Inference in Description Logics

Petr Křemen
petr.kremen@fel.cvut.cz

FEL ČVUT

Our plan

Inference Problems

Inference Algorithms
Tableau Algorithm for $\mathcal{A L C}$

Inference Problems

Inference Problems in TBOX

We have introduced syntax and semantics of the language $\mathcal{A L C}$. Now, let's look on automated reasoning. Having a $\mathcal{A L C}$ theory $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts C, D, we want to decide whether
(unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \perp$?

Inference Problems in TBOX

We have introduced syntax and semantics of the language $\mathcal{A L C}$. Now, let's look on automated reasoning. Having a $\mathcal{A L C}$ theory $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts C, D, we want to decide whether
(unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \perp$? (subsumption) concept C subsumes concept D, i.e. $\mathcal{T} \models D \sqsubseteq C$?

Inference Problems in TBOX

We have introduced syntax and semantics of the language $\mathcal{A L C}$. Now, let's look on automated reasoning. Having a $\mathcal{A L C}$ theory $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts C, D, we want to decide whether
(unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \perp$? (subsumption) concept C subsumes concept D, i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts C and D are equivalent, i.e.

$$
\mathcal{T} \neq C \equiv D ?
$$

All these tasks can be reduced to unsatisfiability

Inference Problems in TBOX

We have introduced syntax and semantics of the language $\mathcal{A L C}$. Now, let's look on automated reasoning. Having a $\mathcal{A L C}$ theory $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts C, D, we want to decide whether
(unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \perp$? (subsumption) concept C subsumes concept D, i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts C and D are equivalent, i.e.

$$
\mathcal{T} \neq C \equiv D ?
$$

(disjoint) two concepts C and D are disjoint, i.e.

$$
\mathcal{T} \models C \sqcap D \sqsubseteq \perp ?
$$

Inference Problems in TBOX

We have introduced syntax and semantics of the language $\mathcal{A L C}$. Now, let's look on automated reasoning. Having a $\mathcal{A L C}$ theory $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For TBOX \mathcal{T} and concepts C, D, we want to decide whether
(unsatisfiability) concept C is unsatisfiable, i.e. $\mathcal{T} \models C \sqsubseteq \perp$? (subsumption) concept C subsumes concept D, i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts C and D are equivalent, i.e.

$$
\mathcal{T} \models C \equiv D ?
$$

(disjoint) two concepts C and D are disjoint, i.e.

$$
\mathcal{T} \models C \sqcap D \sqsubseteq \perp ?
$$

All these tasks can be reduced to unsatisfiability checking of a single concept ...

Reduction to Concept Unsatisfiability - Example

Example

These reductions are straighforward - let's show, how to reduce subsumption checking to unsatisfiability checking. Reduction of other inference problems to unsatisfiability is analogous.

$$
(\mathcal{T} \models C \sqsubseteq D) \quad \text { iff }
$$

$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \quad$ implies $\quad \mathcal{I} \models C \sqsubseteq D) \quad$ iff
$(\forall \mathcal{I})\left(\mathcal{I} \models \mathcal{T}\right.$ implies $\left.\quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}\right) \quad$ iff
$(\forall \mathcal{I})\left(\mathcal{I} \models \mathcal{T} \quad\right.$ implies $\quad C^{\mathcal{I}} \cap\left(\Delta^{\mathcal{I}} \backslash D^{\mathcal{I}}\right) \subseteq \emptyset \quad$ iff
$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \quad$ implies $\quad \mathcal{I} \models C \sqcap \neg D \sqsubseteq \perp \quad$ iff
$(\mathcal{T} \models C \sqcap \neg D \sqsubseteq \perp)$

Inference Problems for ABOX

... for ABOX \mathcal{A}, axiom α, concept C, role R and individuals $a_{\text {, }} a_{0}$ we want to decide whether
\mathcal{K} is consistent).

Inference Problems for ABOX

... for ABOX \mathcal{A}, axiom α, concept C, role R and individuals a, a_{0} we want to decide whether
(consistency checking) $\mathrm{ABOX} \mathcal{A}$ is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).

Inference Problems for ABOX

\ldots for ABOX \mathcal{A}, axiom α, concept C, role R and individuals a, a_{0} we want to decide whether (consistency checking) $\mathrm{ABOX} \mathcal{A}$ is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).
(instance checking) $\mathcal{T} \cup \mathcal{A} \vDash C(a)$?

Inference Problems for ABOX

\ldots for ABOX \mathcal{A}, axiom α, concept C, role R and individuals a, a_{0} we want to decide whether (consistency checking) $\operatorname{ABOX} \mathcal{A}$ is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).
(instance checking) $\mathcal{T} \cup \mathcal{A} \equiv C(a)$?
(role checking) $\mathcal{T} \cup \mathcal{A} \models R\left(a, a_{0}\right)$?

Inference Problems for ABOX

\ldots for ABOX \mathcal{A}, axiom α, concept C, role R and individuals a, a_{0} we want to decide whether (consistency checking) $\operatorname{ABOX} \mathcal{A}$ is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).
(instance checking) $\mathcal{T} \cup \mathcal{A} \equiv C(a)$?
(role checking) $\mathcal{T} \cup \mathcal{A} \models R\left(a, a_{0}\right)$?
(instance retrieval) find all individuals a_{1}, for which

$$
\mathcal{T} \cup \mathcal{A} \models C\left(a_{1}\right)
$$

Inference Problems for ABOX

\ldots for ABOX \mathcal{A}, axiom α, concept C, role R and individuals a, a_{0} we want to decide whether (consistency checking) $\operatorname{ABOX} \mathcal{A}$ is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).
(instance checking) $\mathcal{T} \cup \mathcal{A} \equiv C(a)$?
(role checking) $\mathcal{T} \cup \mathcal{A} \models R\left(a, a_{0}\right)$?
(instance retrieval) find all individuals a_{1}, for which

$$
\mathcal{T} \cup \mathcal{A} \models C\left(a_{1}\right)
$$

realization find the most specific concept C from a set of concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$.

Inference Problems for ABOX

... for ABOX \mathcal{A}, axiom α, concept C, role R and individuals a, a_{0} we want to decide whether (consistency checking) $\mathrm{ABOX} \mathcal{A}$ is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent).
(instance checking) $\mathcal{T} \cup \mathcal{A} \vDash C(a)$?
(role checking) $\mathcal{T} \cup \mathcal{A} \models R\left(a, a_{0}\right)$?
(instance retrieval) find all individuals a_{1}, for which

$$
\mathcal{T} \cup \mathcal{A} \models C\left(a_{1}\right)
$$

realization find the most specific concept C from a set of concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$.
All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

Inference Algorithms

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. $\mathcal{A L N}$, see $\left[B C M^{+} 03\right]$.

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. $\mathcal{A L N}$, see $\left[B C M^{+} 03\right]$.
Tableaux Algorithms represent the State of Art for complex DLs sound, complete, finite, see [HS03], [HS01], $\left[\mathrm{BCM}^{+} 03\right]$.

We will introduce tableau algorithms.

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. $\mathcal{A L N}$, see $\left[B C M^{+} 03\right]$.
Tableaux Algorithms represent the State of Art for complex DLs sound, complete, finite, see [HS03], [HS01], $\left[B C M^{+} 03\right]$.
other ... - e.g. resolution-based [Hab06], transformation to finite automata $\left[\mathrm{BCM}^{+} 03\right]$, etc.

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some simple DLs without full negation, e.g. $\mathcal{A L \mathcal { N }}$, see $[B C M+03]$.
Tableaux Algorithms represent the State of Art for complex DLs sound, complete, finite, see [HS03], [HS01], [BCM^{+}03].
other ... - e.g. resolution-based [Hab06], transformation to finite automata $\left[\mathrm{BCM}^{+} 03\right]$, etc.
We will introduce tableau algorithms.

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL - they were known for FOL as well.

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL - they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX \mathcal{A} w.r.t. TBOX \mathcal{T} is proven if we succeed in constructing a model of $\mathcal{T} \cup \mathcal{A}$."

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL - they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX \mathcal{A} w.r.t. TBOX \mathcal{T} is proven if we succeed in constructing a model of $\mathcal{T} \cup \mathcal{A}$."
- Each TA can be seen as a production system :

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL - they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX \mathcal{A} w.r.t. TBOX \mathcal{T} is proven if we succeed in constructing a model of $\mathcal{T} \cup \mathcal{A}$."
- Each TA can be seen as a production system :
- state of TA (\sim data base) is made up by a set of completion graphs (see next slide),

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL - they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX \mathcal{A} w.r.t. TBOX \mathcal{T} is proven if we succeed in constructing a model of $\mathcal{T} \cup \mathcal{A}$."
- Each TA can be seen as a production system :
- state of TA (\sim data base) is made up by a set of completion graphs (see next slide),
- inference rules (\sim production rules) implement semantics of particular constructs of the given language, e.g. \exists, \sqcap, etc. and serve to modify the completion graphs according to

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL - they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX \mathcal{A} w.r.t. TBOX \mathcal{T} is proven if we succeed in constructing a model of $\mathcal{T} \cup \mathcal{A}$."
- Each TA can be seen as a production system :
- state of TA (\sim data base) is made up by a set of completion graphs (see next slide),
- inference rules (\sim production rules) implement semantics of particular constructs of the given language, e.g. \exists, \sqcap, etc. and serve to modify the completion graphs according to
- choosen strategy for rule application

Completion Graphs

completion graph is a labeled oriented graph $\left.G=\left(V_{G}, E_{G}, L_{G}\right)\right)$, where each node $x \in V_{G}$ is labeled with a set $L_{G}(x)$ of concepts and each edge $\langle x, y\rangle \in E_{G}$ is labeled with a set of edges $L_{G}(\langle x, y\rangle)^{5}$

[^0]
Completion Graphs

completion graph is a labeled oriented graph $\left.G=\left(V_{G}, E_{G}, L_{G}\right)\right)$, where each node $x \in V_{G}$ is labeled with a set $L_{G}(x)$ of concepts and each edge $\langle x, y\rangle \in E_{G}$ is labeled with a set of edges $L_{G}(\langle x, y\rangle)^{5}$
direct clash occurs in a completion graph $G=\left(V_{G}, E_{G}, L_{G}\right)$), if $\{A, \neg A\} \subseteq L_{G}(x)$, or $\perp \in L_{G}(x)$, for some atomic concept A and a node $x \in V_{G}$

[^1]
Completion Graphs

completion graph is a labeled oriented graph $\left.G=\left(V_{G}, E_{G}, L_{G}\right)\right)$, where each node $x \in V_{G}$ is labeled with a set $L_{G}(x)$ of concepts and each edge $\langle x, y\rangle \in E_{G}$ is labeled with a set of edges $L_{G}(\langle x, y\rangle)^{5}$
direct clash occurs in a completion graph $G=\left(V_{G}, E_{G}, L_{G}\right)$), if $\{A, \neg A\} \subseteq L_{G}(x)$, or $\perp \in L_{G}(x)$, for some atomic concept A and a node $x \in V_{G}$
complete completion graph is a completion graph
$\left.G=\left(V_{G}, E_{G}, L_{G}\right)\right)$, to which no completion rule from the set of TA completion rules can be applied.

[^2]
Completion Graphs

completion graph is a labeled oriented graph $\left.G=\left(V_{G}, E_{G}, L_{G}\right)\right)$, where each node $x \in V_{G}$ is labeled with a set $L_{G}(x)$ of concepts and each edge $\langle x, y\rangle \in E_{G}$ is labeled with a set of edges $L_{G}(\langle x, y\rangle)^{5}$
direct clash occurs in a completion graph $G=\left(V_{G}, E_{G}, L_{G}\right)$), if $\{A, \neg A\} \subseteq L_{G}(x)$, or $\perp \in L_{G}(x)$, for some atomic concept A and a node $x \in V_{G}$
complete completion graph is a completion graph $\left.G=\left(V_{G}, E_{G}, L_{G}\right)\right)$, to which no completion rule from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs known from graph theory.

[^3]
Completion Graphs (2)

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_{G}$, where \mathcal{A}_{G} is an ABOX constructed from G, as follows

Completion Graphs (2)

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_{G}$, where \mathcal{A}_{G} is an ABOX constructed from G, as follows

- $C(a)$ for each node $a \in V_{G}$ and each concept $C \in L_{G}(a)$ and

Completion Graphs (2)

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_{G}$, where \mathcal{A}_{G} is an ABOX constructed from G, as follows

- $C(a)$ for each node $a \in V_{G}$ and each concept $C \in L_{G}(a)$ and
- $R(a, b)$ for each edge $\langle a, b\rangle \in E_{G}$ and each role $R \in L_{G}(a, b)$ and

Tableau Algorithm for $\mathcal{A L C}$ with empty TBOX

let's have $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T}=\emptyset$.

Tableau Algorithm for $\mathcal{A L C}$ with empty TBOX

let's have $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T}=\emptyset$.

0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B)$.

Tableau Algorithm for $\mathcal{A L C}$ with empty TBOX

let's have $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T}=\emptyset$.

0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B)$.
1 (Initialization) Initial state of the algorithm is $S_{0}=\left\{G_{0}\right\}$, where $G_{0}=\left(V_{G_{0}}, E_{G_{0}}, L_{G_{0}}\right)$ is made up from \mathcal{A} as follows:

Tableau Algorithm for $\mathcal{A L C}$ with empty TBOX

let's have $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T}=\emptyset$.

0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B)$.
1 (Initialization) Initial state of the algorithm is $S_{0}=\left\{G_{0}\right\}$, where $G_{0}=\left(V_{G_{0}}, E_{G_{0}}, L_{G_{0}}\right)$ is made up from \mathcal{A} as follows:

- for each $C(a)$ put $a \in V_{G_{0}}$ and $C \in L_{G_{0}}(a)$

Tableau Algorithm for $\mathcal{A L C}$ with empty TBOX

let's have $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T}=\emptyset$.
0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B)$.
1 (Initialization) Initial state of the algorithm is $S_{0}=\left\{G_{0}\right\}$, where $G_{0}=\left(V_{G_{0}}, E_{G_{0}}, L_{G_{0}}\right)$ is made up from \mathcal{A} as follows:

- for each $C(a)$ put $a \in V_{G_{0}}$ and $C \in L_{G_{0}}(a)$
- for each $R(a, b)$ put $\langle a, b\rangle \in E_{G_{0}}$ and $R \in L_{G_{0}}(a, b)$

Tableau Algorithm for $\mathcal{A L C}$ with empty TBOX

let's have $\mathcal{K}=(\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T}=\emptyset$.
0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B)$.
1 (Initialization) Initial state of the algorithm is $S_{0}=\left\{G_{0}\right\}$, where $G_{0}=\left(V_{G_{0}}, E_{G_{0}}, L_{G_{0}}\right)$ is made up from \mathcal{A} as follows:

- for each $C(a)$ put $a \in V_{G_{0}}$ and $C \in L_{G_{0}}(a)$
- for each $R(a, b)$ put $\langle a, b\rangle \in E_{G_{0}}$ and $R \in L_{G_{0}}(a, b)$
- Sets $V_{G_{0}}, E_{G_{0}}, L_{G_{0}}$ are smallest possible with these properties.

Tableau algorithm for $\mathcal{A L C}$ without TBOX (2)

2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"

Tableau algorithm for $\mathcal{A L C}$ without TBOX (2)

2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"

Tableau algorithm for $\mathcal{A L C}$ without TBOX (2)

2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"
4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S^{\prime}. Jump to step 2.

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
$L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule

$$
\text { if }\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a) \text { and }\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a) \text { for some } a \in V_{G} \text {. }
$$

then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule

$$
\text { if }\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a) \text { and }\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a) \text { for some } a \in V_{G} \text {. }
$$

then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow - rule

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow rule

$$
\text { if }\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a) \text { and }\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset \text { for some } a \in V_{G}
$$

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule

$$
\text { if }\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a) \text { and }\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a) \text { for some } a \in V_{G} \text {. }
$$

then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow b rule

$$
\text { if }\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a) \text { and }\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset \text { for some } a \in V_{G} \text {. }
$$

$$
\text { then } S^{\prime}=S \cup\left\{G_{1}, G_{2}\right\} \backslash\{G\} \text {, where } G_{(1 \mid 2)}=\left(V_{G}, E_{G}, L_{G_{(1 \mid 2)}}\right) \text {, and }
$$ $L_{G_{(1 \mid 2)}}(a)=L_{G}(a) \cup\left\{C_{(1 \mid 2)}\right\}$ and otherwise is the same as L_{G}.

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow b rule
if $\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset$ for some $a \in V_{G}$. then $S^{\prime}=S \cup\left\{G_{1}, G_{2}\right\} \backslash\{G\}$, where $G_{(1 \mid 2)}=\left(V_{G}, E_{G}, L_{G_{(1 \mid 2)}}\right)$, and $L_{G_{(1 \mid 2)}}(a)=L_{G}(a) \cup\left\{C_{(1 \mid 2)}\right\}$ and otherwise is the same as L_{G}.
\rightarrow_{\exists} rule

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow b rule
if $\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G_{1}, G_{2}\right\} \backslash\{G\}$, where $G_{(1 \mid 2)}=\left(V_{G}, E_{G}, L_{G_{(1 \mid 2)}}\right)$, and $L_{G_{(1 \mid 2)}}(a)=L_{G}(a) \cup\left\{C_{(1 \mid 2)}\right\}$ and otherwise is the same as L_{G}.
\rightarrow_{\exists} rule
if $(\exists R \cdot C) \in L_{G}(a)$ and there exists no $b \in V_{G}$ such that $R \in L_{G}(a, b)$ and at the same time $C \in L_{G}(b)$.

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow b rule
if $\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G_{1}, G_{2}\right\} \backslash\{G\}$, where $G_{(1 \mid 2)}=\left(V_{G}, E_{G}, L_{G_{(1 \mid 2)}}\right)$, and $L_{G_{(1 \mid 2)}}(a)=L_{G}(a) \cup\left\{C_{(1 \mid 2)}\right\}$ and otherwise is the same as L_{G}.
$\rightarrow \exists$ rule
if $(\exists R \cdot C) \in L_{G}(a)$ and there exists no $b \in V_{G}$ such that $R \in L_{G}(a, b)$ and at the same time $C \in L_{G}(b)$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G} \cup\{b\}, E_{G} \cup\{\langle a, b\rangle\}, L_{G^{\prime}}\right)$, a $L_{G^{\prime}}(b)=\{C\}, L_{G^{\prime}}(a, b)=\{R\}$ and otherwise is the same as L_{G}.

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow b rule

$$
\text { if }\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a) \text { and }\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset \text { for some } a \in V_{G} \text {. }
$$

then $S^{\prime}=S \cup\left\{G_{1}, G_{2}\right\} \backslash\{G\}$, where $G_{(1 \mid 2)}=\left(V_{G}, E_{G}, L_{G_{(1 \mid 2)}}\right)$, and $L_{G_{(1 \mid 2)}}(a)=L_{G}(a) \cup\left\{C_{(1 \mid 2)}\right\}$ and otherwise is the same as L_{G}.
\rightarrow_{\exists} rule
if $(\exists R \cdot C) \in L_{G}(a)$ and there exists no $b \in V_{G}$ such that $R \in L_{G}(a, b)$ and at the same time $C \in L_{G}(b)$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G} \cup\{b\}, E_{G} \cup\{\langle a, b\rangle\}, L_{G^{\prime}}\right)$, a $L_{G^{\prime}}(b)=\{C\}, L_{G^{\prime}}(a, b)=\{R\}$ and otherwise is the same as L_{G}.
$\rightarrow \forall$ rule
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow b rule
if $\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G_{1}, G_{2}\right\} \backslash\{G\}$, where $G_{(1 \mid 2)}=\left(V_{G}, E_{G}, L_{G_{(1 \mid 2)}}\right)$, and $L_{G_{(1 \mid 2)}}(a)=L_{G}(a) \cup\left\{C_{(1 \mid 2)}\right\}$ and otherwise is the same as L_{G}.
\rightarrow_{\exists} rule
if $(\exists R \cdot C) \in L_{G}(a)$ and there exists no $b \in V_{G}$ such that $R \in L_{G}(a, b)$ and at the same time $C \in L_{G}(b)$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G} \cup\{b\}, E_{G} \cup\{\langle a, b\rangle\}, L_{G^{\prime}}\right)$, a $L_{G^{\prime}}(b)=\{C\}, L_{G^{\prime}}(a, b)=\{R\}$ and otherwise is the same as L_{G}.
$\rightarrow \forall$ rule
if $(\forall R \cdot C) \in L_{G}(a)$ and there exists $b \in V_{G}$ such that $R \in L_{G}(a, b)$ and at the same time $C \notin L_{G}(b)$.

TA for $\mathcal{A L C}$ without TBOX - Inference Rules

\rightarrow_{\square} rule
if $\left(C_{1} \sqcap C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq L_{G}(a)$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{C_{1}, C_{2}\right\}$ and otherwise is the same as L_{G}.
\rightarrow b rule
if $\left(C_{1} \sqcup C_{2}\right) \in L_{G}(a)$ and $\left\{C_{1}, C_{2}\right\} \cap L_{G}(a)=\emptyset$ for some $a \in V_{G}$.
then $S^{\prime}=S \cup\left\{G_{1}, G_{2}\right\} \backslash\{G\}$, where $G_{(1 \mid 2)}=\left(V_{G}, E_{G}, L_{G_{(1 \mid 2)}}\right)$, and $L_{G_{(1 \mid 2)}}(a)=L_{G}(a) \cup\left\{C_{(1 \mid 2)}\right\}$ and otherwise is the same as L_{G}.
$\rightarrow \exists$ rule
if $(\exists R \cdot C) \in L_{G}(a)$ and there exists no $b \in V_{G}$ such that $R \in L_{G}(a, b)$ and at the same time $C \in L_{G}(b)$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G} \cup\{b\}, E_{G} \cup\{\langle a, b\rangle\}, L_{G^{\prime}}\right)$, a $L_{G^{\prime}}(b)=\{C\}, L_{G^{\prime}}(a, b)=\{R\}$ and otherwise is the same as L_{G}.
$\rightarrow \forall$ rule
if $(\forall R \cdot C) \in L_{G}(a)$ and there exists $b \in V_{G}$ such that $R \in L_{G}(a, b)$ and at the same time $C \notin L_{G}(b)$.
then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, and
$L_{G^{\prime}}(b)=L_{G}(b) \cup\{D\}$ and otherwise is the same as L_{G}.

Finiteness

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of $\rightarrow \sqcup$ rule). Number of disjunctions (\sqcup) in \mathcal{K} is finite, i.e. the \sqcup can be applied just finite number of times. number of nodes in V_{G} is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A}.

Finiteness

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of \rightarrow_{\sqcup} rule). Number of disjunctions (\sqcup) in \mathcal{K} is finite, i.e. the \sqcup can be applied just finite number of times.

Finiteness

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of \rightarrow_{\sqcup} rule). Number of disjunctions (\sqcup) in \mathcal{K} is finite, i.e. the \sqcup can be applied just finite number of times.
- for each completion graph $G=\left(V_{G}, E_{G}, L_{G}\right)$ it holds that number of nodes in V_{G} is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A}.

Finiteness

Finiteness of the TA is an easy consequence of the following:

- \mathcal{K} is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of \rightarrow_{\sqcup} rule). Number of disjunctions (\sqcup) in \mathcal{K} is finite, i.e. the \sqcup can be applied just finite number of times.
- for each completion graph $G=\left(V_{G}, E_{G}, L_{G}\right)$ it holds that number of nodes in V_{G} is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A}.
- after application of any of the following rules $\rightarrow_{\square}, \rightarrow_{\exists}, \rightarrow_{\forall}$ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_{i}}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_{i}}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
- Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_{i}}(a)$ held for $a \in V_{G_{i}}$.

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_{i}}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
- Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_{i}}(a)$ held for $a \in V_{G_{i}}$.
- As a result $a^{\mathcal{I}} \in(\exists R \cdot C)^{\mathcal{I}}$.

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_{i}}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
- Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_{i}}(a)$ held for $a \in V_{G_{i}}$.
- As a result $a^{\mathcal{I}} \in(\exists R \cdot C)^{\mathcal{I}}$.
- Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\left\langle a^{\mathcal{I}}, i\right\rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_{i}}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
- Before application of $\rightarrow \exists$ rule, $(\exists R \cdot C) \in L_{G_{i}}(a)$ held for $a \in V_{G_{i}}$.
- As a result $a^{\mathcal{I}} \in(\exists R \cdot C)^{\mathcal{I}}$.
- Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\left\langle a^{\mathcal{I}}, i\right\rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
- By application of \rightarrow_{\exists} a new node b was created in G_{i+1} and the label of edge $\langle a, b\rangle$ and node b has been adjusted.

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_{i}}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
- Before application of $\rightarrow \exists$ rule, $(\exists R \cdot C) \in L_{G_{i}}(a)$ held for $a \in V_{G_{i}}$.
- As a result $a^{\mathcal{I}} \in(\exists R \cdot C)^{\mathcal{I}}$.
- Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\left\langle a^{\mathcal{I}}, i\right\rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
- By application of \rightarrow_{\exists} a new node b was created in G_{i+1} and the label of edge $\langle a, b\rangle$ and node b has been adjusted.
- It is enough to place $i=b^{\mathcal{I}}$ to see that after rule application the domain element (necessary present in any interpretation because of \exists construct semantics) has been "materialized". As a result, the rule is correct.

Soundness

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_{i}}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
- Before application of $\rightarrow \exists$ rule, $(\exists R \cdot C) \in L_{G_{i}}(a)$ held for $a \in V_{G_{i}}$.
- As a result $a^{\mathcal{I}} \in(\exists R \cdot C)^{\mathcal{I}}$.
- Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\left\langle a^{\mathcal{I}}, i\right\rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
- By application of \rightarrow_{\exists} a new node b was created in G_{i+1} and the label of edge $\langle a, b\rangle$ and node b has been adjusted.
- It is enough to place $i=b^{\mathcal{I}}$ to see that after rule application the domain element (necessary present in any interpretation because of \exists construct semantics) has been "materialized". As a result, the rule is correct.
- For other rules, the soundness is shown in a similar way.

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
- the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of G.
- Observe that \mathcal{I} is a model of \mathcal{A}_{G}. A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A}.

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
- the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of G.
- for each atomic concept A let's define $A^{\mathcal{I}}=\left\{a \mid A \in L_{G}(a)\right\}$
- Observe that \mathcal{I} is a model of \mathcal{A}_{G}. A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A}.

Completeness

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
- the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of G.
- for each atomic concept A let's define $A^{\mathcal{I}}=\left\{a \mid A \in L_{G}(a)\right\}$
- for each atomic role R let's define

$$
R^{\mathcal{I}}=\left\{\langle a, b\rangle \mid R \in L_{G}(a, b)\right\}
$$

- Observe that \mathcal{I} is a model of \mathcal{A}_{G}. A backward induction can be used to show that \mathcal{I} must be also a model of each previous step and thus also \mathcal{A}.

A few remarks on TAs

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?

A few remarks on TAs

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
- indeed, for $\mathcal{A L C}$ they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.

A few remarks on TAs

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
- indeed, for $\mathcal{A L C}$ they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?

A few remarks on TAs

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
- indeed, for $\mathcal{A L C}$ they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
- Without proof, let's state that the algorithm is in P-SPACE (between NP and EXP-TIME).

TA Run Example

Example

Let's check consistency of the ontology $\mathcal{K}_{2}=\left(\emptyset, \mathcal{A}_{2}\right)$, where $\mathcal{A}_{2}=\{(\exists$ maDite \cdot Muz $\sqcap \exists$ maDite • Prarodic $\sqcap \neg \exists$ maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).

- Let's transform the concept into NNF: \exists maDite $\cdot \operatorname{Muz} \sqcap$ \exists maDite \cdot Prarodic $\sqcap \forall$ maDite $\cdot(\neg$ Muz $\sqcup \neg$ Prarodic $)$

```
"JAN"
```


TA Run Example

Example

Let's check consistency of the ontology $\mathcal{K}_{2}=\left(\emptyset, \mathcal{A}_{2}\right)$, where $\mathcal{A}_{2}=\{(\exists$ maDite \cdot Muz $\sqcap \exists$ maDite • Prarodic $\sqcap \neg \exists$ maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).

- Let's transform the concept into NNF: \exists maDite $\cdot \operatorname{Muz} \sqcap$ \exists maDite \cdot Prarodic $\sqcap \forall$ maDite $\cdot(\neg$ Muz $\sqcup \neg$ Prarodic)
- Initial state G_{0} of the TA is

```
"JAN"
((\forall maDite-(\neghuz ப ᄀPrarodic)) п (\exists maDite-Prarodic) п (\exists maDite -Muz))
```


TA Run Example (2)

Example

- Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows:

TA Run Example (2)

Example

- Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4, evolves as follows:
- $\left\{G_{0}\right\} \xrightarrow{\text { п-rule }}\left\{G_{1}\right\} \xrightarrow{\exists \text {-rule }}\left\{G_{2}\right\} \xrightarrow{\exists-\text { rule }}\left\{G_{3}\right\} \xrightarrow{\forall \text {-rule }}\left\{G_{4}\right\}$, where G_{4} is

TA Run Example (3)

Example

- By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.

aboratory
stner
$74 / 158$

TA Run Example (3)

Example

- By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.
- Now, we have to apply the \sqcup-rule to the concept \neg Muz $\sqcup \neg$ Rodic either in the label of node " 0 ", or in the label of node " 1 ". Its application e.g. to node " 1 " we obtain the state $\left\{G_{5}, G_{6}\right\}$ (G_{5} left, G_{6} right)

TA Run Example (4)

Example

- We see that G_{5} contains a direct clash in node " 1 ". The only other option is to go through the graph G_{6}. By application of \sqcup-rule we obtain the state $\left\{G_{5}, G_{7}, G_{8}\right\}$, where G_{7} (left), G_{8} (right) are derived from G_{6} :

TA Run Example (4)

Example

- We see that G_{5} contains a direct clash in node " 1 ". The only other option is to go through the graph G_{6}. By application of \sqcup-rule we obtain the state $\left\{G_{5}, G_{7}, G_{8}\right\}$, where G_{7} (left), G_{8} (right) are derived from G_{6} :

- G_{7} is complete and without direct clash.

TA Run Example (5)

Example

... A canonical model \mathcal{I}_{2} can be created from G_{7}. Is it the only model of \mathcal{K}_{2} ?

- $\Delta^{\mathcal{I}_{2}}=\left\{J a n, i_{1}, i_{2}\right\}$,

TA Run Example (5)

Example

... A canonical model \mathcal{I}_{2} can be created from G_{7}. Is it the only model of \mathcal{K}_{2} ?

- $\Delta^{\mathcal{I}_{2}}=\left\{J a n, i_{1}, i_{2}\right\}$,
- maDite ${ }^{\mathcal{I}_{2}}=\left\{\left\langle\right.\right.$ Jan, $\left.i_{1}\right\rangle,\left\langle\right.$ Jan, $\left.\left.i_{2}\right\rangle\right\}$,

TA Run Example (5)

Example

... A canonical model \mathcal{I}_{2} can be created from G_{7}. Is it the only model of \mathcal{K}_{2} ?

- $\Delta^{\mathcal{I}_{2}}=\left\{J a n, i_{1}, i_{2}\right\}$,
- maDite ${ }^{\mathcal{I}_{2}}=\left\{\left\langle\right.\right.$ Jan, $\left.i_{1}\right\rangle,\left\langle\right.$ Jan, $\left.\left.i_{2}\right\rangle\right\}$,
- Prarodic ${ }^{\mathcal{I}_{2}}=\left\{i_{1}\right\}$,

TA Run Example (5)

Example

... A canonical model \mathcal{I}_{2} can be created from G_{7}. Is it the only model of \mathcal{K}_{2} ?

- $\Delta^{\mathcal{I}_{2}}=\left\{J a n, i_{1}, i_{2}\right\}$,
- maDite ${ }^{\mathcal{I}_{2}}=\left\{\left\langle\right.\right.$ Jan, $\left.i_{1}\right\rangle,\left\langle\right.$ Jan, $\left.\left.i_{2}\right\rangle\right\}$,
- Prarodic ${ }^{\mathcal{I}_{2}}=\left\{i_{1}\right\}$,
- $M u z^{\mathcal{I}_{2}}=\left\{i_{2}\right\}$,

TA Run Example (5)

Example

... A canonical model \mathcal{I}_{2} can be created from G_{7}. Is it the only model of \mathcal{K}_{2} ?

- $\Delta^{\mathcal{I}_{2}}=\left\{J a n, i_{1}, i_{2}\right\}$,
- maDite ${ }^{\mathcal{I}_{2}}=\left\{\left\langle\right.\right.$ Jan, $\left.i_{1}\right\rangle,\left\langle\right.$ Jan, $\left.\left.i_{2}\right\rangle\right\}$,
- Prarodic ${ }^{\mathcal{I}_{2}}=\left\{i_{1}\right\}$,
- $M u z^{\mathcal{I}_{2}}=\left\{i_{2}\right\}$,
- "JAN" ${ }^{\prime \prime} I_{2}=J a n, " 0 " I_{2}=i_{2}, " 1 " I_{2}=i_{1}$,

General Inclusions

We have presented the tableau algorithm for consistency checking of $\mathcal{K}=(\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

- consider \mathcal{T} containing axioms of the form $C_{i} \sqsubseteq D_{i}$ for $1 \leq i \leq n$. Such \mathcal{T} can be transformed into a single axiom

$$
\top \sqsubseteq \top_{c}
$$

General Inclusions

We have presented the tableau algorithm for consistency checking of $\mathcal{K}=(\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

- consider \mathcal{T} containing axioms of the form $C_{i} \sqsubseteq D_{i}$ for $1 \leq i \leq n$. Such \mathcal{T} can be transformed into a single axiom

$$
\begin{gathered}
\top \sqsubseteq \top_{C} \\
\text { where } \top^{\top} \text { denotes a concept }\left(\neg C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(\neg C_{n} \sqcup D_{n}\right)
\end{gathered}
$$

General Inclusions

We have presented the tableau algorithm for consistency checking of $\mathcal{K}=(\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

- consider \mathcal{T} containing axioms of the form $C_{i} \sqsubseteq D_{i}$ for $1 \leq i \leq n$. Such \mathcal{T} can be transformed into a single axiom

$$
T \sqsubseteq T_{C}
$$

where T^{C} denotes a concept $\left(\neg C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(\neg C_{n} \sqcup D_{n}\right)$

- for each model \mathcal{I} of the theory \mathcal{K}, each element of $\Delta^{\mathcal{I}}$ must belong to the interpretation of the concept at the right-hand side. How to achieve this?

General Inclusions (2)

What about this ?
$\rightarrow \sqsubseteq$ rule

General Inclusions (2)

What about this ?
$\rightarrow \sqsubseteq$ rule

$$
\text { if } T_{C} \notin L_{G}(a) \text { for some } a \in V_{G} \text {. }
$$

$L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{T_{C}\right\}$ and otherwise is the same as L_{G}

Consider $\mathcal{K}_{3}=(\{M u z \sqsubseteq \exists$ maRodice $\cdot M u z\}$$\neg$ Muz $\sqcup \exists$ maRodice \cdot Muz. Let's use the introc uced TA enriched by $\rightarrow \sqsubset$ rule. Repeating several times the application of rules $\rightarrow \sqsubset$ $\rightarrow_{\sqcup}, \rightarrow_{\exists}$ to G_{7} (that is not complete w.r.t. to $\rightarrow_{\sqsubseteq}$ rule) from the
previous example we get

General Inclusions (2)

What about this ?
$\rightarrow \sqsubseteq$ rule

$$
\text { if } \top_{C} \notin L_{G}(a) \text { for some } a \in V_{G} .
$$

$$
\text { then } S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\} \text {, where } G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right) \text {, a }
$$

$$
L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{\top_{C}\right\} \text { and otherwise is the same as } L_{G} .
$$

previous example we get

General Inclusions (2)

What about this ?
$\rightarrow \sqsubseteq$ rule

$$
\text { if } T_{C} \notin L_{G}(a) \text { for some } a \in V_{G} .
$$

then $S^{\prime}=S \cup\left\{G^{\prime}\right\} \backslash\{G\}$, where $G^{\prime}=\left(V_{G}, E_{G}, L_{G^{\prime}}\right)$, a $L_{G^{\prime}}(a)=L_{G}(a) \cup\left\{T_{c}\right\}$ and otherwise is the same as L_{G}.

Example

Consider $\mathcal{K}_{3}=\left(\{M u z \sqsubseteq \exists\right.$ maRodice $\left.\cdot M u z\}, \mathcal{A}_{2}\right)$. Then \top_{C} is $\neg M u z \sqcup \exists m a R o d i c e \cdot M u z$. Let's use the introduced TA enriched by $\rightarrow \sqsubseteq$ rule. Repeating several times the application of rules $\rightarrow \sqsubseteq$, $\rightarrow_{\sqcup}, \rightarrow_{\exists}$ to G_{7} (that is not complete w.r.t. to $\rightarrow_{\sqsubseteq}$ rule) from the previous example we get...

General Inclusions（3）

Example

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph. The mechanism that enforces finite representation is called blocking. - Blocking ensures that inference rules will be applicable until

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called blocking.

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called blocking.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called blocking.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For $\mathcal{A L C}$ it can be shown that so called subset blocking is enough:

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called blocking.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For $\mathcal{A L C}$ it can be shown that so called subset blocking is enough:
- In completion graph G a node \times (not present in ABOX \mathcal{A}) is blocked by node y, if there is an oriented path from y to x and $L_{G}(x) \subseteq L_{G}(y)$.

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called blocking.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For $\mathcal{A L C}$ it can be shown that so called subset blocking is enough:
- In completion graph G a node \times (not present in ABOX \mathcal{A}) is blocked by node y, if there is an oriented path from y to x and $L_{G}(x) \subseteq L_{G}(y)$.
- All inference rules are applicable until the node a in their definition is not blocked by another node.

Blocking in TA (2)

- In the previous example, the blocking ensures that node " 2 " is blocked by node " 0 " and no other expansion occurs. Which model corresponds to such graph ?
- Introduced TA with subset blocking is sound, complete
and finite decision procedure for $\mathcal{A L C}$.

Blocking in TA (2)

- In the previous example, the blocking ensures that node " 2 " is blocked by node " 0 " and no other expansion occurs. Which model corresponds to such graph ?
- Introduced TA with subset blocking is sound, complete and finite decision procedure for $\mathcal{A L C}$.

Let's play ...

- http://krizik.felk.cvut.cz/km/dl/index.html

[^0]: ${ }^{5}$ Next in the text the notation is often shortened as $L_{G}(x, y)$ instead of $L_{G}(\langle x, y\rangle)$.

[^1]: ${ }^{5}$ Next in the text the notation is often shortened as $L_{G}(x, y)$ instead of $L_{G}(\langle x, y\rangle)$.

[^2]: ${ }^{5}$ Next in the text the notation is often shortened as $L_{G}(x, y)$ instead of $L_{G}(\langle x, y\rangle)$.

[^3]: ${ }^{5}$ Next in the text the notation is often shortened as $L_{G}(x, y)$ instead of $L_{G}(\langle x, y\rangle)$.

