
OPPA European Social Fund
Prague & EU: We invest in your future.

Inference in Description Logics

Petr Křemen
petr.kremen@fel.cvut.cz

FEL ČVUT

54 / 158

Our plan

Inference Problems

Inference Algorithms
Tableau Algorithm for ALC

55 / 158

Inference Problems

56 / 158

Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC.
Now, let’s look on automated reasoning. Having a ALC theory
K = (T ,A). For TBOX T and concepts C , D, we want to decide
whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C subsumes concept D, i.e. T |= D v C ?

(equivalence) two concepts C and D are equivalent, i.e.
T |= C ≡ D ?

(disjoint) two concepts C and D are disjoint, i.e.
T |= C u D v ⊥ ?

All these tasks can be reduced to unsatisfiability
checking of a single concept ...

57 / 158

Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC.
Now, let’s look on automated reasoning. Having a ALC theory
K = (T ,A). For TBOX T and concepts C , D, we want to decide
whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C subsumes concept D, i.e. T |= D v C ?

(equivalence) two concepts C and D are equivalent, i.e.
T |= C ≡ D ?

(disjoint) two concepts C and D are disjoint, i.e.
T |= C u D v ⊥ ?

All these tasks can be reduced to unsatisfiability
checking of a single concept ...

57 / 158

Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC.
Now, let’s look on automated reasoning. Having a ALC theory
K = (T ,A). For TBOX T and concepts C , D, we want to decide
whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C subsumes concept D, i.e. T |= D v C ?

(equivalence) two concepts C and D are equivalent, i.e.
T |= C ≡ D ?

(disjoint) two concepts C and D are disjoint, i.e.
T |= C u D v ⊥ ?

All these tasks can be reduced to unsatisfiability
checking of a single concept ...

57 / 158

Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC.
Now, let’s look on automated reasoning. Having a ALC theory
K = (T ,A). For TBOX T and concepts C , D, we want to decide
whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C subsumes concept D, i.e. T |= D v C ?

(equivalence) two concepts C and D are equivalent, i.e.
T |= C ≡ D ?

(disjoint) two concepts C and D are disjoint, i.e.
T |= C u D v ⊥ ?

All these tasks can be reduced to unsatisfiability
checking of a single concept ...

57 / 158

Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC.
Now, let’s look on automated reasoning. Having a ALC theory
K = (T ,A). For TBOX T and concepts C , D, we want to decide
whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C subsumes concept D, i.e. T |= D v C ?

(equivalence) two concepts C and D are equivalent, i.e.
T |= C ≡ D ?

(disjoint) two concepts C and D are disjoint, i.e.
T |= C u D v ⊥ ?

All these tasks can be reduced to unsatisfiability
checking of a single concept ...

57 / 158

Reduction to Concept Unsatisfiability – Example

Example

These reductions are straighforward – let’s show, how to reduce
subsumption checking to unsatisfiability checking. Reduction of
other inference problems to unsatisfiability is analogous.

(T |= C v D) iff

(∀I)(I |= T implies I |= C v D) iff

(∀I)(I |= T implies CI ⊆ DI) iff

(∀I)(I |= T implies CI ∩ (∆I \ DI) ⊆ ∅ iff

(∀I)(I |= T implies I |= C u ¬D v ⊥ iff

(T |= C u ¬D v ⊥)

58 / 158

Inference Problems for ABOX

... for ABOX A, axiom α, concept C , role R and
individuals a,a0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if
K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a, a0)?

(instance retrieval) find all individuals a1, for which
T ∪ A |= C (a1).

realization find the most specific concept C from a set of
concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?

59 / 158

Inference Problems for ABOX

... for ABOX A, axiom α, concept C , role R and
individuals a,a0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if
K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a, a0)?

(instance retrieval) find all individuals a1, for which
T ∪ A |= C (a1).

realization find the most specific concept C from a set of
concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?

59 / 158

Inference Problems for ABOX

... for ABOX A, axiom α, concept C , role R and
individuals a,a0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if
K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a, a0)?

(instance retrieval) find all individuals a1, for which
T ∪ A |= C (a1).

realization find the most specific concept C from a set of
concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?

59 / 158

Inference Problems for ABOX

... for ABOX A, axiom α, concept C , role R and
individuals a,a0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if
K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a, a0)?

(instance retrieval) find all individuals a1, for which
T ∪ A |= C (a1).

realization find the most specific concept C from a set of
concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?

59 / 158

Inference Problems for ABOX

... for ABOX A, axiom α, concept C , role R and
individuals a,a0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if
K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a, a0)?

(instance retrieval) find all individuals a1, for which
T ∪ A |= C (a1).

realization find the most specific concept C from a set of
concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?

59 / 158

Inference Problems for ABOX

... for ABOX A, axiom α, concept C , role R and
individuals a,a0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if
K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a, a0)?

(instance retrieval) find all individuals a1, for which
T ∪ A |= C (a1).

realization find the most specific concept C from a set of
concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?

59 / 158

Inference Problems for ABOX

... for ABOX A, axiom α, concept C , role R and
individuals a,a0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if
K is consistent).

(instance checking) T ∪ A |= C (a)?

(role checking) T ∪ A |= R(a, a0)?

(instance retrieval) find all individuals a1, for which
T ∪ A |= C (a1).

realization find the most specific concept C from a set of
concepts, such that T ∪ A |= C (a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?

59 / 158

Inference Algorithms

60 / 158

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some
simple DLs without full negation, e.g. ALN ,
see [BCM+03].

Tableaux Algorithms represent the State of Art for complex DLs –
sound, complete, finite, see [HS03], [HS01],
[BCM+03].

other ... – e.g. resolution-based [Hab06], transformation to
finite automata [BCM+03], etc.

We will introduce tableau algorithms.

61 / 158

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some
simple DLs without full negation, e.g. ALN ,
see [BCM+03].

Tableaux Algorithms represent the State of Art for complex DLs –
sound, complete, finite, see [HS03], [HS01],
[BCM+03].

other ... – e.g. resolution-based [Hab06], transformation to
finite automata [BCM+03], etc.

We will introduce tableau algorithms.

61 / 158

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some
simple DLs without full negation, e.g. ALN ,
see [BCM+03].

Tableaux Algorithms represent the State of Art for complex DLs –
sound, complete, finite, see [HS03], [HS01],
[BCM+03].

other ... – e.g. resolution-based [Hab06], transformation to
finite automata [BCM+03], etc.

We will introduce tableau algorithms.

61 / 158

Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some
simple DLs without full negation, e.g. ALN ,
see [BCM+03].

Tableaux Algorithms represent the State of Art for complex DLs –
sound, complete, finite, see [HS03], [HS01],
[BCM+03].

other ... – e.g. resolution-based [Hab06], transformation to
finite automata [BCM+03], etc.

We will introduce tableau algorithms.

61 / 158

Tableaux Algorithms

Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL – they were known for FOL as well.

Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX T is proven if we succeed in constructing a
model of T ∪ A.”

Each TA can be seen as a production system :

state of TA (∼ data base) is made up by a set of completion
graphs (see next slide),
inference rules (∼ production rules) implement semantics of
particular constructs of the given language, e.g. ∃,u, etc. and
serve to modify the completion graphs according to
choosen strategy for rule application

62 / 158

Tableaux Algorithms

Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL – they were known for FOL as well.

Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX T is proven if we succeed in constructing a
model of T ∪ A.”

Each TA can be seen as a production system :

state of TA (∼ data base) is made up by a set of completion
graphs (see next slide),
inference rules (∼ production rules) implement semantics of
particular constructs of the given language, e.g. ∃,u, etc. and
serve to modify the completion graphs according to
choosen strategy for rule application

62 / 158

Tableaux Algorithms

Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL – they were known for FOL as well.

Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX T is proven if we succeed in constructing a
model of T ∪ A.”

Each TA can be seen as a production system :

state of TA (∼ data base) is made up by a set of completion
graphs (see next slide),
inference rules (∼ production rules) implement semantics of
particular constructs of the given language, e.g. ∃,u, etc. and
serve to modify the completion graphs according to
choosen strategy for rule application

62 / 158

Tableaux Algorithms

Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL – they were known for FOL as well.

Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX T is proven if we succeed in constructing a
model of T ∪ A.”

Each TA can be seen as a production system :

state of TA (∼ data base) is made up by a set of completion
graphs (see next slide),
inference rules (∼ production rules) implement semantics of
particular constructs of the given language, e.g. ∃,u, etc. and
serve to modify the completion graphs according to
choosen strategy for rule application

62 / 158

Tableaux Algorithms

Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL – they were known for FOL as well.

Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX T is proven if we succeed in constructing a
model of T ∪ A.”

Each TA can be seen as a production system :

state of TA (∼ data base) is made up by a set of completion
graphs (see next slide),
inference rules (∼ production rules) implement semantics of
particular constructs of the given language, e.g. ∃,u, etc. and
serve to modify the completion graphs according to
choosen strategy for rule application

62 / 158

Tableaux Algorithms

Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL – they were known for FOL as well.

Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX T is proven if we succeed in constructing a
model of T ∪ A.”

Each TA can be seen as a production system :

state of TA (∼ data base) is made up by a set of completion
graphs (see next slide),
inference rules (∼ production rules) implement semantics of
particular constructs of the given language, e.g. ∃,u, etc. and
serve to modify the completion graphs according to
choosen strategy for rule application

62 / 158

Completion Graphs

completion graph is a labeled oriented graph G = (VG ,EG , LG)),
where each node x ∈ VG is labeled with a set LG (x)
of concepts and each edge 〈x , y〉 ∈ EG is labeled
with a set of edges LG (〈x , y〉)5

direct clash occurs in a completion graph G = (VG ,EG , LG)), if
{A,¬A} ⊆ LG (x), or ⊥ ∈ LG (x), for some atomic
concept A and a node x ∈ VG

complete completion graph is a completion graph
G = (VG ,EG , LG)), to which no completion rule
from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs
known from graph theory.

5Next in the text the notation is often shortened as LG (x , y) instead of
LG (〈x , y〉).

63 / 158

Completion Graphs

completion graph is a labeled oriented graph G = (VG ,EG , LG)),
where each node x ∈ VG is labeled with a set LG (x)
of concepts and each edge 〈x , y〉 ∈ EG is labeled
with a set of edges LG (〈x , y〉)5

direct clash occurs in a completion graph G = (VG ,EG , LG)), if
{A,¬A} ⊆ LG (x), or ⊥ ∈ LG (x), for some atomic
concept A and a node x ∈ VG

complete completion graph is a completion graph
G = (VG ,EG , LG)), to which no completion rule
from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs
known from graph theory.

5Next in the text the notation is often shortened as LG (x , y) instead of
LG (〈x , y〉).

63 / 158

Completion Graphs

completion graph is a labeled oriented graph G = (VG ,EG , LG)),
where each node x ∈ VG is labeled with a set LG (x)
of concepts and each edge 〈x , y〉 ∈ EG is labeled
with a set of edges LG (〈x , y〉)5

direct clash occurs in a completion graph G = (VG ,EG , LG)), if
{A,¬A} ⊆ LG (x), or ⊥ ∈ LG (x), for some atomic
concept A and a node x ∈ VG

complete completion graph is a completion graph
G = (VG ,EG , LG)), to which no completion rule
from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs
known from graph theory.

5Next in the text the notation is often shortened as LG (x , y) instead of
LG (〈x , y〉).

63 / 158

Completion Graphs

completion graph is a labeled oriented graph G = (VG ,EG , LG)),
where each node x ∈ VG is labeled with a set LG (x)
of concepts and each edge 〈x , y〉 ∈ EG is labeled
with a set of edges LG (〈x , y〉)5

direct clash occurs in a completion graph G = (VG ,EG , LG)), if
{A,¬A} ⊆ LG (x), or ⊥ ∈ LG (x), for some atomic
concept A and a node x ∈ VG

complete completion graph is a completion graph
G = (VG ,EG , LG)), to which no completion rule
from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs
known from graph theory.

5Next in the text the notation is often shortened as LG (x , y) instead of
LG (〈x , y〉).

63 / 158

Completion Graphs (2)

We define also I |= G iff I |= AG , where AG is an
ABOX constructed from G , as follows

C (a) for each node a ∈ VG and each concept
C ∈ LG (a) and
R(a, b) for each edge 〈a, b〉 ∈ EG and each role
R ∈ LG (a, b) and

64 / 158

Completion Graphs (2)

We define also I |= G iff I |= AG , where AG is an
ABOX constructed from G , as follows

C (a) for each node a ∈ VG and each concept
C ∈ LG (a) and
R(a, b) for each edge 〈a, b〉 ∈ EG and each role
R ∈ LG (a, b) and

64 / 158

Completion Graphs (2)

We define also I |= G iff I |= AG , where AG is an
ABOX constructed from G , as follows

C (a) for each node a ∈ VG and each concept
C ∈ LG (a) and
R(a, b) for each edge 〈a, b〉 ∈ EG and each role
R ∈ LG (a, b) and

64 / 158

Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity
that T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation ¬ at most just before atomic
concepts, e.g. ¬(A u B) is equivalent (de Morgan rules) as
¬A t ¬B).

1 (Initialization) Initial state of the algorithm is S0 = {G0},
where G0 = (VG0 ,EG0 , LG0) is made up from A as follows:

for each C (a) put a ∈ VG0 and C ∈ LG0 (a)
for each R(a, b) put 〈a, b〉 ∈ EG0 and R ∈ LG0 (a, b)
Sets VG0 ,EG0 , LG0 are smallest possible with these properties.

65 / 158

Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity
that T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation ¬ at most just before atomic
concepts, e.g. ¬(A u B) is equivalent (de Morgan rules) as
¬A t ¬B).

1 (Initialization) Initial state of the algorithm is S0 = {G0},
where G0 = (VG0 ,EG0 , LG0) is made up from A as follows:

for each C (a) put a ∈ VG0 and C ∈ LG0 (a)
for each R(a, b) put 〈a, b〉 ∈ EG0 and R ∈ LG0 (a, b)
Sets VG0 ,EG0 , LG0 are smallest possible with these properties.

65 / 158

Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity
that T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation ¬ at most just before atomic
concepts, e.g. ¬(A u B) is equivalent (de Morgan rules) as
¬A t ¬B).

1 (Initialization) Initial state of the algorithm is S0 = {G0},
where G0 = (VG0 ,EG0 , LG0) is made up from A as follows:

for each C (a) put a ∈ VG0 and C ∈ LG0 (a)
for each R(a, b) put 〈a, b〉 ∈ EG0 and R ∈ LG0 (a, b)
Sets VG0 ,EG0 , LG0 are smallest possible with these properties.

65 / 158

Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity
that T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation ¬ at most just before atomic
concepts, e.g. ¬(A u B) is equivalent (de Morgan rules) as
¬A t ¬B).

1 (Initialization) Initial state of the algorithm is S0 = {G0},
where G0 = (VG0 ,EG0 , LG0) is made up from A as follows:

for each C (a) put a ∈ VG0 and C ∈ LG0 (a)
for each R(a, b) put 〈a, b〉 ∈ EG0 and R ∈ LG0 (a, b)
Sets VG0 ,EG0 , LG0 are smallest possible with these properties.

65 / 158

Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity
that T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation ¬ at most just before atomic
concepts, e.g. ¬(A u B) is equivalent (de Morgan rules) as
¬A t ¬B).

1 (Initialization) Initial state of the algorithm is S0 = {G0},
where G0 = (VG0 ,EG0 , LG0) is made up from A as follows:

for each C (a) put a ∈ VG0 and C ∈ LG0 (a)
for each R(a, b) put 〈a, b〉 ∈ EG0 and R ∈ LG0 (a, b)
Sets VG0 ,EG0 , LG0 are smallest possible with these properties.

65 / 158

Tableau Algorithm for ALC with empty TBOX

let’s have K = (T ,A). For a moment, consider for simplicity
that T = ∅.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation ¬ at most just before atomic
concepts, e.g. ¬(A u B) is equivalent (de Morgan rules) as
¬A t ¬B).

1 (Initialization) Initial state of the algorithm is S0 = {G0},
where G0 = (VG0 ,EG0 , LG0) is made up from A as follows:

for each C (a) put a ∈ VG0 and C ∈ LG0 (a)
for each R(a, b) put 〈a, b〉 ∈ EG0 and R ∈ LG0 (a, b)
Sets VG0 ,EG0 , LG0 are smallest possible with these properties.

65 / 158

Tableau algorithm for ALC without TBOX (2)

. . .

2 (Consistency Check) Current algorithm state is S . If each
G ∈ S contains a direct clash, terminate with result
“INCONSISTENT”

3 (Model Check) Let’s choose one G ∈ S that doesn’t contain a
direct clash. If G is complete w.r.t. rules shown next, the
algorithm terminates with result “CONSISTENT”

4 (Rule Application) Find a rule that is applicable to G and
apply it. As a result, we obtain from the state S a new state
S ′. Jump to step 2.

66 / 158

Tableau algorithm for ALC without TBOX (2)

. . .

2 (Consistency Check) Current algorithm state is S . If each
G ∈ S contains a direct clash, terminate with result
“INCONSISTENT”

3 (Model Check) Let’s choose one G ∈ S that doesn’t contain a
direct clash. If G is complete w.r.t. rules shown next, the
algorithm terminates with result “CONSISTENT”

4 (Rule Application) Find a rule that is applicable to G and
apply it. As a result, we obtain from the state S a new state
S ′. Jump to step 2.

66 / 158

Tableau algorithm for ALC without TBOX (2)

. . .

2 (Consistency Check) Current algorithm state is S . If each
G ∈ S contains a direct clash, terminate with result
“INCONSISTENT”

3 (Model Check) Let’s choose one G ∈ S that doesn’t contain a
direct clash. If G is complete w.r.t. rules shown next, the
algorithm terminates with result “CONSISTENT”

4 (Rule Application) Find a rule that is applicable to G and
apply it. As a result, we obtain from the state S a new state
S ′. Jump to step 2.

66 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

TA for ALC without TBOX – Inference Rules

→u rule

if (C1 u C2) ∈ LG (a) and {C1,C2} * LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (a) = LG (a) ∪ {C1,C2} and otherwise is the same as LG .

→t rule

if (C1 t C2) ∈ LG (a) and {C1,C2} ∩ LG (a) = ∅ for some a ∈ VG .

then S ′ = S ∪ {G1,G2} \ {G}, where G(1|2) = (VG ,EG , LG(1|2)
), and

LG(1|2)
(a) = LG (a) ∪ {C(1|2)} and otherwise is the same as LG .

→∃ rule

if (∃R · C) ∈ LG (a) and there exists no b ∈ VG such that R ∈ LG (a, b) and

at the same time C ∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ∪ {b},EG ∪ {〈a, b〉}, LG ′), a

LG ′ (b) = {C}, LG ′ (a, b) = {R} and otherwise is the same as LG .

→∀ rule

if (∀R · C) ∈ LG (a) and there exists b ∈ VG such that R ∈ LG (a, b) and at

the same time C /∈ LG (b).

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), and

LG ′ (b) = LG (b) ∪ {D} and otherwise is the same as LG .

67 / 158

Finiteness

Finiteness of the TA is an easy consequence of the following:

K is finite

in each step, TA state can be enriched at most by one
completion graph (only by application of →t rule). Number of
disjunctions (t) in K is finite, i.e. the t can be applied just
finite number of times.

for each completion graph G = (VG ,EG , LG) it holds that
number of nodes in VG is less or equal to the number of
individuals in A plus number of existential quantifiers in A.

after application of any of the following rules →u,→∃ ,→∀
graph G is either enriched with a new node, new edge, or
labeling of an existing node/edge is enriched. All these
operations are finite.

68 / 158

Finiteness

Finiteness of the TA is an easy consequence of the following:

K is finite

in each step, TA state can be enriched at most by one
completion graph (only by application of →t rule). Number of
disjunctions (t) in K is finite, i.e. the t can be applied just
finite number of times.

for each completion graph G = (VG ,EG , LG) it holds that
number of nodes in VG is less or equal to the number of
individuals in A plus number of existential quantifiers in A.

after application of any of the following rules →u,→∃ ,→∀
graph G is either enriched with a new node, new edge, or
labeling of an existing node/edge is enriched. All these
operations are finite.

68 / 158

Finiteness

Finiteness of the TA is an easy consequence of the following:

K is finite

in each step, TA state can be enriched at most by one
completion graph (only by application of →t rule). Number of
disjunctions (t) in K is finite, i.e. the t can be applied just
finite number of times.

for each completion graph G = (VG ,EG , LG) it holds that
number of nodes in VG is less or equal to the number of
individuals in A plus number of existential quantifiers in A.

after application of any of the following rules →u,→∃ ,→∀
graph G is either enriched with a new node, new edge, or
labeling of an existing node/edge is enriched. All these
operations are finite.

68 / 158

Finiteness

Finiteness of the TA is an easy consequence of the following:

K is finite

in each step, TA state can be enriched at most by one
completion graph (only by application of →t rule). Number of
disjunctions (t) in K is finite, i.e. the t can be applied just
finite number of times.

for each completion graph G = (VG ,EG , LG) it holds that
number of nodes in VG is less or equal to the number of
individuals in A plus number of existential quantifiers in A.

after application of any of the following rules →u,→∃ ,→∀
graph G is either enriched with a new node, new edge, or
labeling of an existing node/edge is enriched. All these
operations are finite.

68 / 158

Soundness

Soundness of the TA can be verified as follows. For any
I |= AGi

, it must hold that I |= AGi+1
. We have to show that

application of each rule preserves consistency. As an example,
let’s take the →∃ rule:

Before application of →∃ rule, (∃R · C) ∈ LGi (a) held for
a ∈ VGi .
As a result aI ∈ (∃R · C)I .
Next, i ∈ ∆I must exist such that 〈aI , i〉 ∈ RI and at the
same time i ∈ CI .
By application of →∃ a new node b was created in Gi+1 and
the label of edge 〈a, b〉 and node b has been adjusted.
It is enough to place i = bI to see that after rule application
the domain element (necessary present in any interpretation
because of ∃ construct semantics) has been “materialized”. As
a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

69 / 158

Soundness

Soundness of the TA can be verified as follows. For any
I |= AGi

, it must hold that I |= AGi+1
. We have to show that

application of each rule preserves consistency. As an example,
let’s take the →∃ rule:

Before application of →∃ rule, (∃R · C) ∈ LGi (a) held for
a ∈ VGi .
As a result aI ∈ (∃R · C)I .
Next, i ∈ ∆I must exist such that 〈aI , i〉 ∈ RI and at the
same time i ∈ CI .
By application of →∃ a new node b was created in Gi+1 and
the label of edge 〈a, b〉 and node b has been adjusted.
It is enough to place i = bI to see that after rule application
the domain element (necessary present in any interpretation
because of ∃ construct semantics) has been “materialized”. As
a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

69 / 158

Soundness

Soundness of the TA can be verified as follows. For any
I |= AGi

, it must hold that I |= AGi+1
. We have to show that

application of each rule preserves consistency. As an example,
let’s take the →∃ rule:

Before application of →∃ rule, (∃R · C) ∈ LGi (a) held for
a ∈ VGi .
As a result aI ∈ (∃R · C)I .
Next, i ∈ ∆I must exist such that 〈aI , i〉 ∈ RI and at the
same time i ∈ CI .
By application of →∃ a new node b was created in Gi+1 and
the label of edge 〈a, b〉 and node b has been adjusted.
It is enough to place i = bI to see that after rule application
the domain element (necessary present in any interpretation
because of ∃ construct semantics) has been “materialized”. As
a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

69 / 158

Soundness

Soundness of the TA can be verified as follows. For any
I |= AGi

, it must hold that I |= AGi+1
. We have to show that

application of each rule preserves consistency. As an example,
let’s take the →∃ rule:

Before application of →∃ rule, (∃R · C) ∈ LGi (a) held for
a ∈ VGi .
As a result aI ∈ (∃R · C)I .
Next, i ∈ ∆I must exist such that 〈aI , i〉 ∈ RI and at the
same time i ∈ CI .
By application of →∃ a new node b was created in Gi+1 and
the label of edge 〈a, b〉 and node b has been adjusted.
It is enough to place i = bI to see that after rule application
the domain element (necessary present in any interpretation
because of ∃ construct semantics) has been “materialized”. As
a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

69 / 158

Soundness

Soundness of the TA can be verified as follows. For any
I |= AGi

, it must hold that I |= AGi+1
. We have to show that

application of each rule preserves consistency. As an example,
let’s take the →∃ rule:

Before application of →∃ rule, (∃R · C) ∈ LGi (a) held for
a ∈ VGi .
As a result aI ∈ (∃R · C)I .
Next, i ∈ ∆I must exist such that 〈aI , i〉 ∈ RI and at the
same time i ∈ CI .
By application of →∃ a new node b was created in Gi+1 and
the label of edge 〈a, b〉 and node b has been adjusted.
It is enough to place i = bI to see that after rule application
the domain element (necessary present in any interpretation
because of ∃ construct semantics) has been “materialized”. As
a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

69 / 158

Soundness

Soundness of the TA can be verified as follows. For any
I |= AGi

, it must hold that I |= AGi+1
. We have to show that

application of each rule preserves consistency. As an example,
let’s take the →∃ rule:

Before application of →∃ rule, (∃R · C) ∈ LGi (a) held for
a ∈ VGi .
As a result aI ∈ (∃R · C)I .
Next, i ∈ ∆I must exist such that 〈aI , i〉 ∈ RI and at the
same time i ∈ CI .
By application of →∃ a new node b was created in Gi+1 and
the label of edge 〈a, b〉 and node b has been adjusted.
It is enough to place i = bI to see that after rule application
the domain element (necessary present in any interpretation
because of ∃ construct semantics) has been “materialized”. As
a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

69 / 158

Soundness

Soundness of the TA can be verified as follows. For any
I |= AGi

, it must hold that I |= AGi+1
. We have to show that

application of each rule preserves consistency. As an example,
let’s take the →∃ rule:

Before application of →∃ rule, (∃R · C) ∈ LGi (a) held for
a ∈ VGi .
As a result aI ∈ (∃R · C)I .
Next, i ∈ ∆I must exist such that 〈aI , i〉 ∈ RI and at the
same time i ∈ CI .
By application of →∃ a new node b was created in Gi+1 and
the label of edge 〈a, b〉 and node b has been adjusted.
It is enough to place i = bI to see that after rule application
the domain element (necessary present in any interpretation
because of ∃ construct semantics) has been “materialized”. As
a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

69 / 158

Completeness

To prove completeness of the TA, it is necessary to construct
a model for each complete completion graph G that doesn’t
contain a direct clash. Canonical model I can be constructed
as follows:

the domain ∆I will consist of all nodes of G .
for each atomic concept A let’s define AI = {a | A ∈ LG (a)}
for each atomic role R let’s define
RI = {〈a, b〉 | R ∈ LG (a, b)}

Observe that I is a model of AG . A backward induction can
be used to show that I must be also a model of each previous
step and thus also A.

70 / 158

Completeness

To prove completeness of the TA, it is necessary to construct
a model for each complete completion graph G that doesn’t
contain a direct clash. Canonical model I can be constructed
as follows:

the domain ∆I will consist of all nodes of G .
for each atomic concept A let’s define AI = {a | A ∈ LG (a)}
for each atomic role R let’s define
RI = {〈a, b〉 | R ∈ LG (a, b)}

Observe that I is a model of AG . A backward induction can
be used to show that I must be also a model of each previous
step and thus also A.

70 / 158

Completeness

To prove completeness of the TA, it is necessary to construct
a model for each complete completion graph G that doesn’t
contain a direct clash. Canonical model I can be constructed
as follows:

the domain ∆I will consist of all nodes of G .
for each atomic concept A let’s define AI = {a | A ∈ LG (a)}
for each atomic role R let’s define
RI = {〈a, b〉 | R ∈ LG (a, b)}

Observe that I is a model of AG . A backward induction can
be used to show that I must be also a model of each previous
step and thus also A.

70 / 158

A few remarks on TAs

Why we need completion graphs ? Aren’t ABOXes enough to
maintain the state for TA ?

indeed, for ALC they would be enough. However, for complex
DLs a TA state cannot be stored in an ABOX.

What about complexity of the algorithm ?

Without proof, let’s state that the algorithm is in P-SPACE
(between NP and EXP-TIME).

71 / 158

A few remarks on TAs

Why we need completion graphs ? Aren’t ABOXes enough to
maintain the state for TA ?

indeed, for ALC they would be enough. However, for complex
DLs a TA state cannot be stored in an ABOX.

What about complexity of the algorithm ?

Without proof, let’s state that the algorithm is in P-SPACE
(between NP and EXP-TIME).

71 / 158

A few remarks on TAs

Why we need completion graphs ? Aren’t ABOXes enough to
maintain the state for TA ?

indeed, for ALC they would be enough. However, for complex
DLs a TA state cannot be stored in an ABOX.

What about complexity of the algorithm ?

Without proof, let’s state that the algorithm is in P-SPACE
(between NP and EXP-TIME).

71 / 158

A few remarks on TAs

Why we need completion graphs ? Aren’t ABOXes enough to
maintain the state for TA ?

indeed, for ALC they would be enough. However, for complex
DLs a TA state cannot be stored in an ABOX.

What about complexity of the algorithm ?

Without proof, let’s state that the algorithm is in P-SPACE
(between NP and EXP-TIME).

71 / 158

TA Run Example

Example

Let’s check consistency of the ontology K2 = (∅,A2), where
A2 = {(∃maDite ·Muz u ∃maDite · Prarodic u ¬∃maDite ·
(Muz u Prarodic))(JAN)}).

Let’s transform the concept into NNF: ∃maDite ·Muz u
∃maDite · Prarodic u ∀maDite · (¬Muz t ¬Prarodic)

Initial state G0 of the TA is

72 / 158

TA Run Example

Example

Let’s check consistency of the ontology K2 = (∅,A2), where
A2 = {(∃maDite ·Muz u ∃maDite · Prarodic u ¬∃maDite ·
(Muz u Prarodic))(JAN)}).

Let’s transform the concept into NNF: ∃maDite ·Muz u
∃maDite · Prarodic u ∀maDite · (¬Muz t ¬Prarodic)

Initial state G0 of the TA is

72 / 158

TA Run Example (2)

Example

. . .

Now, four sequences of steps 2,3,4 of the TA are performed.
TA state in step 4, evolves as follows:

{G0}
u-rule−→ {G1}

∃ -rule−→ {G2}
∃ -rule−→ {G3}

∀ -rule−→ {G4}, where
G4 is

73 / 158

TA Run Example (2)

Example

. . .

Now, four sequences of steps 2,3,4 of the TA are performed.
TA state in step 4, evolves as follows:

{G0}
u-rule−→ {G1}

∃ -rule−→ {G2}
∃ -rule−→ {G3}

∀ -rule−→ {G4}, where
G4 is

73 / 158

TA Run Example (3)

Example

. . .

By now, we applied just deterministic rules (we still have just
a single completion graph). At this point no other
deterministic rule is applicable.

Now, we have to apply the t-rule to the concept
¬Muz t¬Rodic either in the label of node “0”, or in the label
of node “1”. Its application e.g. to node “1” we obtain the
state {G5,G6} (G5 left, G6 right)

74 / 158

TA Run Example (3)

Example

. . .

By now, we applied just deterministic rules (we still have just
a single completion graph). At this point no other
deterministic rule is applicable.

Now, we have to apply the t-rule to the concept
¬Muz t¬Rodic either in the label of node “0”, or in the label
of node “1”. Its application e.g. to node “1” we obtain the
state {G5,G6} (G5 left, G6 right)

74 / 158

TA Run Example (4)

Example

. . .

We see that G5 contains a direct clash in node “1”. The only
other option is to go through the graph G6. By application of
t-rule we obtain the state {G5,G7,G8}, where G7 (left), G8

(right) are derived from G6 :

G7 is complete and without direct clash.

75 / 158

TA Run Example (4)

Example

. . .

We see that G5 contains a direct clash in node “1”. The only
other option is to go through the graph G6. By application of
t-rule we obtain the state {G5,G7,G8}, where G7 (left), G8

(right) are derived from G6 :

G7 is complete and without direct clash.

75 / 158

TA Run Example (5)

Example

. . . A canonical model I2 can be created from G7. Is it the only
model of K2 ?

∆I2 = {Jan, i1, i2},
maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},
PrarodicI2 = {i1},
MuzI2 = {i2},
“JAN ′′I2 = Jan, “0′′I2 = i2, “1′′I2 = i1,

76 / 158

TA Run Example (5)

Example

. . . A canonical model I2 can be created from G7. Is it the only
model of K2 ?

∆I2 = {Jan, i1, i2},
maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},
PrarodicI2 = {i1},
MuzI2 = {i2},
“JAN ′′I2 = Jan, “0′′I2 = i2, “1′′I2 = i1,

76 / 158

TA Run Example (5)

Example

. . . A canonical model I2 can be created from G7. Is it the only
model of K2 ?

∆I2 = {Jan, i1, i2},
maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},
PrarodicI2 = {i1},
MuzI2 = {i2},
“JAN ′′I2 = Jan, “0′′I2 = i2, “1′′I2 = i1,

76 / 158

TA Run Example (5)

Example

. . . A canonical model I2 can be created from G7. Is it the only
model of K2 ?

∆I2 = {Jan, i1, i2},
maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},
PrarodicI2 = {i1},
MuzI2 = {i2},
“JAN ′′I2 = Jan, “0′′I2 = i2, “1′′I2 = i1,

76 / 158

TA Run Example (5)

Example

. . . A canonical model I2 can be created from G7. Is it the only
model of K2 ?

∆I2 = {Jan, i1, i2},
maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},
PrarodicI2 = {i1},
MuzI2 = {i2},
“JAN ′′I2 = Jan, “0′′I2 = i2, “1′′I2 = i1,

76 / 158

General Inclusions

We have presented the tableau algorithm for consistency checking
of K = (∅,A). How the situation changes when T 6= ∅ ?

consider T containing axioms of the form Ci v Di for
1 ≤ i ≤ n. Such T can be transformed into a single axiom

> v >C

where >C denotes a concept (¬C1 t D1) u . . . u (¬Cn t Dn)

for each model I of the theory K, each element of ∆I must
belong to the interpretation of the concept at the right-hand
side. How to achieve this ?

77 / 158

General Inclusions

We have presented the tableau algorithm for consistency checking
of K = (∅,A). How the situation changes when T 6= ∅ ?

consider T containing axioms of the form Ci v Di for
1 ≤ i ≤ n. Such T can be transformed into a single axiom

> v >C

where >C denotes a concept (¬C1 t D1) u . . . u (¬Cn t Dn)

for each model I of the theory K, each element of ∆I must
belong to the interpretation of the concept at the right-hand
side. How to achieve this ?

77 / 158

General Inclusions

We have presented the tableau algorithm for consistency checking
of K = (∅,A). How the situation changes when T 6= ∅ ?

consider T containing axioms of the form Ci v Di for
1 ≤ i ≤ n. Such T can be transformed into a single axiom

> v >C

where >C denotes a concept (¬C1 t D1) u . . . u (¬Cn t Dn)

for each model I of the theory K, each element of ∆I must
belong to the interpretation of the concept at the right-hand
side. How to achieve this ?

77 / 158

General Inclusions (2)

What about this ?

→v rule

if >C /∈ LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), a

LG ′ (a) = LG (a) ∪ {>C} and otherwise is the same as LG .

Example

Consider K3 = ({Muz v ∃maRodice ·Muz},A2). Then >C is
¬Muz t ∃maRodice ·Muz . Let’s use the introduced TA enriched
by →v rule. Repeating several times the application of rules →v,
→t, →∃ to G7 (that is not complete w.r.t. to →v rule) from the
previous example we get . . .

78 / 158

General Inclusions (2)

What about this ?

→v rule

if >C /∈ LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), a

LG ′ (a) = LG (a) ∪ {>C} and otherwise is the same as LG .

Example

Consider K3 = ({Muz v ∃maRodice ·Muz},A2). Then >C is
¬Muz t ∃maRodice ·Muz . Let’s use the introduced TA enriched
by →v rule. Repeating several times the application of rules →v,
→t, →∃ to G7 (that is not complete w.r.t. to →v rule) from the
previous example we get . . .

78 / 158

General Inclusions (2)

What about this ?

→v rule

if >C /∈ LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), a

LG ′ (a) = LG (a) ∪ {>C} and otherwise is the same as LG .

Example

Consider K3 = ({Muz v ∃maRodice ·Muz},A2). Then >C is
¬Muz t ∃maRodice ·Muz . Let’s use the introduced TA enriched
by →v rule. Repeating several times the application of rules →v,
→t, →∃ to G7 (that is not complete w.r.t. to →v rule) from the
previous example we get . . .

78 / 158

General Inclusions (2)

What about this ?

→v rule

if >C /∈ LG (a) for some a ∈ VG .

then S ′ = S ∪ {G ′} \ {G}, where G ′ = (VG ,EG , LG ′), a

LG ′ (a) = LG (a) ∪ {>C} and otherwise is the same as LG .

Example

Consider K3 = ({Muz v ∃maRodice ·Muz},A2). Then >C is
¬Muz t ∃maRodice ·Muz . Let’s use the introduced TA enriched
by →v rule. Repeating several times the application of rules →v,
→t, →∃ to G7 (that is not complete w.r.t. to →v rule) from the
previous example we get . . .

78 / 158

General Inclusions (3)

Example

. . . this algorithm doesn’t necessarily terminate /.
79 / 158

Blocking in TA

TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

The mechanism that enforces finite representation is called
blocking.

Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.

For ALC it can be shown that so called subset blocking is
enough:

In completion graph G a node x (not present in ABOX
A) is blocked by node y , if there is an oriented path from
y to x and LG (x) ⊆ LG (y).

All inference rules are applicable until the node a in their
definition is not blocked by another node.

80 / 158

Blocking in TA

TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

The mechanism that enforces finite representation is called
blocking.

Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.

For ALC it can be shown that so called subset blocking is
enough:

In completion graph G a node x (not present in ABOX
A) is blocked by node y , if there is an oriented path from
y to x and LG (x) ⊆ LG (y).

All inference rules are applicable until the node a in their
definition is not blocked by another node.

80 / 158

Blocking in TA

TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

The mechanism that enforces finite representation is called
blocking.

Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.

For ALC it can be shown that so called subset blocking is
enough:

In completion graph G a node x (not present in ABOX
A) is blocked by node y , if there is an oriented path from
y to x and LG (x) ⊆ LG (y).

All inference rules are applicable until the node a in their
definition is not blocked by another node.

80 / 158

Blocking in TA

TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

The mechanism that enforces finite representation is called
blocking.

Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.

For ALC it can be shown that so called subset blocking is
enough:

In completion graph G a node x (not present in ABOX
A) is blocked by node y , if there is an oriented path from
y to x and LG (x) ⊆ LG (y).

All inference rules are applicable until the node a in their
definition is not blocked by another node.

80 / 158

Blocking in TA

TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

The mechanism that enforces finite representation is called
blocking.

Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.

For ALC it can be shown that so called subset blocking is
enough:

In completion graph G a node x (not present in ABOX
A) is blocked by node y , if there is an oriented path from
y to x and LG (x) ⊆ LG (y).

All inference rules are applicable until the node a in their
definition is not blocked by another node.

80 / 158

Blocking in TA

TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

The mechanism that enforces finite representation is called
blocking.

Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.

For ALC it can be shown that so called subset blocking is
enough:

In completion graph G a node x (not present in ABOX
A) is blocked by node y , if there is an oriented path from
y to x and LG (x) ⊆ LG (y).

All inference rules are applicable until the node a in their
definition is not blocked by another node.

80 / 158

Blocking in TA (2)

In the previous example, the blocking ensures that node “2” is
blocked by node “0” and no other expansion occurs. Which
model corresponds to such graph ?

Introduced TA with subset blocking is sound, complete
and finite decision procedure for ALC.

81 / 158

Blocking in TA (2)

In the previous example, the blocking ensures that node “2” is
blocked by node “0” and no other expansion occurs. Which
model corresponds to such graph ?

Introduced TA with subset blocking is sound, complete
and finite decision procedure for ALC.

81 / 158

Let’s play . . .

http://krizik.felk.cvut.cz/km/dl/index.html

82 / 158

OPPA European Social Fund
Prague & EU: We invest in your future.

