

OPPA European Social Fund Prague & EU: We invest in your future.

Inference in Description Logics

Petr Křemen petr.kremen@fel.cvut.cz

FEL ČVUT

Inference Problems

Inference Algorithms Tableau Algorithm for \mathcal{ALC}

Inference Problems

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept *C* subsumes concept *D*, i.e. $\mathcal{T} \models D \sqsubseteq C$

equivalence) two concepts *C* and *D* are *equivalent*, i.e. $\mathcal{T} \models C \equiv D$?

(disjoint) two concepts *C* and *D* are *disjoint*, i.e. $\mathcal{T} \models C \sqcap D \sqsubseteq \bot ?$

All these tasks can be reduced to unsatisfiability checking of a single concept ...

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept *C* subsumes concept *D*, i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts *C* and *D* are *equivalent*, i.e. $\mathcal{T} \models C \equiv D$? (disjoint) two concepts *C* and *D* are *disjoint*, i.e. $\mathcal{T} \models C \sqcap D \sqsubseteq \bot$? All these tasks can be reduced to unsatisfiability checking of a single concept ...

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept *C* subsumes concept *D*, i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts *C* and *D* are *equivalent*, i.e. $\mathcal{T} \models C \equiv D$?

(disjoint) two concepts C and D are *disjoint*, i.e. $\mathcal{T} \models C \sqcap D \sqsubseteq \bot ?$

> All these tasks can be reduced to unsatisfiability checking of a single concept ...

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept *C* subsumes concept *D*, i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts *C* and *D* are *equivalent*, i.e. $\mathcal{T} \models C \equiv D$?

(disjoint) two concepts C and D are *disjoint*, i.e. $\mathcal{T} \models C \sqcap D \sqsubseteq \bot ?$

All these tasks can be reduced to unsatisfiability checking of a single concept ...

・ロット 全部 とうせい きゅう

(unsatisfiability) concept *C* is *unsatisfiable*, i.e. $\mathcal{T} \models C \sqsubseteq \bot$? (subsumption) concept *C* subsumes concept *D*, i.e. $\mathcal{T} \models D \sqsubseteq C$? (equivalence) two concepts *C* and *D* are *equivalent*, i.e. $\mathcal{T} \models C \equiv D$?

(disjoint) two concepts C and D are *disjoint*, i.e. $\mathcal{T} \models C \sqcap D \sqsubseteq \bot ?$

All these tasks can be reduced to unsatisfiability checking of a single concept ...

Example

These reductions are straighforward – let's show, how to reduce subsumption checking to unsatisfiability checking. Reduction of other inference problems to unsatisfiability is analogous.

$(\mathcal{T}\models {\sf C}\sqsubseteq {\sf D})$		iff
$(orall \mathcal{I})(\mathcal{I} \models \mathcal{T} implies$	$\mathcal{I}\models C\sqsubseteq D$)	iff
$(\forall \mathcal{I})(\mathcal{I} \models \mathcal{T} \text{ implies })$	$\mathcal{C}^\mathcal{I} \subseteq D^\mathcal{I})$	iff
$(orall \mathcal{I})(\mathcal{I} \models \mathcal{T} implies$	$\mathcal{C}^\mathcal{I} \cap (\Delta^\mathcal{I} \setminus D^\mathcal{I}) \subseteq \emptyset$	iff
$(orall \mathcal{I})(\mathcal{I} \models \mathcal{T} implies$	$\mathcal{I}\models {\mathcal{C}}\sqcap eg D\sqsubseteq ot$	iff
$(\mathcal{T}\models C\sqcap \neg D\sqsubseteq \bot)$		

... for ABOX A, axiom α , concept C, role R and individuals a, a_0 we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. T (in short i K is consistent).
(instance checking) T ∪ A ⊨ C(a)?
(role checking) T ∪ A ⊨ R(a, a₀)?
(instance retrieval) find all individuals a₁, for which T ∪ A ⊨ C(a₁).

realization find the most specific concept C from a set of concepts, such that $T \cup A \models C(a)$.

All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

59/158

Inference Problems for ABOX

... for ABOX \mathcal{A} , axiom α , concept C, role R and individuals a_1a_0 we want to decide whether (consistency checking) ABOX A is consistent w.r.t. T (in short if \mathcal{K} is consistent).

59/158

Inference Problems for ABOX

... for ABOX \mathcal{A} , axiom α , concept C, role R and individuals a_1a_0 we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$?

59/158

Inference Problems for ABOX

... for ABOX \mathcal{A} , axiom α , concept C, role R and individuals a_1a_0 we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$? (role checking) $\mathcal{T} \cup \mathcal{A} \models R(a, a_0)$?

59/158

... for ABOX \mathcal{A} , axiom α , concept C, role R and individuals a, a_0 we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$? (role checking) $\mathcal{T} \cup \mathcal{A} \models R(a, a_0)$? (instance retrieval) find all individuals a_1 , for which $\mathcal{T} \cup \mathcal{A} \models C(a_1)$.

realization find the most specific concept C from a set of concepts, such that $T \cup A \models C(a)$.

All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

59/158

... for ABOX A, axiom α, concept C, role R and individuals a, a₀ we want to decide whether
(consistency checking) ABOX A is consistent w.r.t. T (in short if K is consistent).
(instance checking) T ∪ A ⊨ C(a)?
(role checking) T ∪ A ⊨ R(a, a₀)?
(instance retrieval) find all individuals a₁, for which T ∪ A ⊨ C(a₁).
realization find the most specific concept C from a set of

concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$.

All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

59/158

... for ABOX \mathcal{A} , axiom α , concept C, role R and individuals a_1a_0 we want to decide whether (consistency checking) ABOX \mathcal{A} is consistent w.r.t. \mathcal{T} (in short if \mathcal{K} is consistent). (instance checking) $\mathcal{T} \cup \mathcal{A} \models C(a)$? (role checking) $\mathcal{T} \cup \mathcal{A} \models R(a, a_0)$? (instance retrieval) find all individuals a_1 , for which $\mathcal{T} \cup \mathcal{A} \models C(a_1).$ realization find the most specific concept C from a set of concepts, such that $\mathcal{T} \cup \mathcal{A} \models C(a)$. All these tasks, as well as concept unsatisfiability checking, can be reduced to consistency checking. Under which condition and how ?

Inference Algorithms

Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite, see [HS03], [HS01], [BCM⁺03].

other ... – e.g. resolution-based [Hab06], transformation to finite automata [BCM⁺03], etc.

Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite, see [HS03], [HS01], [BCM⁺03].

other ... – e.g. resolution-based [Hab06], transformation to finite automata [BCM⁺03], etc.

Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite, see [HS03], [HS01], [BCM⁺03].

other \dots – e.g. resolution-based [Hab06], transformation to finite automata [BCM⁺03], etc.

Tableaux Algorithms represent the State of Art for complex DLs – sound, complete, finite, see [HS03], [HS01], [BCM⁺03].

other \dots – e.g. resolution-based [Hab06], transformation to finite automata [BCM⁺03], etc.

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL – they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX A w.r.t. TBOX T is proven if we succeed in constructing a model of T ∪ A."
- Each TA can be seen as a *production system* :
 - state of TA (~ data base) is made up by a set of completion graphs (see next slide);
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. E, E, etc. and serve to modify the completion graphs according to
 - choosen strategy for rule application

Tableaux Algorithms

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL – they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX A w.r.t. TBOX T is proven if we succeed in constructing a model of T ∪ A."
- Each TA can be seen as a *production system* :
 - state of TA (~ data base) is made up by a set of completion graphs (see next slide),
 - inference rules (--- production rules) implement semantics of particular constructs of the given language, e.g. E₂(i) etc. and serve to modify the completion graphs according to
 - choosen strategy for rule application

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX A w.r.t. TBOX T is proven if we succeed in constructing a model of T ∪ A."
- Each TA can be seen as a *production system* :
 - state of TA (\sim data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to
 - choosen strategy for rule application

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX A w.r.t. TBOX T is proven if we succeed in constructing a model of T ∪ A."
- Each TA can be seen as a *production system* :
 - state of TA (\sim data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to
 - choosen strategy for rule application

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX A w.r.t. TBOX T is proven if we succeed in constructing a model of T ∪ A."
- Each TA can be seen as a *production system* :
 - state of TA (\sim data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to

・ロト ・回ト ・ヨト ・ヨト

• choosen *strategy* for rule application

- Tableaux Algorithms (TAs) serve for checking ABOXu consistency checking w.r.t. an TBOXu. TAs are not new in DL they were known for FOL as well.
- Main idea is simple: "Consistency of the given ABOX A w.r.t. TBOX T is proven if we succeed in constructing a model of T ∪ A."
- Each TA can be seen as a *production system* :
 - state of TA (\sim data base) is made up by a set of completion graphs (see next slide),
 - inference rules (~ production rules) implement semantics of particular constructs of the given language, e.g. ∃, □, etc. and serve to modify the completion graphs according to

• choosen strategy for rule application

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G))$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^5$

direct clash occurs in a completion graph $G = (V_G, E_G, L_G))$, if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept A and a node $x \in V_G$

complete completion graph is a completion graph $G = (V_G, E_G, L_G))$, to which no completion rule from the set of TA completion rules can be applied. **Do not mix with notion of complete graphs known from graph theory.**

⁵Next in the text the notation is often shortened as $L_G(x, y)$ instead of $L_G(\langle x, y \rangle)$.

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G)$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^5$

direct clash occurs in a completion graph $G = (V_G, E_G, L_G)$, if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept A and a node $x \in V_G$

⁵Next in the text the notation is often shortened as $L_G(x, y)$ instead of Gerstner $L_G(\langle x, y \rangle).$ ・ロト ・ 日本・ ・ 日本・

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G))$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^5$

direct clash occurs in a completion graph $G = (V_G, E_G, L_G)$), if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept A and a node $x \in V_G$

complete completion graph is a completion graph $G = (V_G, E_G, L_G)$, to which no completion rule from the set of TA completion rules can be applied.

Do not mix with notion of complete graphs known from graph theory.

completion graph is a labeled oriented graph $G = (V_G, E_G, L_G))$, where each node $x \in V_G$ is labeled with a set $L_G(x)$ of concepts and each edge $\langle x, y \rangle \in E_G$ is labeled with a set of edges $L_G(\langle x, y \rangle)^5$

direct clash occurs in a completion graph $G = (V_G, E_G, L_G))$, if $\{A, \neg A\} \subseteq L_G(x)$, or $\bot \in L_G(x)$, for some atomic concept A and a node $x \in V_G$

complete completion graph is a completion graph $G = (V_G, E_G, L_G))$, to which no completion rule from the set of TA completion rules can be applied. Do not mix with notion of complete graphs

Do not mix with notion of complete graphs known from graph theory.

⁵Next in the text the notation is often shortened as $L_G(x, y)$ instead of $Getermination = L_G(\langle x, y \rangle)$.

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

- C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and
- R(a, b) for each edge $\langle a, b \rangle \in E_G$ and each role $R \in L_G(a, b)$ and

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

- C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and
- R(a, b) for each edge $\langle a, b \rangle \in E_G$ and each role $R \in L_G(a, b)$ and

We define also $\mathcal{I} \models G$ iff $\mathcal{I} \models \mathcal{A}_G$, where \mathcal{A}_G is an ABOX constructed from G, as follows

- C(a) for each node $a \in V_G$ and each concept $C \in L_G(a)$ and
- R(a, b) for each edge $\langle a, b \rangle \in E_G$ and each role $R \in L_G(a, b)$ and

Tableau Algorithm for \mathcal{ALC} with empty TBOX

let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:
 - for each C(a) put a ∈ V_G and C ∈ L_G(a).
 - lpha for each R(a,b) put $(a,b)\in \mathbb{E}_{G_{1}}$ and $R\in \mathbb{E}_{G_{2}}(a,b)$
 - * Sets $V_{G_1} E_{G_2} L_{G_2}$ are smallest possible with these properties

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from A as follows:
 - for each C(a) put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each R(a, b) put $(a, b) \in E_{G_{a}}$ and $R \in L_{G_{a}}(a, b)$
 - Sets $V_{G_1} E_{G_2} L_{G_1}$ are smallest possible with these propertices

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:
 - for each C(a) put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each R(a,b) put $\langle a,b
 angle\in E_{G_0}$ and $R\in L_{G_0}(a,b)$
 - Sets $V_{G_0}, E_{G_0}, L_{G_0}$ are smallest possible with these properties.

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from A as follows:
 - for each C(a) put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each R(a,b) put $\langle a,b
 angle\in E_{G_0}$ and $R\in L_{G_0}(a,b)$
 - Sets $V_{G_0}, E_{G_0}, L_{G_0}$ are smallest possible with these properties.

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from \mathcal{A} as follows:
 - for each C(a) put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each R(a,b) put $\langle a,b
 angle\in E_{G_0}$ and $R\in L_{G_0}(a,b)$
 - Sets V_{G_0} , E_{G_0} , L_{G_0} are smallest possible with these properties.

let's have $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For a moment, consider for simplicity that $\mathcal{T} = \emptyset$.

- 0 (Preprocessing) Transform all concepts appearing in \mathcal{K} to the "negational normal form" (NNF) by equivalent operations known from propositional and predicate logics. As a result, all concepts contain negation \neg at most just before atomic concepts, e.g. $\neg(A \sqcap B)$ is equivalent (de Morgan rules) as $\neg A \sqcup \neg B$).
- 1 (Initialization) Initial state of the algorithm is $S_0 = \{G_0\}$, where $G_0 = (V_{G_0}, E_{G_0}, L_{G_0})$ is made up from A as follows:
 - for each C(a) put $a \in V_{G_0}$ and $C \in L_{G_0}(a)$
 - for each R(a,b) put $\langle a,b
 angle\in E_{G_0}$ and $R\in L_{G_0}(a,b)$
 - Sets $V_{G_0}, E_{G_0}, L_{G_0}$ are smallest possible with these properties.

. . .

- 2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
- 3 (Model Check) Let's choose one G ∈ S that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"
- 4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S'. Jump to step 2.

. . .

- 2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
- 3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"
- 4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S'. Jump to step 2.

. . .

- 2 (Consistency Check) Current algorithm state is S. If each $G \in S$ contains a direct clash, terminate with result "INCONSISTENT"
- 3 (Model Check) Let's choose one $G \in S$ that doesn't contain a direct clash. If G is complete w.r.t. rules shown next, the algorithm terminates with result "CONSISTENT"
- 4 (Rule Application) Find a rule that is applicable to G and apply it. As a result, we obtain from the state S a new state S'. Jump to step 2.

\rightarrow_{\sqcap} rule

if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

- if $\{G_1 \cup G_2\} \in L_G(a)$ and $\{G_1, G_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.
- and $(G_1, G_2, G_3, G_3) = (V_G, G_1) \cup (G_2, G_3) \cup (G_3, G_3) \cup (G$
- \rightarrow_\exists rule
 - If $(\exists R : C) \in L_{\mathcal{C}}(a)$ and there exists no $b \in V_{\mathcal{C}}$ such that $R \in L_{\mathcal{C}}(a, b)$ and at the same time $C \in L_{\mathcal{C}}(b)$.

→_∀ rule

- $\begin{array}{l} (1, 0, 0, 0) \in L_{\mathcal{C}}(a) \text{ and there exists } b \in \mathcal{N}_{\mathcal{C}} \text{ such that } \mathcal{R} \in L_{\mathcal{C}}(a, b) \text{ and attack the same time } C \notin L_{\mathcal{C}}(b). \end{array}$
- < ロ > 〈 団 > 〈 豆 > 〈 घ = > 〈 घ = > 〈 घ = > 〈 घ = > 〈 घ = > 〈 घ = > 〈 घ = > 〈 घ = > 〈 घ = > 〈 घ = > < < घ = > 〈 घ = > < < घ = > 〈 घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < < घ = > < घ = > < < घ = > < घ = > < घ = > < घ = > < घ = > < < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = > < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = = < घ = < घ = < घ = = < घ = = < घ =

TA for \mathcal{ALC} without TBOX – Inference Rules

 $\rightarrow_{\sqcap} \mathsf{rule}$

 $\text{if } (C_1 \sqcap C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \nsubseteq L_G(a) \text{ for some } a \in V_G.$

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and

 $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G .

 \rightarrow_{\sqcup} rule

 $\text{if} \ (G_1 \cup G_2) \in L_{\mathcal{G}}(a) \text{ and } \{G_1, G_2\} \cap L_{\mathcal{G}}(a) = \emptyset \text{ for some } a \in V_{\mathcal{G}^+}$

 $\lim_{t \to \infty} d_{(\alpha_1, \alpha_2)}(\alpha_1, \alpha_2) = \exp\{\log_{\alpha_1} (\alpha_1, \alpha_2) \setminus \{(\alpha_1, \alpha_2) \setminus \{(\alpha_1, \alpha_2) \in (\alpha_1, \alpha_2) \} \}$

 \rightarrow_\exists rule

- If $(\exists R : C) \in L_{\mathcal{C}}(a)$ and there exists no $b \in V_{\mathcal{C}}$ such that $R \in L_{\mathcal{C}}(a, b)$ and d at the same time $C \in L_{\mathcal{C}}(b)$.
- $\begin{array}{l} (a,b), (a,b), (a,b), (b,c) = (b,c), (b,c), (b,c) = (b,c), (b,c), (b,c), (a,b), (b,c), (a,b), (b,c), (b,c), (c,c), (c,c),$

→_∀ rule

- $\exists f: (VR \supset C) \in L_{C}(a)$ and there exists $b \in V_{C}$ such that $R \in L_{C}(a, b)$ and at the same time $C \notin L_{C}(b)$.
- < ロ > 〈 団 > 〈 三 > 〈 □ > ʿ □ > 〈 □ > ʿ □ > 〈 □ > ʿ □ > 〈 □ > ʿ □ > 〈 □ > ʿ □ > 〈 □ > ʿ □ >


```
\rightarrow_{\Box} rule
           if (C_1 \sqcap C_2) \in L_G(a) and \{C_1, C_2\} \not\subseteq L_G(a) for some a \in V_G.
      then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), and
               L_{G'}(a) = L_G(a) \cup \{C_1, C_2\} and otherwise is the same as L_G.
```

- if $((R + C) \in L_{C}(a)$ and there exists $b \in V_{C}$ such that $R \in L_{C}(a, b)$ and at the same time $C \notin L_{C}(b)$.

→_□ rule if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \notin L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G . →_□ rule if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G . →₃ rule

- $\hat{B} = \{0, 0, 0\} \in L_{\mathcal{C}}(a)$ and there exists no $b \in V_{\mathcal{C}}$ such that $R \in L_{\mathcal{C}}(a, b)$ and \hat{B} at the same time $C \in L_{\mathcal{C}}(b)$.
- $\{a_{\lambda}, (a_{\lambda}), (a$
- \rightarrow_{\forall} rule
 - $\exists i : (VR \otimes C) \in L_C(a)$ and there exists $b \in N_C$ such that $R \in L_C(a, b)$ and at it is the same time $C \notin L_C(b)$.
 - (日) (母) (言) (言)

 \rightarrow_{\Box} rule if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G . \rightarrow_{\sqcup} rule if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$.

 $\begin{array}{l} (v_{2}, v_{3}) \cup 23, (\delta) \cup (V_{2}, V_{3}) = 0, \mbox{ where } (G) \setminus (V_{3}) \cup C = (V_{3}) \cup (V_{3}) \cup C = (V_{3}) \cup ($

 \rightarrow_{\forall} rule

- If $((R \cup C) \in L_{\mathcal{C}}(s)$ and there exists $h \in V_{\mathcal{C}}$ such that $R \in L_{\mathcal{C}}(s, h)$ and at the same time $C \notin L_{\mathcal{C}}(s)$.
- (日) (母) (言) (言)


```
\rightarrow_{\Box} rule
           if (C_1 \sqcap C_2) \in L_G(a) and \{C_1, C_2\} \not\subseteq L_G(a) for some a \in V_G.
      then S' = S \cup \{G'\} \setminus \{G\}, where G' = (V_G, E_G, L_{G'}), and
                L_{G'}(a) = L_G(a) \cup \{C_1, C_2\} and otherwise is the same as L_G.
\rightarrow_{\sqcup} rule
           if (C_1 \sqcup C_2) \in L_G(a) and \{C_1, C_2\} \cap L_G(a) = \emptyset for some a \in V_G.
      then S' = S \cup \{G_1, G_2\} \setminus \{G\}, where G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}}), and
                L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\} and otherwise is the same as L_G.
```

 $L_{C'}(b) = \{C\}, L_{C'}(a, b) = \{R\}$ and otherwise is the same as $L_{C'}(b) = \{C\}$

 \rightarrow_{\forall} rule

 $\mathcal{H} = \{V, R \in \mathbb{C}\}$ and there exists $h \in \mathcal{H}_{\mathcal{L}}$ such that $R \in L_{\mathcal{L}}(n, b)$ and at the same time $\mathbb{C} \notin L_{\mathcal{L}}(b)$.

 $\begin{array}{l} \rightarrow_{\square} \quad \text{rule} \\ \text{if } (C_1 \sqcap C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \nsubseteq L_G(a) \text{ for some } a \in V_G. \\ \text{then } S' = S \cup \{G'\} \setminus \{G\}, \text{ where } G' = (V_G, E_G, L_{G'}), \text{ and} \\ L_{G'}(a) = L_G(a) \cup \{C_1, C_2\} \text{ and otherwise is the same as } L_G. \\ \rightarrow_{\sqcup} \quad \text{rule} \\ \text{if } (C_1 \sqcup C_2) \in L_G(a) \text{ and } \{C_1, C_2\} \cap L_G(a) = \emptyset \text{ for some } a \in V_G. \\ \text{then } S' = S \cup \{G_1, G_2\} \setminus \{G\}, \text{ where } G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}}), \text{ and} \\ L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\} \text{ and otherwise is the same as } L_G. \\ \rightarrow_{\exists} \quad \text{rule} \\ \text{if } (\exists R : C) \in L_G(a) \text{ and there exists no } b \in V_G \text{ such that } R \in L_G(a, b) \text{ and} \\ \end{array}$

at the same time $C \in L_G(b)$.

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{b\}, E_G \cup \{\langle a, b \rangle\}, L_{G'})$, a $L_{G'}(b) = \{C\}, L_{G'}(a, b) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

 $(i \in (VR + C) \in L_{C}(a)$ and there exists $b \in V_{C}$ such that $R \in L_{C}(a, b)$ and at $i \in b$, the same time $C \notin L_{C}(b)$.

(日)(何)(2)(2)(2)

 \rightarrow_{\Box} rule if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G . \rightarrow_{\sqcup} rule if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G . $\rightarrow \exists$ rule if $(\exists R \cdot C) \in L_G(a)$ and there exists no $b \in V_G$ such that $R \in L_G(a, b)$ and at the same time $C \in L_G(b)$.

 $L_{G'}(b) = \{C\}, L_{G'}(a, b) = \{R\}$ and otherwise is the same as L_G .

 \rightarrow_{\forall} rule

(口)(荷)(三)(三)

→ rule if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \notin L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G . → u rule if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G . → rule if $(\exists R \cdot C) \in L_G(a)$ and there exists no $b \in V_G$ such that $R \in L_G(a, b)$ and at the same time $C \in L_G(b)$.

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{b\}, E_G \cup \{\langle a, b \rangle\}, L_{G'})$, a $L_{G'}(b) = \{C\}, L_{G'}(a, b) = \{R\}$ and otherwise is the same as L_G .

→_∀ rule

If $(\forall R \circ C) \in L_{2}(a)$ and there exists $b \in V_{2}$ such that $R \in L_{2}(a, b)$ and at the same time $C \notin L_{2}(b)$. For $C \notin L_{2}(b)$, $C \notin L_{2}(b)$, $C \notin L_{2}(b)$, $C \notin C \notin C$, $C \notin$

 \rightarrow_{\Box} rule if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G . \rightarrow_{\sqcup} rule if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G . $\rightarrow \exists$ rule if $(\exists R \cdot C) \in L_G(a)$ and there exists no $b \in V_G$ such that $R \in L_G(a, b)$ and at the same time $C \in L_G(b)$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{b\}, E_G \cup \{\langle a, b \rangle\}, L_{G'})$, a $L_{G'}(b) = \{C\}, L_{G'}(a, b) = \{R\}$ and otherwise is the same as L_{G} . $\rightarrow \forall$ rule

the same time $C \notin L_G(b)$.

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(b) = L_G(b) \cup \{D\}$ and otherwise is the same as $L_{G'} \to A_{G'} \to A_{G'}$.

 \rightarrow_{\Box} rule if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G . \rightarrow_{\sqcup} rule if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G . $\rightarrow \exists$ rule if $(\exists R \cdot C) \in L_G(a)$ and there exists no $b \in V_G$ such that $R \in L_G(a, b)$ and at the same time $C \in L_G(b)$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{b\}, E_G \cup \{\langle a, b \rangle\}, L_{G'})$, a $L_{G'}(b) = \{C\}, L_{G'}(a, b) = \{R\}$ and otherwise is the same as L_{G} .

 \rightarrow_{\forall} rule

if $(\forall R \cdot C) \in L_G(a)$ and there exists $b \in V_G$ such that $R \in L_G(a, b)$ and at the same time $C \notin L_G(b)$.

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(b) = L_G(b) \cup \{D\}$ and otherwise is the same as $A_G \to A_G$.

 \rightarrow_{\Box} rule if $(C_1 \sqcap C_2) \in L_G(a)$ and $\{C_1, C_2\} \not\subseteq L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, and $L_{G'}(a) = L_G(a) \cup \{C_1, C_2\}$ and otherwise is the same as L_G . \rightarrow rule if $(C_1 \sqcup C_2) \in L_G(a)$ and $\{C_1, C_2\} \cap L_G(a) = \emptyset$ for some $a \in V_G$. then $S' = S \cup \{G_1, G_2\} \setminus \{G\}$, where $G_{(1|2)} = (V_G, E_G, L_{G_{(1|2)}})$, and $L_{G_{(1|2)}}(a) = L_G(a) \cup \{C_{(1|2)}\}$ and otherwise is the same as L_G . $\rightarrow \exists$ rule if $(\exists R \cdot C) \in L_G(a)$ and there exists no $b \in V_G$ such that $R \in L_G(a, b)$ and at the same time $C \in L_G(b)$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G \cup \{b\}, E_G \cup \{\langle a, b \rangle\}, L_{G'})$, a $L_{G'}(b) = \{C\}, L_{G'}(a, b) = \{R\}$ and otherwise is the same as L_{G} .

 \rightarrow_{\forall} rule

if $(\forall R \cdot C) \in L_G(a)$ and there exists $b \in V_G$ such that $R \in L_G(a, b)$ and at the same time $C \notin L_G(b)$.

then
$$S' = S \cup \{G'\} \setminus \{G\}$$
, where $G' = (V_G, E_G, L_{G'})$, and
 $L_{G'}(b) = L_G(b) \cup \{D\}$ and otherwise is the same as $L_{G'}$.

67 / 158

$\bullet \ \mathcal{K}$ is finite

- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
- after application of any of the following rules →_□, →_∃, →_∀ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

- $\bullet \ \mathcal{K}$ is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_⊥ rule). Number of disjunctions (⊥) in K is finite, i.e. the ⊥ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
- after application of any of the following rules →_□, →_∃, →_∀ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

- $\bullet \ \mathcal{K}$ is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
- after application of any of the following rules →_□, →_∃, →_∀ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

- $\bullet \ \mathcal{K}$ is finite
- in each step, TA state can be enriched at most by one completion graph (only by application of →_□ rule). Number of disjunctions (□) in K is finite, i.e. the □ can be applied just finite number of times.
- for each completion graph $G = (V_G, E_G, L_G)$ it holds that number of nodes in V_G is less or equal to the number of individuals in \mathcal{A} plus number of existential quantifiers in \mathcal{A} .
- after application of any of the following rules →_□, →_∃, →_∀ graph G is either enriched with a new node, new edge, or labeling of an existing node/edge is enriched. All these operations are finite.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_\exists rule:
 - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node b was created in G_{i+1} and the label of edge (a, b) and node b has been adjusted.
 - It is enough to place i = b^I to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

• For other rules, the soundness is shown in a similar way.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_\exists rule:
 - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node b was created in G_{i+1} and the label of edge (a, b) and node b has been adjusted.
 - It is enough to place i = b^T to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

• For other rules, the soundness is shown in a similar way.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_\exists rule:
 - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node b was created in G_{i+1} and the label of edge (a, b) and node b has been adjusted.
 - It is enough to place i = b^T to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

• For other rules, the soundness is shown in a similar way.

イロト イヨト イヨト イヨト

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node b was created in G_{i+1} and the label of edge (a, b) and node b has been adjusted.
 - It is enough to place i = b^T to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

• For other rules, the soundness is shown in a similar way.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node b was created in G_{i+1} and the label of edge (a, b) and node b has been adjusted.
 - It is enough to place i = b^T to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

• For other rules, the soundness is shown in a similar way.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_\exists rule:
 - Before application of \rightarrow_{\exists} rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node b was created in G_{i+1} and the label of edge (a, b) and node b has been adjusted.
 - It is enough to place i = b^I to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.

For other rules, the soundness is shown in a similar way.

- Soundness of the TA can be verified as follows. For any $\mathcal{I} \models \mathcal{A}_{G_i}$, it must hold that $\mathcal{I} \models \mathcal{A}_{G_{i+1}}$. We have to show that application of each rule preserves consistency. As an example, let's take the \rightarrow_{\exists} rule:
 - Before application of \rightarrow_\exists rule, $(\exists R \cdot C) \in L_{G_i}(a)$ held for $a \in V_{G_i}$.
 - As a result $a^{\mathcal{I}} \in (\exists R \cdot C)^{\mathcal{I}}$.
 - Next, $i \in \Delta^{\mathcal{I}}$ must exist such that $\langle a^{\mathcal{I}}, i \rangle \in R^{\mathcal{I}}$ and at the same time $i \in C^{\mathcal{I}}$.
 - By application of →∃ a new node b was created in G_{i+1} and the label of edge (a, b) and node b has been adjusted.
 - It is enough to place i = b^I to see that after rule application the domain element (necessary present in any interpretation because of ∃ construct semantics) has been "materialized". As a result, the rule is correct.
- For other rules, the soundness is shown in a similar way.

・ロト ・回ト ・ヨト ・ヨト

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of G.
 - for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
 - for each atomic role R let's define $R^{\mathcal{I}} = \{ \langle a, b \rangle \mid R \in L_{\mathcal{G}}(a, b) \}$
- Observe that I is a model of A_G. A backward induction can be used to show that I must be also a model of each previous step and thus also A.

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of *G*.
 - for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
 - for each atomic role R let's define $R^{\mathcal{I}} = \{ \langle a, b \rangle \mid R \in L_{G}(a, b) \}$
- Observe that I is a model of A_G. A backward induction can be used to show that I must be also a model of each previous step and thus also A.

- To prove completeness of the TA, it is necessary to construct a model for each complete completion graph G that doesn't contain a direct clash. Canonical model \mathcal{I} can be constructed as follows:
 - the domain $\Delta^{\mathcal{I}}$ will consist of all nodes of *G*.
 - for each atomic concept A let's define $A^{\mathcal{I}} = \{a \mid A \in L_G(a)\}$
 - for each atomic role R let's define $R^{\mathcal{I}} = \{ \langle a, b \rangle \mid R \in L_{G}(a, b) \}$
- Observe that I is a model of A_G. A backward induction can be used to show that I must be also a model of each previous step and thus also A.

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - indeed, for *ALC* they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
 - Without proof, let's state that the algorithm is in P-SPACE (between NP and EXP-TIME).

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
 - Without proof, let's state that the algorithm is in P-SPACE (between NP and EXP-TIME).

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
 - Without proof, let's state that the algorithm is in P-SPACE (between NP and EXP-TIME).

- Why we need completion graphs ? Aren't ABOXes enough to maintain the state for TA ?
 - indeed, for \mathcal{ALC} they would be enough. However, for complex DLs a TA state cannot be stored in an ABOX.
- What about complexity of the algorithm ?
 - Without proof, let's state that the algorithm is in P-SPACE (between NP and EXP-TIME).

Let's check consistency of the ontology $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).$

• Let's transform the concept into NNF: ∃maDite · Muz ⊓ ∃maDite · Prarodic ⊓ ∀maDite · (¬Muz ⊔ ¬Prarodic)

• Initial state G_0 of the TA is

"JAN"

((∀ maDite - (¬Muz ⊔ ¬Prarodic)) ⊓ (∃ maDite - Prarodic) ⊓ (∃ maDite - Muz))

Let's check consistency of the ontology $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2)$, where $\mathcal{A}_2 = \{(\exists maDite \cdot Muz \sqcap \exists maDite \cdot Prarodic \sqcap \neg \exists maDite \cdot (Muz \sqcap Prarodic))(JAN)\}).$

- Let's transform the concept into NNF: ∃maDite · Muz ⊓ ∃maDite · Prarodic ⊓ ∀maDite · (¬Muz ⊔ ¬Prarodic)
- Initial state G_0 of the TA is

	ı	2	s I	Ŀ.	1	
۰.	J,	ŀ	s	P	ł	

((∀ maDite - (¬Muz ப ¬Prarodic)) п (∃ maDite - Prarodic) п (∃ maDite - Muz))

TA Run Example (2)

"JAN"							
(Э maDite - Muz) (Э maDite - Prarodic) (У maDite - (Muz ц ¬Prarodic)) ((У maDite - (¬Muz ц ¬Prarodic)) п (Э maDite - Prarodic) п (Э maDite - Muz))							
	and the second s		mable				
	"1" ("Muz ם יPrarodic) Prarodic		"0" Muz ("Muz 🗆 "Prarodic)				

TA Run Example (2)

Example

•
$$\{G_0\} \xrightarrow{\sqcap-\mathsf{rule}} \{G_1\} \xrightarrow{\exists-\mathsf{rule}} \{G_2\} \xrightarrow{\exists-\mathsf{rule}} \{G_3\} \xrightarrow{\forall-\mathsf{rule}} \{G_4\}$$
, where G_4 is

"JAN"							
(3 maDite -Muz) (3 maDite -Prarodic) (4 maDite -(Muz и ¬Prarodic)) ((4 maDite -(Muz и ¬Prarodic)) п (3 maDite - Prarodic) п (3 maDite - Muz))							
and the second s							
"1" (יMuz ים יPrarod) Prarodic	dic) "O" Muz (¬Nuz ⊔ ¬Prarodic)						

TA Run Example (3)

Example

. . .

- By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.
- Now, we have to apply the ⊔-rule to the concept
 ¬*Muz* ⊔ ¬*Rodic* either in the label of node "0", or in the label of node "1". Its application e.g. to node "1" we obtain the state {G₅, G₆} (G₅ left, G₆ right)

TA Run Example (3)

Example

. . .

- By now, we applied just deterministic rules (we still have just a single completion graph). At this point no other deterministic rule is applicable.
- Now, we have to apply the ⊔-rule to the concept
 ¬*Muz* ⊔ ¬*Rodic* either in the label of node "0", or in the label of node "1". Its application e.g. to node "1" we obtain the state {G₅, G₆} (G₅ left, G₆ right)

TA Run Example (4)

• G₇ is complete and without direct clash.

1

イロト 不同下 イヨト イヨト

TA Run Example (4)

イロト 不同下 イヨト イヨト

• G₇ is complete and without direct clash.

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},$
- Prarodic $\mathcal{I}_2 = \{i_1\},$
- $Muz^{\mathcal{I}_2} = \{i_2\},$
- "JAN"^{I_2} = Jan, "0"^{I_2} = i_2 , "1"^{I_2} = i_1

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$
- Prarodic^{\mathcal{I}_2} = { i_1 }
- $Muz^{\mathcal{I}_2} = \{i_2\},$
- "JAN"^{I_2} = Jan, "0"^{I_2} = i_2 , "1"^{I_2} = i_1

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$
- *Prarodic*^{I_2} = {*i*₁},
- $Muz^{\mathcal{I}_2} = \{i_2\},\$
- "JAN"^{I_2} = Jan, "0"^{I_2} = i_2 , "1"^{I_2} = i_1

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$
- *Prarodic*^{I_2} = {*i*₁},
- $Muz^{I_2} = \{i_2\},\$
- "JAN" $\mathcal{I}_2 = Jan$, " $0''\mathcal{I}_2 = i_2$, " $1''\mathcal{I}_2 = i_1$,

- $\Delta^{\mathcal{I}_2} = \{Jan, i_1, i_2\},\$
- $maDite^{\mathcal{I}_2} = \{ \langle Jan, i_1 \rangle, \langle Jan, i_2 \rangle \},\$
- *Prarodic*^{I_2} = {*i*₁},
- $Muz^{I_2} = \{i_2\},\$
- " $JAN''^{\mathcal{I}_2} = Jan$, " $0''^{\mathcal{I}_2} = i_2$, " $1''^{\mathcal{I}_2} = i_1$,

We have presented the tableau algorithm for consistency checking of $\mathcal{K} = (\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

• consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom

$\top \sqsubseteq \top_{C}$

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

 for each model *I* of the theory *K*, each element of Δ^{*I*} must belong to the interpretation of the concept at the right-hand side. How to achieve this ?

We have presented the tableau algorithm for consistency checking of $\mathcal{K} = (\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

• consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom

$\top \sqsubseteq \top_{c}$

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

 for each model *I* of the theory *K*, each element of Δ^{*I*} must belong to the interpretation of the concept at the right-hand side. How to achieve this ?

We have presented the tableau algorithm for consistency checking of $\mathcal{K} = (\emptyset, \mathcal{A})$. How the situation changes when $\mathcal{T} \neq \emptyset$?

• consider \mathcal{T} containing axioms of the form $C_i \sqsubseteq D_i$ for $1 \le i \le n$. Such \mathcal{T} can be transformed into a single axiom

$$\top \sqsubseteq \top_{C}$$

77 / 158

where \top_C denotes a concept $(\neg C_1 \sqcup D_1) \sqcap \ldots \sqcap (\neg C_n \sqcup D_n)$

 for each model *I* of the theory *K*, each element of Δ^{*I*} must belong to the interpretation of the concept at the right-hand side. How to achieve this ?

What about this ?

$\rightarrow_{\sqsubseteq} \mathsf{rule}$

if $\top_C \notin L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, a $L_{G'}(a) = L_G(a) \cup \{\top_C\}$ and otherwise is the same as L_G .

Example

What about this ?

$\rightarrow_{\sqsubseteq}$ rule

if $\top_C \notin L_G(a)$ for some $a \in V_G$.

then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, a

 $L_{G'}(a) = L_G(a) \cup \{\top_C\}$ and otherwise is the same as L_G .

Example

What about this ?

→ \sqsubseteq rule if $\top_C \notin L_G(a)$ for some $a \in V_G$. then $S' = S \cup \{G'\} \setminus \{G\}$, where $G' = (V_G, E_G, L_{G'})$, a $L_{G'}(a) = L_G(a) \cup \{\top_C\}$ and otherwise is the same as L_G .

Example

What about this ?

 $\rightarrow_{\sqsubseteq}$ rule

 $\begin{array}{l} \text{if } \ \ \top_C \notin L_G(a) \ \text{for some } a \in V_G. \\ \text{then } \ S' = S \cup \{G'\} \setminus \{G\}, \ \text{where } G' = (V_G, E_G, L_{G'}), \ \text{a} \\ L_{G'}(a) = L_G(a) \cup \{\top_C\} \ \text{and otherwise is the same as } L_G. \end{array}$

Example

Example

aboratory stner シへへ 79/158

.

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For *ALC* it can be shown that so called *subset blocking* is enough:
 - In completion graph G is node x (not present in ABOX 2.) is blocked by mode y, if there is an oriented path from y to x and $L_{\mathcal{C}}(x) \subseteq L_{\mathcal{C}}(y)$.
- All inference rules are applicable until the node a in their definition is not blocked by another node.

Blocking in TA

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For *ALC* it can be shown that so called *subset blocking* is enough:
 - In completion graph G a node x (not present in ABOX A) is blocked by node y, if there is an oriented path from y to x and L_Q(x) S L_Q(y).
- All inference rules are applicable until the node a in their definition is not blocked by another node.

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For *ALC* it can be shown that so called *subset blocking* is enough:
 - In completion graph *G* a node *x* (not present in ABOX A) is blocked by node *y*, if there is an oriented path from *y* to *x* and $L_G(x) \subseteq L_G(y)$.
- All inference rules are applicable until the node *a* in their definition is not blocked by another node.

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For \mathcal{ALC} it can be shown that so called *subset blocking* is enough:
 - In completion graph *G* a node *x* (not present in ABOX A) is blocked by node *y*, if there is an oriented path from *y* to *x* and $L_G(x) \subseteq L_G(y)$.
- All inference rules are applicable until the node *a* in their definition is not blocked by another node.

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For ALC it can be shown that so called *subset blocking* is enough:
 - In completion graph G a node x (not present in ABOX A) is blocked by node y, if there is an oriented path from y to x and $L_G(x) \subseteq L_G(y)$.
- All inference rules are applicable until the node *a* in their definition is not blocked by another node.

- TA tries to find an infinite model. It is necessary to force it representing an infinite model by a finite completion graph.
- The mechanism that enforces finite representation is called *blocking*.
- Blocking ensures that inference rules will be applicable until their changes will not repeat "sufficiently frequently".
- For ALC it can be shown that so called *subset blocking* is enough:
 - In completion graph G a node x (not present in ABOX A) is blocked by node y, if there is an oriented path from y to x and $L_G(x) \subseteq L_G(y)$.
- All inference rules are applicable until the node *a* in their definition is not blocked by another node.

- In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph ?
- Introduced TA with subset blocking is sound, complete and finite decision procedure for *ALC*.

- In the previous example, the blocking ensures that node "2" is blocked by node "0" and no other expansion occurs. Which model corresponds to such graph ?
- Introduced TA with subset blocking is sound, complete and finite decision procedure for *ALC*.

$\bullet \ http://krizik.felk.cvut.cz/km/dl/index.html$

OPPA European Social Fund Prague & EU: We invest in your future.