

OPPA European Social Fund Prague & EU: We invest in your future.

AE4M33RZN, Fuzzy logic: Fuzzy description logic

Radomír Černoch

radomir.cernoch@fel.cvut.cz

Faculty of Electrical Engineering, CTU in Prague

3/12/2012

Crisp description logic

Our treatment of fuzzy description logic is based on a family of crisp description logic $\mathcal{SH}\mathcal{I}\mathcal{F}(\mathcal{D})$ [Baader, 2003]:

- AL
 - atomic negation
 - intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- S = ALC + transitive roles
- \mathcal{H} = role hierarchies

- I = inverse properties
- F
- · concept intersection
- · universal restrictions
- limited existential quantification
- role restriction
- \mathcal{D} = data types

SHIF concepts

Let A and R be the sets of atomic concepts and atomic roles.

Concept constructors

(1)	top and bottom concepts	$C,D := T \mid \bot$
(2)	atomic concept	A
(3)	concept negation	¬ C
(4)	intersection	CnD
(5)	concept union	C⊔D
(6)	full universal quantification	∀R · C
(7)	full existential quantification	J-R-C

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals I:

Contains concept assertions $\langle i \in I : p \in P \rangle$ and role assertions $\langle (i, j \in I) : r \in R \rangle$.

 $\mathcal{T}Box$ (Terminology Box)

Contains *general concept inclusion* (GCI) axioms $\langle C \sqsubseteq D \rangle$ and role axioms (role hierarchy $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity, ...).

Crisp description logic interpretation

Interpretation $\mathscr I$ is a tuple $(\Delta^{\mathscr I},\cdot^{\mathscr I})$ (interpretation domain, interpretation function), which maps

an individual to domain object $\mathbf{i}^{\mathcal{J}} \in \Delta^{\mathcal{J}}$ an atomic concept to domain subsets $\mathsf{C}^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}}$ an atomic role to subset of domain tuples $\mathsf{R}^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}}$

Crisp description logic interpretation

The non-atomic concepts are interpreted as follows:

non-atomic concept	its interpretation
Т	$\Delta^{\mathcal{F}}$
\perp	Ø
¬ C	$\Delta^{\mathcal{I}}\setminusC^{\mathcal{I}}$
СПО	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
C⊔D	$C^{\mathscr{I}} \cup D^{\mathscr{I}}$
$\forall R \cdot C$	$\{x \mid \forall y \in \Delta^{\mathscr{I}}. ((x,y) \in R^{\mathscr{I}}) \Rightarrow (y \in C^{\mathscr{I}})\}$
$\exists R \cdot C$	$\{x \mid \exists y \in \Delta^{\mathscr{I}}. ((x,y) \in R^{\mathscr{I}}) \land (y \in C^{\mathscr{I}})\}$

Crisp notion of truth

Axiom satisfaction

axiom	satisfied when
$\langle i:C\rangle$	$\mathbf{i}^{\mathscr{I}} \in C^{\mathscr{I}}$
$\langle (i,j):R angle$	$(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}})\inR^{\mathscr{I}}$
$\langle C \sqsubseteq D \rangle$	$C^\mathscr{I} \sqsubseteq D^\mathscr{I}$
transitive(R)	$R^\mathscr{I}$ is transitive

• Concept C is *satisfiable* iff there is an interpretation $\mathscr S$ s.t.

• Concept
$$C$$
 is satisfiable in there is an interpretation \mathcal{F} s.t. $\mathcal{I} \models \langle i : C \rangle$ for some i

- Interpretation \mathscr{I} satisfies a knowledgebase $\mathscr{K} = \mathscr{A}Box + \mathscr{T}Box$ (or \mathscr{I} is a *model* of \mathscr{K}) iff \mathscr{I} satisfies all its axioms.
- Axiom T is a logical consequence of $\mathcal K$ iff every model of $\mathcal K$ satisfies T. We write $\mathcal K \models T$.

Fuzzy description logic

Basic idea

- 1. Keep the the previous slides intact.
- 2. Add ∘ below and above every operation.
- 3. Watch the semantic change.

Overview

We will show the **fuzzyDL** reasoner [Bobillo and Straccia, 2008] capabilities, which extends the $\mathcal{SHIF}(\mathcal{D})$ family with fuzzy capabilities.

Concept constructors

We start with atomic concepts A. Derived concepts are on the next slide together with their interpretation. (Each concept is interpreted as a fuzzy subset of the domain.)

Fuzzy DL interpretation

Fuzzy interpretation $\mathscr F$ is a tuple $\Delta^{\mathscr F}$, $\cdot^{\mathscr F}$ which maps

an individual to a domain object $\mathbf{i}^{\mathscr{J}} \in \Delta^{\mathscr{J}}$ an atomic concept to a domain subsets $\mathsf{C}^{\mathscr{J}} \in \mathbb{F}(\Delta^{\mathscr{J}})$ an atomic role to a relation on the domain $\mathsf{R}^{\mathscr{J}} \in \mathbb{F}(\Delta^{\mathscr{J}} \times \Delta^{\mathscr{J}})$

$$\begin{array}{c|ccc}
\hline
C,D := & \text{interpretation of } x \\
\hline
\bot & o \\
T & 1 \\
A & A^{\mathcal{J}}(x) \\
\neg C & \neg C^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C \Box D & C^{\mathcal{J}}(x) & D^{\mathcal{J}}(x) \\
\hline
C D & D^{\mathcal{J}}(x) & D^{\mathcal{J}$$

$$\begin{array}{c|c}
C,D := & \text{interpretation of } x \\
\hline
\exists R \cdot C & \sup_{y} R^{\mathscr{I}}(x,y) \wedge C^{\mathscr{I}}(y) \\
\forall R \cdot C & \inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y) \\
\hline
(n C) & n \cdot C(x) \\
mod(C) & mod(C^{\mathscr{I}}(x)) \\
\hline
w_{1}C_{1} + ... + w_{k}C_{k} & w_{1}C_{1}^{\mathscr{I}}(x) + ... + w_{k}C_{k}^{\mathscr{I}}(x) \\
\hline
C \not \leqslant n & \begin{cases}
C^{\mathscr{I}}(x) & C^{\mathscr{I}}(x) \not \leqslant n \\
o & \text{otherwise} \end{cases}$$

w ₁ C ₁ +	m	od	(C)
	\boldsymbol{w}_{1}	C,	+

Male \sqcap Female \neq ⊥

Modifiers

Modifier is a function that alters the membership function.

Example

Linear modifier of degree c is

$$a = \frac{c}{c+1}$$
$$b = \frac{1}{c+1}$$

Fuzzy DL ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$:

Contains concept assertions $\langle i \in I : p \in P \mid \alpha \rangle$ and role assertions $\langle (i,j \in I) : r \in R \mid \alpha \rangle$.

 $\mathcal{T}Box$ (Terminology Box)

GCI axioms $\langle C \sqsubseteq D \mid \alpha \rangle$ state that "C is D at least by α ".

Besides GCI, there are role hierarchy axioms $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity axioms and definitions of inverse relations.

Notion of a fuzzy truth

Fuzzy axioms

axiom	satisfied if
$\langle i:C \alpha\rangle$	$C^{\mathcal{I}}(\mathbf{i}^{\mathcal{I}}) \geqslant \alpha$
$\langle (i,j): R \alpha \rangle$	$R^{\mathscr{I}}(\mathbf{i}^{\mathscr{I}},\mathbf{j}^{\mathscr{I}}) \geqslant \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C \stackrel{\circ}{\subseteq} D \geqslant \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{I}}$
$\langle transitive R \rangle$	R is ∘-transitive
$\langle R_1 = R_2^{-1} \rangle$	$R_{\scriptscriptstyle 1}^{\mathscr{I}} = (R_{\scriptscriptstyle 2}^{\mathscr{I}})^{\scriptscriptstyle -1}$

Using these definitions, the notions of *logical* consequence and satisfiability (of both concepts and axioms) remains the same.
More on slide 307.

What can you ask the reasoner?

Best/Worst Degree Bound

What is the minimal degree of an axiom that Kensures?

$$bdb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$
$$wdb(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \models \langle \tau \mid \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i,j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

- From an empty \mathcal{K} , you cannot infer anything and therefore $bdb(\mathcal{K}, \tau) = 1$ and $wdb(\mathcal{K}, \tau) = 0$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".
- What happens if $wdb(\mathcal{K}, \tau) \ge bdb(\mathcal{K}, \tau)$ for some axiom τ ?

What can you ask the reasoner?

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$bsb(\mathcal{K}, C) = \sup_{\mathcal{I}} \sup_{\mathbf{x} \in \Delta} \{C^{\mathcal{I}}(\mathbf{x}) \mid \mathcal{I} \models \mathcal{K}\}.$$

This is a generalization of concept satisfiability.

Bibliography

Baader, F. (2003).

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

Bobillo, O. and Straccia, U. (2008).

fuzzydl: An expressive fuzzy description logic reasoner.

In In Proc. FUZZ-IEEE-2008. IEEE Computer Society, pages 923--930.

OPPA European Social Fund Prague & EU: We invest in your future.