network node Lj(Θj : D) is determined (maximized) independently.

� A4M33RZN

pLearning Bayesian network parameters from data

� the optimization task: Θ̂j = arg max
Θ

Lj(Θj : D) is solved for each node,

� let us demonstrate for FO node, where ΘFO = {Pr(fo)}

− let N(fo) be the number of samples, where FOj = TRUE

− LFO is maximized by putting its first derivative equal to 0

LFO(ΘFO : D) =

M∏
m=1

Pr(FO : ΘFO) = Pr(fo)N(fo)(1− Pr(fo))M−N(fo)

∂LFO(Pr(fo) : D)

∂ Pr(fo)
= 0→ Pr(fo) =

N(fo)

M

� the generalized formula for ML parameter estimation is intuitively obvious

θ̂Pj |parents(Pj) =
N(Pj, parents(Pj))

N(parents(Pj))
≈ Pr(Pj|parents(Pj))

� however, this estimate is imprecise/impossible for sparse/incomplete data

− sparse data → Dirichlet priors and maximum a posteriori (MAP) probability method,

− missing data → Monte-Carlo sampling, or

→ EM optimization of multimodal likelihood function.

� A4M33RZN

pParameter learning from a small number of observations

� ill-posed problem

− overfitting, division by zero, zero probabilities learned,

� regularization

− introducing additional information in order to resolve an ill-posed problem,

− Bayesian learning makes use of prior probability

Pr(Θ|D) =
Pr(D|Θ)× Pr(Θ)

Pr(D)
⇔ posterior =

likelihood× prior

prob of data

� MAP estimate of parameters: θ̂Pj |parents(Pj) =
N(Pj ,parents(Pj))+α−1

N(parents(Pj))+α+β−2

� A4M33RZN

pParameter learning from incomplete data

� missing values completely at random

− the simplest option – independent of variable states, no hidden parameters used,

� it is not advisable to ignore the missing values

− loses existing observations as well,

� MLE combined with EM algorithm:

1. initialize network parameters (typically using available training data or randomly),

2. E step: take the existing network and compute the missing values (inference),

3. M step: modify the network parameters according to the current complete observations,

use MLE,

4. repeat steps 2 and 3

(a) for the given prior number of iterations (in this experiment 10),

(b) until convergence of MLE criterion (log L change between consecutive steps < 0.001).

� A4M33RZN

pParameter learning from data – illustration of convergence

1. take existing (original) network and generate training data (a sample set)

� FAMILY network, consider different M values (sample set sizes),

� in which way to generate the data?

− no evidence, thus forward sampling, see inference

− Gibbs sampling is also possible,

2. randomize quantitative network parameters

� the network structure is preserved,

� the original CPTs lost,

3. parameter values are learned from training data

� complete observations – maximum likelihood estimate (MLE),

� incomplete observations – combination of MLE and EM algorithm,

4. compare the original and learned CPTs for different sample set sizes M

� why is it easier to estimate Pr(fo) then Pr(do|fo, bp)? see graphs . . .

� A4M33RZN

pParameter learning from data – complete observations

� What is the probability that family is out?

− Pr(fo) = ?

� all samples can be used . . .

− Pr(fo) =
∑M
m=1 δ(FO

m,fo)
M

� What is the dog out prob given fo and bp?

− Pr(do|fo, bp) = ?

� Condition is met only in 1.5 0/00 of samples.

− Pr(fo) = 0.15, Pr(bp) = 0.01,

− FO and BP independent variables.

� A4M33RZN

pParameter learning from data – incomplete observations (50% loss)

� What is the probability that family is out?

− Pr(fo) = ?

� Incomplete data = less information

− considerably longer computational time,

− the final estimate “a bit less exact only”.

� What is the dog out prob given fo and bp?

− Pr(do|fo, bp) = ?

� Incomplete data = less information

− comparison is inconclusive.

� A4M33RZN

pStructure learning – näıve approach

� two steps are sufficient to construct the network:

1. define a sort of n variables,

2. gradually find subsets of variables that satisfy conditional independence relationship

Pr(Pj+1|P1, . . . , Pj) = Pr(Pj+1|parents(Pj+1)), parents(Pj+1) ⊆ {P1, . . . , Pj},

� the algorithm can be illustrated on a simple three variable example:

1. select a permutation π: π(P1) = 1, π(P2) = 2 a π(P3) = 3,

2. gradually build a network, add nodes one by one, conditional independence test underlies

the local decision.

� A4M33RZN

pStructure learning – näıve approach

� two steps are sufficient to construct the network:

1. define a sort of n variables,

2. gradually find subsets of variables that satisfy conditional independence relationship

Pr(Pj+1|P1, . . . , Pj) = Pr(Pj+1|parents(Pj+1)), parents(Pj+1) ⊆ {P1, . . . , Pj},

� the algorithm can be illustrated on a simple three variable example:

1. select a permutation π: π(P1) = 1, π(P2) = 2 a π(P3) = 3,

2. gradually build a network, add nodes one by one, conditional independence test underlies

the local decision.

� cannot be implemented in this easy form:

− variable ordering influences the resulting network – there is n! distinct permutations

∗ the complete graph can originate from an improper ordering, however, all permutations

cannot be checked,

− independence tests also non-trivial

∗ for binary variables definitely O(2n) operations per single permutation,

∗ among others, the conditional probability Pr(Pn|P1, . . . , Pn−1) needs to be enumerated.

� A4M33RZN

pStructure learning – näıve approach

� A4M33RZN

pStructure learning – more feasible implementations

� score-based learning, maximizes an evaluation function

− the function quantifies how well a structure matches the data,

� straightforward likelihood function selects the fully connected network (complete graph)

− the more parameters, the better match with data,

− results in overfitting – improper when comparing structures of different size,

logL(G : D) = log

M∏
m=1

Pr(dm : G) = M

n∑
j=1

(I(Pj : parents(Pj)
G)−H(Pj))

� evaluation function often based on Bayesian score that stems from posterior probability

Pr(G|D) =
Pr(D|G)Pr(G)

Pr(D)
→ logPr(G|D) = logPr(D|G) + logPr(G) + c

− unlike MLE, it integrates over all parametrizations of given structure

Pr(D|G) =

∫
Pr(D|G,ΘG)× Pr(ΘG|G)dΘ

− MLE concerns solely the best parametrization

L(G : D) = Pr(D|G, Θ̂G)

� A4M33RZN

pStructure learning – more feasible implementations

� Bayesian Information Criterion (BIC) represents another frequent evaluation function

− a heuristic criterion, easier to compute than the Bayesian one,

− a MDL principle analogy – the best model is both compact and accurate,

− let us have: qi . . . the number of unique instantiations of Pi parents,

ri . . . the number of distinct Pi values,

− then, a network has: K =
∑n

i=1 qi(ri − 1) independent parameters,

BIC = −K
2

log2M + log2L(G : D) = −K
2

log2M −M
n∑
i=1

H(Pi|parents(Pi)G)

− first addend: network complexity penalty (K ↑ BIC ↓),

− second addend: network likelihood

(mutual information between nodes and their parents ↑ H(|) ↓ BIC ↑),

− how to enumerate conditional entropy?

∗ Nij . . . the number of samples, where parents(Pi) take the j-th instantiation of values,

∗ Nijk . . . the number of samples, where Pi takes the k-th value and parents(Pi) the j-th

instantiation of values,

H(Pi|parents(Pi)G) = −
qi∑
j=1

ri∑
k=1

Nij

M

Nijk

Nij
log2

Nijk

Nij
= −

qi∑
j=1

ri∑
k=1

Nijk

M
log2

Nijk

Nij

� A4M33RZN

pStructure learning – more feasible implementations

� however, no evaluation function can be applied to all 2n
2

candidate graphs,

� heuristics and metaheuristics known for difficult tasks need to be employed

− metaheuristic example – local search

∗ it starts with a given network (empty, expert’s, random),

∗ it construct all the “near” networks, evaluates them and goes to the best of them,

∗ it repeats the previous step if the local change increases score, otherwise it stops,

− auxiliary heuristics examples

∗ definition of “near” network,

∗ how to avoid getting stuck in local minima or on plateaux

· random restarts, simulated annealing, TABU search.

� A4M33RZN

pStructure learning – K2 algorithm

� Cooper and Herskovitz (1992), it approaches the näıve approach mentioned above,

� advantage

− complexity is O(m,u2, n2, r), u ≤ n→ O(m,n4, r)

∗ m . . . the number of samples, n . . . the number of variables,

∗ r . . . max number of distinct variable values, u . . . max number of parents,

� disadvantages

− topological sort of network variables π must be given/known,

− greedy search results in locally optimal solution.

� it expresses the prob Pr(G,D) as the following function

g(Pi, parents(Pi)) =

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!

− qi . . . number of unique instantiations of parents(Pi), ri . . . number of distinct Pi values,

− Nij . . . number of samples, where parents(Pi) take j-th instantiation of values,

− Nijk . . . number of samples, where Pi takes k-th value and parents(Pi) j-th instantiation

of values,

− separable criterion – it can be computed node by node.

� A4M33RZN

pStructure learning – K2 algorithm

� algorithm K2 (π,u,D):

for i=1:n % follow the topological sort of variables π

parents(Pπi)= ∅ % in the beginning, the set of parents is always empty

Gold=g(Pπi,parents(Pπi)) % initialize the node value

while |parents(Pπi)|≤ u % the number of parents must not exceed u

j∗ = arg max
j=1...i−1,Pπj /∈parents(Pπi)

g(Pπi, parents(Pπi) ∪ Pπj)

% Pπ∗j is the parent maximizing the value of g

% the parent must have a lower topological index -- by definition

% omit the candidates already belonging to the set of parents

Gnew=g(Pπi,parents(Pπi) ∪ Pπ∗j)
if Gnew > Gold then

Gold = Gnew

parents(Pπi)=parents(Pπi ∪ Pπ∗j)
else

STOP % the node value cannot be further improved, stop its processing

� A4M33RZN

pK2 – locality of greedy search, illustration

� let us have binary variables P1, P2, P3, let π={1,2,3} and D is given in the table

P1 P2 P3

F F F

F F F

F T T

F T T

T F T

T F T

T T F

T T F

g(P2, ∅) = 4!4!
9! = 4!

9×8×7×6×5 = 1
630

g(P2, {P1}) = (2!2!
5!)2 = (1

180)2 = 1
32400

K2: STOP, no edge from P1 to P2

g(P3, ∅) = g(P2, ∅) = 1
630

g(P3, {P1}) = (2!2!
5!)2 = (1

180)2 = 1
32400

g(P3, {P2}) = g(P3, {P1})
K2: STOP, no edge to P3, however

g(P3, {P1, P2}) = (2!
3!)

4 = (1
3)4 = 1

81

� minor improvements

− apply K2 and K2Reverse and take the better solution

∗ K2Reverse starts with the complete graph and greedily deletes edges,

∗ solves the particular problem shown above, but not a general solution,

− randomly restart the algorithm (various node orderings and initial graphs).

� A4M33RZN

pStructure learning – MCMC approach

� MCMC = Markov chain Monte-Carlo (for meaning see Gibbs sampling),

� applies Metropolis-Hastings (MH) algorithm to search the candidate graph/network space

1. take an initial graph G

− user-defined/informed, random, empty with no edges,

2. evaluate the graph P (G)

− use samples, apply criteria such as BIC or Bayesian,

3. generate a “neighbor” S of the given graph G

− insert/remove an edge, change edge direction,

− check the graph acyclicity constraint,

− prob of transition from G to S is function of Q(G,S),

4. evaluate the neighbor graph P (S),

5. accept or reject the transition to S

− generate α from U(0,1) (uniform distribution),

− if α < P (S)Q(G,S)
P (G)Q(S,G) then accept the transition G→ S,

6. repeat steps 3–5 until convergence or the given number of iterations.

� A4M33RZN

pStructure learning – MCMC approach

� graph frequency helps to assume on their posterior probability

− a sequence beginning is ignored for random inits,

� the sequence of graphs can be used both for point and Bayesian estimation

− point estimation – e.g., only the network with the highest score is concerned (MAP),

− Bayesian estimation – all the networks concerned and weighted by their score,

� convergence (frequency proportional to the real score)

− theoretically converges in polynomial time wrt size of graph space,

− practically difficult for domains with more than 10 variables.

� A4M33RZN

pStructure learning – 3DAG example

� let us concern a 3 node trial network and generate 16 samples of it,

� score a member of each Markov equivalence class (complete search, 11 graphs),

� apply 3 distinct criteria (max likelihood, Bayesian MAP and BIC) to identify the best model.

� G1 gradually evaluated by three criteria:

− likelihood: ML parameters first Pr(p1) = Pr(p2) = 9
16, Pr(p3) = 1

8

lnL(G1 : D) =

16∑
m=1

Pr(dm : G1) =

= 2 ln
(7

16

9

16

1

8

)
+ 3 ln

(9

16

9

16

7

8

)
+ 10 ln

(9

16

7

16

7

8

)
+ ln

(7

16

7

16

7

8

)
= −27.96

� A4M33RZN

pStructure learning – 3DAG example

− the identical likelihood value can also be reached through conditional entropy

lnL(G1 : D) = −M
3∑
i=1

H(Pi|parents(Pi)G1) =

= −16
[
−2
(9

16
ln

9

16
+

7

16
ln

7

16

)
−
(1

8
ln

1

8
+

7

8
ln

7

8

)]
= −27.96

− BIC determined by subtracting the network complexity penalty from the value of network

likelihood

BIC(G1 : D) = −K
2

lnM + lnL(G1 : D) = −3

2
ln 16− 27.96 = −32.12

− Bayesian score

lnPr(D|G1) = ln

3∏
i=1

g(Pi, parents(Pi)
G1) =

3∑
i=1

qi∑
j=1

ri∑
k=1

ln
(ri − 1)!

(Nij + ri − 1)!
Nijk! =

= 2(− ln 17! + ln 9! + ln 7!)− ln 17! + ln 2! + ln 14! = −31.98

Natural logarithm is applied to match Matlab BN Toolbox.

Logarithm base change does not change ordering of model evaluations.

� A4M33RZN

pStructure learning – 3DAG example

� none of three criteria identified the correct graph class

− MLE overfits the sample set as expected,

− BIC and MAP suffer from insufficient data (a too small sample set).

� A4M33RZN

pSummary

� Estimation of (quantitative) Bayesian network parameters

− relatively easy – ML or MAP estimate,

∗ they agree for large samples, differ for small ones, MAP preferable when a prior distri-

bution exists,

− gets more difficult with small or incomplete sample sets

∗ prior knowledge resp. iterative EM refinement (parameters ↔ observations),

� BN structure discovery as score-based learning

− several scores to evaluate how well a structure matches the data

∗ likelihood, resp. log likelihood (two ways to compute available) → bad idea, overfits,

∗ Bayesian score, BIC based on likelihood,

∗ other options – among others local conditional independence tests,

− the space of candidate structures is huge

∗ the space cannot be exhaustively searched, i.e., the scores computed for all candidates,

∗ consequently, even the näıve approach cannot be considered,

∗ K2 – a greedy, locally optimal search,

∗ MCMC – a stochastic search similar to simulated annealing.

� A4M33RZN

pRecommended reading, lecture resources

� Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

− a practical overview from the author of BN toolbox,

− http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html#learn,

� Friedman, Koller: Learning Bayesian Networks from Data.

− Neural Information Processing Systems conference tutorial, a presentation,

− http://www.cs.huji.ac.il/~nirf/Nips01-Tutorial/,

� Cooper, Herskovits: A Bayesian Method for the Induction of P.Networks from Data.

− theory + K2 algorithm,

− www.genetics.ucla.edu/labs/sabatti/Stat180/bayesNet.pdf,

� Heckerman: A Tutorial on Learning With Bayesian Networks.

− a theoretical paper, “easy to read”

− research.microsoft.com/apps/pubs/default.aspx?id=69588,

� Buntine: Operations for Learning with Graphical Models.

− a general, complete and extensive description,

− http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.696&rep=rep1&type=pdf.

� A4M33RZN

OPPA European Social Fund
Prague & EU: We invest in your future.

