AE4M33RZN, Fuzzy logic: Fuzzy description logic

Radomír Černoch

radomir.cernoch@fel.cvut.cz

3/12/2012

Faculty of Electrical Engineering, CTU in Prague

Plan of the lecture

Revision of crisp description logic

Language $\mathcal{SH}I\mathcal{F}$

Concepts and interpretation

Notion of truth

Fuzzy description logic

Concepts

Notion of truth

Queries

Biblopgraphy

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SHIF}(\mathcal{D})$ [Baader, 2003]:

AL

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{I}\mathcal{F}(\mathcal{D})$ [Baader, 2003]:

- AL
 - · atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- 0

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{I}\mathcal{F}(\mathcal{D})$ [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- 5

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{IF}(\mathcal{D})$ [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- *H*

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{IF}(\mathcal{D})$ [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

•

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{IF}(\mathcal{D})$ [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- I = inverse properties
- F

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{I}\mathcal{F}(\mathcal{D})$ [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - · universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- I = inverse properties
- F
- · concept intersection
- · universal restrictions
- limited existential quantification
- role restriction
- D

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{I}\mathcal{F}(\mathcal{D})$ [Baader, 2003]:

- AL
 - · atomic negation
 - intersection
 - · universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- I = inverse properties
- F
- · concept intersection
- · universal restrictions
- limited existential quantification
- role restriction
- \mathcal{D} = data types

SHIF concepts

Let A and R be the sets of atomic concepts and atomic roles.

Concept constructors

(1)	top and bottom concepts	$C,D := T \mid \bot$
(2)	atomic concept	A
(3)	concept negation	¬ C
(4)	intersection	CnD
(5)	concept union	C⊔D
(6)	full universal quantification	¥ R · C
(7)	full existential quantification	J∃R·C

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals *I*:

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

Contains concept assertions $\langle i \in I : p \in P \rangle$ and role assertions $\langle (i, j \in I) : r \in R \rangle$.

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

∠ Box (Assertion Box)

Contains concept assertions $\langle i \in I : p \in P \rangle$ and role assertions $\langle (i, j \in I) : r \in R \rangle$.

\mathcal{T} Box (Terminology Box)

Contains *general concept inclusion* (GCI) axioms $\langle C \sqsubseteq D \rangle$ and role axioms (role hierarchy $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity, ...).

Crisp description logic interpretation

Interpretation $\mathscr F$ is a tuple $(\Delta^{\mathscr F},\cdot^{\mathscr F})$ (interpretation domain, interpretation function), which maps

an individual to domain object $\mathbf{i}^{\mathcal{F}} \in \Delta^{\mathcal{F}}$ an atomic concept to domain subsets $\mathsf{C}^{\mathcal{F}} \subseteq \Delta^{\mathcal{F}}$ an atomic role to subset of domain tuples $\mathsf{R}^{\mathcal{F}} \subseteq \Delta^{\mathcal{F}} \times \Delta^{\mathcal{F}}$

Crisp description logic interpretation

The non-atomic concepts are interpreted as follows:

non-atomic concept	its interpretation
Т	$\Delta^{\mathscr{I}}$
\perp	Ø
¬ C	$\Delta^{\mathscr{I}}\setminusC^{\mathscr{I}}$
СПО	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
C⊔D	$C^{\mathscr{I}} \cup D^{\mathscr{I}}$
$\forall R \cdot C$	$\{x \mid \forall y \in \Delta^{\mathscr{I}}. ((x,y) \in R^{\mathscr{I}}) \Rightarrow (y \in C^{\mathscr{I}})\}$
$\exists R \cdot C$	$\{x \mid \exists y \in \Delta^{\mathcal{I}}. ((x,y) \in R^{\mathcal{I}}) \land (y \in C^{\mathcal{I}})\}$

Crisp notion of truth

Axiom satisfaction

axiom	satisfied when
$\langle i:C\rangle$	$\mathbf{i}^{\mathcal{I}} \in C^{\mathcal{I}}$
$\langle (i,j):R \rangle$	$(i^{\mathscr{I}},j^{\mathscr{I}})\inR^{\mathscr{I}}$
$\langle C \sqsubseteq D \rangle$	$C^\mathscr{I} \sqsubseteq D^\mathscr{I}$
transitive(R)	$R^\mathscr{I}$ is transitive

•••

• Concept C is satisfiable

- Concept C is satisfiable iff there is an interpretation $\mathscr I$ s.t. $\mathcal{I} \models \langle i : C \rangle$ for some i.
- Interpretation \mathcal{I} satisfies a knowledgebase $\mathcal{K} = \mathcal{A}Box + \mathcal{T}Box$ (or \mathcal{I} is a *model* of \mathcal{K})

Basic fuzzy

- Concept C is *satisfiable* iff there is an interpretation \mathscr{I} s.t. $\mathscr{I} \models \langle i : C \rangle$ for some i.
- Interpretation \mathscr{I} satisfies a knowledgebase $\mathscr{K} = \mathscr{A}Box + \mathscr{T}Box$ (or \mathscr{I} is a *model* of \mathscr{K}) iff \mathscr{I} satisfies all its axioms.
- Axiom T is a *logical consequence* of K

- Concept C is *satisfiable* iff there is an interpretation $\mathscr I$ s.t. $\mathscr I \models < i : C > \text{for some } i$.
- Interpretation \mathscr{I} satisfies a knowledgebase $\mathscr{K} = \mathscr{A}Box + \mathscr{T}Box$ (or \mathscr{I} is a *model* of \mathscr{K}) iff \mathscr{I} satisfies all its axioms.
- Axiom T is a logical consequence of K iff every model of K satisfies T. We write K = T.

Basic idea

Basic idea

1. Keep the the previous slides intact.

Basic idea

- 1. Keep the the previous slides intact.
- 2. Add ∘ below and above every operation.

Basic idea

- 1. Keep the the previous slides intact.
- 2. Add ∘ below and above every operation.
- 3. Watch the semantic change.

Overview

We will show the **fuzzyDL** reasoner [Bobillo and Straccia, 2008] capabilities, which extends the $\mathcal{SHIF}(\mathcal{D})$ family with fuzzy capabilities.

Concept constructors

We start with atomic concepts A. Derived concepts are on the next slide together with their interpretation. (Each concept is interpreted as a fuzzy subset of the domain.)

311 / 321

Fuzzy DL interpretation

Fuzzy interpretation $\mathscr S$ is a tuple $\Delta^{\mathscr S}$, ${}^{\mathscr S}$ which maps

an individual to a domain object $\mathbf{i}^{\mathscr{J}} \in \Delta^{\mathscr{J}}$ an atomic concept to a domain subsets $\mathsf{C}^{\mathscr{J}} \in \mathbb{F}(\Delta^{\mathscr{J}})$ an atomic role to a relation on the domain $\mathsf{R}^{\mathscr{J}} \in \mathbb{F}(\Delta^{\mathscr{J}} \times \Delta^{\mathscr{J}})$

C, D :=	interpretation of x
	0
Т	1
\boldsymbol{A}	$A^{\mathscr{I}}(x)$
¬ C	$ \begin{array}{l} A^{\mathscr{I}}(x) \\ \neg C^{\mathscr{I}}(x) \end{array} $

C, D :=	interpretation of x
工	0
Т	1
Α	$A^{\mathscr{I}}(x)$
¬ C	$\frac{A^{\mathscr{I}}(x)}{S} \subset^{\mathscr{I}}(x)$
C⊓D	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
СÜD	$C^{\mathscr{I}}(x) \underset{L}{\wedge} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x
\perp	0
Т	1
\boldsymbol{A}	$A^{\mathscr{I}}(x)$
¬ C	$\frac{1}{S}C^{\mathscr{I}}(x)$
C∏D	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
C∏D	$C^{\mathscr{I}}(x) \underset{L}{\wedge} D^{\mathscr{I}}(x)$
СĎD	$C^{\mathscr{I}}(x)\overset{S}{\vee}D^{\mathscr{I}}(x)$
СЏО	$C^{\mathscr{I}}(x) \overset{L}{\vee} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x
	0
Т	1
Α	$A^{\mathscr{I}}(x)$
¬ C	$\frac{1}{S}C^{\mathscr{I}}(x)$
С _Б D	$C^{\mathscr{I}}(x) \wedge D^{\mathscr{I}}(x)$
СĽD	$C^{\mathscr{I}}(x) \underset{L}{\wedge} D^{\mathscr{I}}(x)$
CDD	$C^{\mathscr{I}}(x)\overset{S}{\vee}D^{\mathscr{I}}(x)$
СЏО	$C^\mathscr{I}(x) \overset{\mathrm{L}}{\vee} D^\mathscr{I}(x)$
$C \stackrel{R}{\mapsto} D$	$C^{\mathscr{I}}(x) \stackrel{R}{\underset{S}{\Longrightarrow}} D^{\mathscr{I}}(x)$
$C \stackrel{R}{\underset{L}{\longmapsto}} D$	$C^{\mathscr{I}}(x) \overset{R}{\underset{L}{\Longrightarrow}} D^{\mathscr{I}}(x)$
$C \xrightarrow{S} D$	$C^{\mathscr{I}}(x) \overset{S}{\underset{S}{\Longrightarrow}} D^{\mathscr{I}}(x)$

Basic fuzzy

C, D :=	interpretation of x
∃R·C	$\sup_{y} R^{\mathscr{I}}(x,y) \stackrel{\wedge}{\circ} C^{\mathscr{I}}(y)$
$AB \cdot C$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$

C, D :=	interpretation of x
3 · AE	$\sup_{y} R^{\mathscr{I}}(x,y) \stackrel{\wedge}{\circ} C^{\mathscr{I}}(y)$
∀R · C	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$ $mod(C^{\mathscr{I}}(x))$
mod(C)	$mod(C^{\mathscr{I}}(x))$

C, D :=	interpretation of x
∃R·C	$\sup_{y} R^{\mathscr{J}}(x,y) \stackrel{\wedge}{\circ} C^{\mathscr{J}}(y)$
$AB \cdot C$	$\inf_{\mathbf{y}} R^{\mathscr{I}}(\mathbf{x},\mathbf{y}) \overset{\circ}{\underset{\circ}{\Rightarrow}} C^{\mathscr{I}}(\mathbf{y})$
(n C)	$n \cdot C(x)$
mod(C)	$n \cdot C(x)$ $mod(C^{\mathscr{I}}(x))$
$\mathbf{w}_{\scriptscriptstyle 1}C_{\scriptscriptstyle 1}++\mathbf{w}_{\scriptscriptstyle k}C_{\scriptscriptstyle k}$	$w_1C_1^{\mathscr{I}}(x) + + w_kC_k^{\mathscr{I}}(x)$

C, D :=	interpretation of x
3R · C	$\sup_{y} R^{\mathscr{J}}(x,y) \stackrel{\wedge}{\wedge} C^{\mathscr{J}}(y)$
$A \cdot C$	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$
(n C)	$n \cdot C(x)$ $mod(C^{\mathcal{I}}(x))$
mod(C)	$mod(C^\mathscr{I}(x))$
$w_1C_1 + + w_kC_k$	$w_1 C_1^{\mathscr{I}}(x) + + w_k C_k^{\mathscr{I}}(x)$
C	$\begin{cases} \mathbb{C}^{\mathscr{I}}(x) & \mathbb{C}^{\mathscr{I}}(x) \leq n \\ \text{o} & \text{otherwise} \end{cases}$

Male \sqcap Female \neq ⊥

Modifiers

Modifier is a function that alters the membership function.

Example

Linear modifier of degree c is

$$a = \frac{c}{c+1}$$
$$b = \frac{1}{c+1}$$

Fuzzy DL ontology

Ontology consists of $\mathscr{A}\textit{Box}$ and $\mathscr{T}\textit{Box}$:

Fuzzy DL ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$:

$\mathscr{A}Box$ (Assertion Box)

Contains concept assertions $\langle i \in I : p \in P \mid \alpha \rangle$ and role assertions $\langle (i, j \in I) : r \in R \mid \alpha \rangle$.

Fuzzy DL ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$:

$\mathscr{A}Box$ (Assertion Box)

Contains concept assertions $\langle i \in I : p \in P \mid \alpha \rangle$ and role assertions $\langle (i, j \in I) : r \in R \mid \alpha \rangle$.

\mathcal{T} Box (Terminology Box)

GCI axioms $\langle C \sqsubseteq D \mid \alpha \rangle$ state that "C is D at least by α ".

Besides GCI, there are role hierarchy axioms $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity axioms and definitions of inverse relations.

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{F}}(\mathbf{i}^{\mathcal{F}}) \geqslant \alpha$

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{I}}(\mathbf{i}^{\mathcal{I}}) \geqslant \alpha$
$\langle (i,j): R \alpha \rangle$	$ \begin{array}{c} C^{\mathcal{F}}(\mathbf{i}^{\mathcal{F}}) \geqslant \alpha \\ R^{\mathcal{F}}(\mathbf{i}^{\mathcal{F}}, \mathbf{j}^{\mathcal{F}}) \geqslant \alpha \end{array} $
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \geqslant \alpha$

atisfied if
$\mathbb{C}^{\mathscr{I}}(\mathbf{i}^{\mathscr{I}}) \geqslant \alpha$
$R^{\mathcal{F}}(\mathbf{i}^{\mathcal{F}},\mathbf{j}^{\mathcal{F}}) \geqslant \alpha$
$\mathbb{C} \stackrel{\circ}{\subseteq} D \geqslant \alpha$
$R_1^{\mathcal{J}} \subseteq R_2^{\mathcal{J}}$! is \circ -transitive

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{I}}(\mathbf{i}^{\mathcal{I}}) \geqslant \alpha$
$\langle (i,j): R \alpha \rangle$	$R^{\mathscr{I}}(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}}) \geqslant \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \geqslant \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{I}}$
$\langle transitive \ R \rangle$	<i>R</i> is ∘-transitive
$\langle R_1 = R_2^{-1} \rangle$	$R_{1}^{\mathscr{I}} = (R_{2}^{\mathscr{I}})^{-1}$

Fuzzy axioms

axiom	satisfied if
$\langle i: C \alpha \rangle$	$C^{\mathcal{F}}(\mathbf{i}^{\mathcal{F}}) \geqslant \alpha$
$\langle (i,j) : R \alpha \rangle$	$R^{\mathscr{I}}(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}}) \geqslant \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \geqslant \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_1^{\mathscr{I}} \subseteq R_2^{\mathscr{I}}$
$\langle transitive \ R \rangle$	<i>R</i> is ∘-transitive
$\langle R_1 = R_2^{-1} \rangle$	$R_{\scriptscriptstyle 1}^{\mathscr{I}} = (R_{\scriptscriptstyle 2}^{\mathscr{I}})^{\scriptscriptstyle -1}$

Using these definitions, the notions of *logical* consequence and satisfiability (of both concepts and axioms) remains the same.
More on slide 317.

Best/Worst Degree Bound

What is the minimal degree of an axiom that \mathcal{K} ensures?

$$bdb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$
$$wdb(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

Best/Worst Degree Bound

What is the minimal degree of an axiom that Kensures?

$$bdb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$
$$wdb(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

• From an empty \mathcal{K} , you cannot infer anything and therefore $bdb(\mathcal{K},\tau)=1$ and $wdb(\mathcal{K},\tau)=0$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".

Best/Worst Degree Bound

What is the minimal degree of an axiom that \mathcal{K} ensures?

$$bdb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$
$$wdb(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

- From an empty \mathcal{K} , you cannot infer anything and therefore $bdb(\mathcal{K},\tau)=1$ and $wdb(\mathcal{K},\tau)=0$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".
- What happens if $wdb(\mathcal{K}, \tau) \ge bdb(\mathcal{K}, \tau)$ for some axiom τ ?

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$bsb(\mathcal{K}, C) = \sup_{\mathcal{I}} \sup_{x \in \Delta} \{C^{\mathcal{I}}(x) \mid \mathcal{I} \models \mathcal{K}\}.$$

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$bsb(\mathcal{K}, C) = \sup_{\mathcal{I}} \sup_{x \in \Delta} \{C^{\mathcal{I}}(x) \mid \mathcal{I} \models \mathcal{K}\}.$$

This is a generalization of concept satisfiability.

Bibliography

Baader, F. (2003).

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

Bobillo, O. and Straccia, U. (2008).
fuzzydl: An expressive fuzzy description logic reasoner.
In In Proc. FUZZ-IEEE-2008. IEEE Computer Society, pages
923--930

321 / 321