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Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC.
Now, let's look on automated reasoning. Having a ALC theory

K = (T,A). For TBOX T and concepts C, D, we want to decide
whether

(unsatisfiability) concept C is unsatisfiable, i.e. T = CC L ?
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Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC.

Now, let's look on automated reasoning. Having a ALC theory

K = (T,A). For TBOX T and concepts C, D, we want to decide

whether

(unsatisfiability) concept C is unsatisfiable, i.e. T = CC L ?

(subsumption) concept C subsumes concept D, i.e. T=DLC C?

(equivalence) two concepts C and D are equivalent, i.e.
TEC=D?

(disjoint) two concepts C and D are disjoint, i.e.

TECNDC L7

All these tasks can be reduced to unsatisfiability
checking of a single concept ...
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Reduction to Concept Unsatisfiability — Example

These reductions are straighforward — let's show, how to reduce
subsumption checking to unsatisfiability checking. Reduction of
other inference problems to unsatisfiability is analogous.

(T £ cCD)
(VI)Z =T implies
(VI)Z =T implies
(VI)Z =T implies
(VI)Z =T implies

(TECN-DC 1)

IECLCD)
CIQDI)
cIn(AT\ D) Ch
IE=ECNn-DC L

iff
iff
iff
iff
iff
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... for ABOX A, axiom «, concept C, role R and
individuals a,ag we want to decide whether
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... for ABOX A, axiom «, concept C, role R and

individuals a,ag we want to decide whether
(consistency checking) ABOX A is consistent w.r.t. 7 (in short if
K is consistent).
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... for ABOX A, axiom «, concept C, role R and
individuals a,ag we want to decide whether
(consistency checking) ABOX A is consistent w.r.t. 7 (in short if
K is consistent).

(instance checking) T U A = C(a)?
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Inference Problems for ABOX

... for ABOX A, axiom «, concept C, role R and
individuals a,ag we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. 7 (in short if
K is consistent).

(instance checking) T U A |= C(a)?
(role checking) 7 U A = R(a, ag)?
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Inference Problems for ABOX

... for ABOX A, axiom «, concept C, role R and
individuals a,ag we want to decide whether

(consistency checking) ABOX A is consistent w.r.t. 7 (in short if
K is consistent).

(instance checking) T U A |= C(a)?

(role checking) 7 U A = R(a, ag)?

(instance retrieval) find all individuals a1, for which
TUAE C(a1).

realization find the most specific concept C from a set of

concepts, such that 7T U A = C(a).

All these tasks, as well as concept unsatisfiability
checking, can be reduced to consistency
checking. Under which condition and how ?
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Structural Comparison is polynomial, but complete just for some

simple DLs without full negation, e.g. ALN,
see [BCMT03].
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Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some
simple DLs without full negation, e.g. ALN,
see [BCMT03].

Tableaux Algorithms represent the State of Art for complex DLs —
sound, complete, finite, see [HS03], [HS01],
[BCMT03].
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Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some
simple DLs without full negation, e.g. ALN,
see [BCMT03].

Tableaux Algorithms represent the State of Art for complex DLs —
sound, complete, finite, see [HS03], [HS01],
[BCMT03].

other ... —e.g. resolution-based [Hab06], transformation to

finite automata [BCM™03)], etc.

We will introduce tableau algorithms.



@ Tableaux Algorithms (TAs) serve for checking ABOXu

consistency checking w.r.t. an TBOXu. TAs are not new in
DL — they were known for FOL as well.
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Tableaux Algorithms

@ Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL — they were known for FOL as well.

@ Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX 7T is proven if we succeed in constructing a
model of 7 U A.”
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Tableaux Algorithms

@ Tableaux Algorithms (TAs) serve for checking ABOXu
consistency checking w.r.t. an TBOXu. TAs are not new in
DL — they were known for FOL as well.

@ Main idea is simple: “Consistency of the given ABOX A
w.r.t. TBOX 7T is proven if we succeed in constructing a
model of 7 U A.”

@ Each TA can be seen as a production system :

o state of TA (~ data base) is made up by a set of completion
graphs (see next slide),

e inference rules (~ production rules) implement semantics of
particular constructs of the given language, e.g. 3,11, etc. and
serve to modify the completion graphs according to

e choosen strategy for rule application
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Completion Graphs

completion graph is a labeled oriented graph G = (Vg, Eg, Lg)),
where each node x € V(; is labeled with a set Lg(x)
of concepts and each edge (x, y) € Eg is labeled
with a set of edges Lg((x,y))°

®Next in the text the notation is often shortened as Lg(x, y) instead of @tn@‘

Le((x,¥))-
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Completion Graphs

completion graph is a labeled oriented graph G = (Vg, Eg, Lg)),
where each node x € Vj; is labeled with a set Lg(x)
of concepts and each edge (x, y) € Eg is labeled
with a set of edges Lg((x,y))°

direct clash occurs in a completion graph G = (Vg, Eg, Lg)), if
{A,-A} C Lg(x), or L € Lg(x), for some atomic
concept A and a node x € Vg

complete completion graph is a completion graph
G = (Vg, Eg, Lg)), to which no completion rule
from the set of TA completion rules can be applied.
Do not mix with notion of complete graphs
known from graph theory.

®Next in the text the notation is often shortened as Lg(x, y) instead of @tn@‘

Le((x,¥))-
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We define also Z |= G iff Z = Ag, where Ag is an
ABOX constructed from G, as follows
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We define also Z |= G iff Z = Ag, where Ag is an
ABOX constructed from G, as follows

e ((a) for each node a € V; and each concept
C € Lg(a) and
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We define also Z |= G iff Z = Ag, where Ag is an
ABOX constructed from G, as follows

e ((a) for each node a € V; and each concept
C € Lg(a) and

e R(a, b) for each edge (a, b) € Eg and each role
R € Lg(a, b) and
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let's have K = (T,.A). For a moment, consider for simplicity
that 7 = 0.
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Tableau Algorithm for ALC with empty TBOX

let's have IC = (7, .A). For a moment, consider for simplicity

that 7 = 0.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation — at most just before atomic
concepts, e.g. =(A M B) is equivalent (de Morgan rules) as
-AU-B).
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Tableau Algorithm for ALC with empty TBOX

let's have IC = (T, .A). For a moment, consider for simplicity
that 7 = 0.

0 (Preprocessing) Transform all concepts appearing in K to the
“negational normal form” (NNF) by equivalent operations
known from propositional and predicate logics. As a result, all
concepts contain negation — at most just before atomic
concepts, e.g. =(A M B) is equivalent (de Morgan rules) as
—\A L _\B)

1 (Initialization) Initial state of the algorithm is So = {Go},
where Go = (Vg,, Eg,, Lg,) is made up from A as follows:

e for each C(a) put a € Vg, and C € Lg,(a)
e for each R(a, b) put (a, b) € Eg, and R € Lg,(a, b)
e Sets Vi, Eg,, L, are smallest possible with these properties.
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2 (Consistency Check) Current algorithm state is S. If each

G € S contains a direct clash, terminate with result
“INCONSISTENT"
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Tableau algorithm for ALC without TBOX (2)

2 (Consistency Check) Current algorithm state is S. If each
G € S contains a direct clash, terminate with result
“INCONSISTENT"

3 (Model Check) Let's choose one G € S that doesn't contain a
direct clash. If G is complete w.r.t. rules shown next, the
algorithm terminates with result "CONSISTENT"



Tableau algorithm for ALC without TBOX (2)

2 (Consistency Check) Current algorithm state is S. If each
G € S contains a direct clash, terminate with result
“INCONSISTENT”

3 (Model Check) Let's choose one G € S that doesn't contain a
direct clash. If G is complete w.r.t. rules shown next, the
algorithm terminates with result "CONSISTENT"

4 (Rule Application) Find a rule that is applicable to G and
apply it. As a result, we obtain from the state S a new state
S’. Jump to step 2.
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—n rule

if (GNG) e Lg(a)and {Ci, G} ¢ Lg(a) for some a € V.
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—n rule

if (GNG) e Lg(a)and {Ci, G} ¢ Lg(a) for some a € V.
then S’ =SU{G'}\ {G}, where G’ = (V;, Eg, L¢/), and

Lgi(a) = Lg(a) U{Ci, Go} and otherwise is the same as Lg.
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—n rule

if (GNG) e Lg(a)and {Ci, G} ¢ Lg(a) for some a € V.
then S’ =SU{G'}\ {G}, where G’ = (V;, Eg, L¢/), and
—u rule

Lgi(a) = Lg(a) U{Ci, Go} and otherwise is the same as Lg.

S la
«0O0» «F»r « =

boratory
Gerstner )
=

et
fae
67/158

i
-



—n rule

if (GNG) e Lg(a)and {Ci, G} ¢ Lg(a) for some a € V.
then S’ =SU{G'}\ {G}, where G’ = (V;, Eg, L¢/), and
—u rule

Lgi(a) = Lg(a) U{Ci, Go} and otherwise is the same as Lg.

if (GUQG)eLg(a)and {C,G}NLg(a) =0 for some a € V.
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TA for ALC without TBOX — Inference Rules

—n rule
if (GNG) e Lg(a)and {C1, G} € Lg(a) for some a € V.
then S’ =SU{G'}\ {G}, where G' = (Vg, Eg, L¢/), and
Lgi(a) = Lg(a) U{C1, Go} and otherwise is the same as Lg.
—u rule
if (CLUG) € Lg(a)and {C1,C}N Lg(a) =0 for some a € V.
then S’ =SU{Gi, G} \ {G}, where G1)p) = (Vg, Eg, LGy): and
LG(1|2)(a) = Lg(a) U {Cqj2)} and otherwise is the same as L.
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—n rule
if (GNG) e Lg(a)and {C1, G} € Lg(a) for some a € V.
then S’ =SU{G'}\ {G}, where G' = (Vg, Eg, L¢/), and
Lgi(a) = Lg(a) U{C1, Go} and otherwise is the same as Lg.
—u rule
if (CLUG) € Lg(a)and {C1,C}N Lg(a) =0 for some a € V.
then S’ =SU{Gi, G} \ {G}, where G1)p) = (Vg, Eg, LGy): and
LG(1|2)(a) = Lg(a) U {Cqj2)} and otherwise is the same as L.

—3 rule
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TA for ALC without TBOX — Inference Rules

—n rule
if (GNG) e Lg(a)and {C1, G} € Lg(a) for some a € V.
then S’ =SU{G'}\ {G}, where G' = (Vg, Eg, L¢/), and
Lgi(a) = Lg(a) U{C1, Go} and otherwise is the same as Lg.
—u rule
if (CLUG) € Lg(a)and {C1,C}N Lg(a) =0 for some a € V.
then S’ =SU{Gi, G} \ {G}, where G1)p) = (Vg, Eg, LGy):
LG(1|2)(a) = Lg(a) U {Cqj2)} and otherwise is the same as L.

and

—3 rule

if (3R - C) € Lg(a) and there exists no b € Vi such that R € Lg(a, b) and
at the same time C € Lg(b).
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TA for ALC without TBOX — Inference Rules

—n rule
if

then
—u rule
if

then

—3 rule

if

then

(GNG) € Lg(a) and {Ci, G} € Lg(a) for some a € V.
S'=Su {G/} \ {G}, where G’ = (\/G7 EG7 LG’)v and
Lgi(a) = Lg(a) U{C1, Go} and otherwise is the same as Lg.

(GUG) € Lg(a) and {C1, G} N Lg(a) = 0 for some a € V.
S'=Su {Gi1, G2} \ {G}, where G(1|2) = (Vg, Eg, LG(1\2))’
LG(1|2)(a) = Lg(a) U {Cqj2)} and otherwise is the same as L.

and

(3R - C) € Lg(a) and there exists no b € Vi such that R € Lg(a, b) and
at the same time C € Lg(b).

S'=SU{G'}\ {G}, where G’ = (Vg U{b},EcU{(a,b)},L¢s), a
Lg/(b) = {C}, Lg/(a, b) = {R} and otherwise is the same as Lg.
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TA for ALC without TBOX — Inference Rules

—n rule
if

then

—u rule
if

then

—3 rule
if

then

—v rule

(GNG) € Lg(a) and {Ci, G} € Lg(a) for some a € V.
S'=Su {G/} \ {G}, where G’ = (\/G7 EG7 LG’)v and
Lgi(a) = Lg(a) U{C1, Go} and otherwise is the same as Lg.

(GUG) € Lg(a) and {C1, G} N Lg(a) = 0 for some a € V.
S'=Su {Gi1, G2} \ {G}, where G(1|2) = (Vg, Eg, LG(1\2))’
LG(1|2)(a) = Lg(a) U {Cqj2)} and otherwise is the same as L.

and

(3R - C) € Lg(a) and there exists no b € Vi such that R € Lg(a, b) and
at the same time C € Lg(b).

S'=SU{G'}\ {G}, where G’ = (Vg U{b},EcU{(a,b)},L¢s), a
Lg/(b) = {C}, Lg/(a, b) = {R} and otherwise is the same as Lg.
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TA for ALC without TBOX — Inference Rules

—n rule

f
then

—u rule
if
then

—3 rule

if

then

—v rule

(GNG) € Lg(a) and {Ci, G} € Lg(a) for some a € V.
S'=Su {G/} \ {G}, where G’ = (\/G7 EG7 LG’)v and
Lgi(a) = Lg(a) U{C1, Go} and otherwise is the same as Lg.

(GUG) € Lg(a) and {C1, G} N Lg(a) = 0 for some a € V.
S'=Su {Gi1, G2} \ {G}, where G(1|2) = (Vg, Eg, LG(1\2))’
LG(1|2)(a) = Lg(a) U {Cqj2)} and otherwise is the same as L.

and

(3R - C) € Lg(a) and there exists no b € Vi such that R € Lg(a, b) and
at the same time C € Lg(b).

S'=SU{G'}\ {G}, where G’ = (Vg U{b},EcU{(a,b)},L¢s), a
Lg/(b) = {C}, Lg/(a, b) = {R} and otherwise is the same as Lg.

(YR - C) € Lg(a) and there exists b € Vi such that R € Lg(a, b) and at
the same time C ¢ Lg(b).
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TA for ALC without TBOX — Inference Rules

—n rule

f (GNG) e Lg(a) and {C1, G} € Lg(a) for some a € V.

then S’ =SU{G'}\ {G}, where G' = (Vg, Eg, L¢/), and
Lgi(a) = Lg(a) U{C1, Go} and otherwise is the same as Lg.

—u rule
if (CLUG) € Lg(a)and {C1,C}N Lg(a) =0 for some a € V.
then S’ =SU{Gi, G} \ {G}, where G1)p) = (Vg, Eg, LGy): and
LG(1|2)(a) = Lg(a) U {Cqj2)} and otherwise is the same as L.
—3 rule
if (3R - C) € Lg(a) and there exists no b € Vi such that R € Lg(a, b) and
at the same time C € Lg(b).
then S’ = SU{G'}\ {G}, where G’ = (Vg U {b}, Ec U{(a,b)},L¢/), a
Lg/(b) = {C}, Lg/(a, b) = {R} and otherwise is the same as Lg.
—v rule
if (VR -C) € Lg(a) and there exists b € Vi such that R € Lg(a, b) and at
the same time C ¢ Lg(b).
then S’ =SU{G'}\ {G}, where G’ = (Vg, Eg, L¢/), and @my
Lg/(b) = Lg(b) U{D} and otherwise is the same as L¢. .
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Finiteness of the TA is an easy consequence of the following:
o K is finite
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Finiteness

Finiteness of the TA is an easy consequence of the following:
o /C is finite
@ in each step, TA state can be enriched at most by one
completion graph (only by application of —; rule). Number of

disjunctions (L) in K is finite, i.e. the LJ can be applied just
finite number of times.
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Finiteness of the TA is an easy consequence of the following:

o /C is finite

@ in each step, TA state can be enriched at most by one
completion graph (only by application of —; rule). Number of
disjunctions (L) in K is finite, i.e. the LJ can be applied just
finite number of times.

e for each completion graph G = (Vg, Eg, L) it holds that
number of nodes in V¢ is less or equal to the number of
individuals in A plus number of existential quantifiers in A.
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Finiteness

Finiteness of the TA is an easy consequence of the following:
o /C is finite
@ in each step, TA state can be enriched at most by one
completion graph (only by application of —; rule). Number of

disjunctions (L) in K is finite, i.e. the LJ can be applied just
finite number of times.

e for each completion graph G = (Vg, Eg, L) it holds that
number of nodes in V¢ is less or equal to the number of
individuals in A plus number of existential quantifiers in A.

o after application of any of the following rules —n, —3, —v
graph G is either enriched with a new node, new edge, or
labeling of an existing node/edge is enriched. All these
operations are finite.
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@ Soundness of the TA can be verified as follows. For any

T |= Ag,, it must hold that Z |= Ag,,,. We have to show that
application of each rule preserves consistency. As an example,
let's take the —3 rule:
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Soundness

@ Soundness of the TA can be verified as follows. For any
T = Ag,, it must hold that Z = Ag,,,. We have to show that
application of each rule preserves consistency. As an example,
let's take the —3 rule:
o Before application of —3 rule, (3R - C) € Lg,(a) held for
ac VG;-
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@ Soundness of the TA can be verified as follows. For any
T = Ag,, it must hold that Z = Ag,,,. We have to show that
application of each rule preserves consistency. As an example,
let's take the —3 rule:
o Before application of —3 rule, (3R - C) € Lg,(a) held for
ac VG;-
o Asa result aZ € (3R - C)L.
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o Before application of —3 rule, (3R - C) € Lg,(a) held for

ac VG;-
o Asa result aZ € (3R - C)L.
o Next, i € AT must exist such that (a%,i) € RZ and at the

same time i € CZL.
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@ Soundness of the TA can be verified as follows. For any
T = Ag,, it must hold that Z = Ag,,,. We have to show that
application of each rule preserves consistency. As an example,
let's take the —3 rule:
o Before application of —3 rule, (3R - C) € Lg,(a) held for
ac VG;-
o Asa result aZ € (3R - C)L.
o Next, i € AT must exist such that (a%,i) € RZ and at the
same time i € CZ.
e By application of —3 a new node b was created in Gj;; and
the label of edge (a, b) and node b has been adjusted.
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Soundness

@ Soundness of the TA can be verified as follows. For any
T = Ag,, it must hold that Z = Ag,,,. We have to show that
application of each rule preserves consistency. As an example,
let's take the —3 rule:

o Before application of —3 rule, (3R - C) € Lg,(a) held for
ac VG;-

o Asa result aZ € (3R - C)L.

o Next, i € AT must exist such that (a%,i) € RZ and at the
same time i € CZ.

e By application of —3 a new node b was created in Gj;; and
the label of edge (a, b) and node b has been adjusted.

o It is enough to place i = b’ to see that after rule application
the domain element (necessary present in any interpretation
because of 3 construct semantics) has been “materialized”. As
a result, the rule is correct.
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Soundness

@ Soundness of the TA can be verified as follows. For any
T = Ag,, it must hold that Z = Ag,,,. We have to show that
application of each rule preserves consistency. As an example,
let's take the —3 rule:

o Before application of —3 rule, (3R - C) € Lg,(a) held for
ac VG;-

o Asa result aZ € (3R - C)L.

o Next, i € AT must exist such that (a%,i) € RZ and at the
same time i € CZ.

e By application of —3 a new node b was created in Gj;; and
the label of edge (a, b) and node b has been adjusted.

o It is enough to place i = b’ to see that after rule application
the domain element (necessary present in any interpretation
because of 3 construct semantics) has been “materialized”. As
a result, the rule is correct.

@ For other rules, the soundness is shown in a similar way. ...,
Gerstny
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Completeness

@ To prove completeness of the TA, it is necessary to construct
a model for each complete completion graph G that doesn't
contain a direct clash. Canonical model Z can be constructed
as follows:

o the domain AZ will consist of all nodes of G.

@ Observe that Z is a model of A¢. A backward induction can
be used to show that Z must be also a model of each previous
step and thus also A.
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@ To prove completeness of the TA, it is necessary to construct
a model for each complete completion graph G that doesn't
contain a direct clash. Canonical model Z can be constructed
as follows:

o the domain AT will consist of all nodes of G.
o for each atomic concept A let's define AT = {a | A € Lg(a)}

@ Observe that Z is a model of A¢. A backward induction can
be used to show that Z must be also a model of each previous
step and thus also A.
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Completeness

@ To prove completeness of the TA, it is necessary to construct
a model for each complete completion graph G that doesn't
contain a direct clash. Canonical model Z can be constructed
as follows:

o the domain AT will consist of all nodes of G.
o for each atomic concept A let's define AT = {a | A € Lg(a)}
e for each atomic role R let's define

RT = {{a,b) | R € Lg(a, b)}

@ Observe that Z is a model of A¢. A backward induction can
be used to show that Z must be also a model of each previous
step and thus also A.
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o Why we need completion graphs 7 Aren't ABOXes enough to
maintain the state for TA 7
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o Why we need completion graphs 7 Aren't ABOXes enough to
maintain the state for TA 7

e indeed, for ALC they would be enough. However, for complex
DLs a TA state cannot be stored in an ABOX.
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A few remarks on TAs

@ Why we need completion graphs 7 Aren't ABOXes enough to
maintain the state for TA 7

e indeed, for ALC they would be enough. However, for complex
DLs a TA state cannot be stored in an ABOX.

@ What about complexity of the algorithm 7
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A few remarks on TAs

@ Why we need completion graphs 7 Aren't ABOXes enough to
maintain the state for TA 7

e indeed, for ALC they would be enough. However, for complex
DLs a TA state cannot be stored in an ABOX.

@ What about complexity of the algorithm 7

e Without proof, let's state that the algorithm is in P-SPACE
(between NP and EXP-TIME).
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TA Run Example

Let's check consistency of the ontology Ko = (0, .A2), where

Ay = {(ImaDite - Muz M AmaDite - Prarodic M —~dmaDite
(Muz 1 Prarodic))(JAN)}).

@ Let's transform the concept into NNF: dmaDite - Muz I
dmaDite - Prarodic MYmaDite - (—Muz LU —Prarodic)

" JAN"
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TA Run Example

Let's check consistency of the ontology Ko = (0, .A2), where
Ay = {(ImaDite - Muz M AmaDite - Prarodic M —~dmaDite

(Muz 1 Prarodic))(JAN)}).

@ Let's transform the concept into NNF: dmaDite - Muz I

dmaDite - Prarodic MYmaDite - (—Muz LU —Prarodic)
o Initial state Gp of the TA is

" JAN"

{{'¥ maDite -{"Muz 1 “Prarodic)) n {3 maDite - Prarodic) n {3 maDite - Muz))




TA Run Example (2)

@ Now, four sequences of steps 2,3,4 of the TA are performed.
TA state in step 4, evolves as follows:

AN

{4 mabite -Muz)

(3 maDite -Prarodic)

(v mabDite - ("Muz u ~Prarodic))

(' maDite -("Muz u “Prarodic)) n (3 maDite -Prarodic) n (3 mabDite -Muz))
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Prarodic {"Muz U “Prarodic) aboratory )\




TA Run Example (2)

@ Now, four sequences of steps 2,3,4 of the TA are performed.
TA state in step 4, evolves as follows:

o {Go} Hﬂle {G1} Hﬂle {Gy} aﬂe {Gs} Vﬂle {Gys}, where
G4 is

AN

{4 mabite -Muz)

(3 maDite -Prarodic)

(v mabDite - ("Muz u ~Prarodic))

(' maDite -("Muz u “Prarodic)) n (3 maDite -Prarodic) n (3 mabDite -Muz))

o %
& %
£ ®
wpn e
("Muz u "Prarodic) Muz |
Prarodic {"Muz U “Prarodic) aboratory )\
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TA Run Example (3)

@ By now, we applied just deterministic rules (we still have just
a single completion graph). At this point no other
deterministic rule is applicable.

“JAN" “JAN"

{3 maDite -Muz) {3 maDite -Muz)

{3 mabite -Prarodic) {3 mabite -Prarodic)
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TA Run Example (3)

@ By now, we applied just deterministic rules (we still have just

a single completion graph). At this point no other

deterministic rule is applicable.

@ Now, we have to apply the L-rule to the concept

—Muz LI =Rodic either in the label of node “0", or in the label
of node “1". Its application e.g. to node “1" we obtain the

state {G5, G5} (G5 left, Gg right)

"IN

"IN

{3 maDite -Muz)

{3 mabite -Prarodic)

{¥ mabite -{*Muz i ~Prarodic))

{{¥ mabite -(~Muz L1 ~Praradic)) 1 (3 mabite -Prarodic) 1 {3 maDite -muz))

{3 maDite -Muz)
{3 mabite -Prarodic)
{¥ mabite -{*Muz i ~Prarodic))

{{¥ mabite -(~Muz L1 ~Praradic)) 1 (3 mabite -Prarodic) 1 {3 maDite -muz))

”
£
) 3%
5 %
L o
(Muz U “Prarodic) .
“Prarodic
Prarodic {"Muz L1 “Prarodic)

2
g
&

-

~Muz
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Prarodic
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o
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TA Run Example (4)

@ We see that Gs contains a direct clash in node “1". The only
other option is to go through the graph Gg. By application of
LI-rule we obtain the state {Gs, G7, Gg}, where Gy (left), Gg
(right) are derived from Gg :

“JAN" “JAN"
(¥ maDite -(*Muz u ~Prarodic)) (¥ maDite -(*Muz u ~Prarodic))
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TA Run Example (4)

@ We see that Gs contains a direct clash in node “1". The only
other option is to go through the graph Gg. By application of
LI-rule we obtain the state {Gs, G7, Gg}, where Gy (left), Gg
(right) are derived from Gg :

“JAN" “JAN"
(¥ mabDite -(*Muz L ~Prarodic)) (¥ mabDite -(*Muz L ~Prarodic))
{3 maDite -Prarodic) {3 maDite -Prarodic)
{3 maDite -Muz) {3 maDite -Muz)
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@ Gy is complete and without direct clash. ormory
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TA Run Example (5)

... A canonical model Z> can be created from Gy. Is it the only
model of [y ?

o AI2 = {Jan, i1, iz},
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model of [y ?
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o maDite™ = {(Jan, i), (Jan, ix)},
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TA Run Example (5)

model of [y ?

... A canonical model Z> can be created from Gy. Is it the only
o AI2 = {Jan, i1, iz},

o maDite™ = {(Jan, i), (Jan, ix)},
o Prarodic®? = {i1},



TA Run Example (5)

... A canonical model Z> can be created from Gy. Is it the only
model of [y ?

o AI2 = {Jan, i1, iz},

o maDite™ = {(Jan, i), (Jan, ix)},
o Prarodic®? = {i1},
o Muz®2 = {ir},



TA Run Example (5)

... A canonical model Z> can be created from Gy. Is it the only
model of [y ?

o Afz = {Jan, i1, iz},

o maDite™ = {(Jan, i), (Jan, ix)},

o Prarodic®? = {i1},

o Muz®2 = {ir},

o “JAN"2 = Jan, “0"" = iy, “1""2 = Iy,




General Inclusions

We have presented the tableau algorithm for consistency checking
of K = (0,.A). How the situation changes when 7 # () ?

@ consider T containing axioms of the form C; C D; for
1 < i< n.Such T can be transformed into a single axiom

TETc
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General Inclusions

We have presented the tableau algorithm for consistency checking
of K = (0,.A). How the situation changes when 7 # () ?

@ consider T containing axioms of the form C; C D; for
1 < i< n.Such T can be transformed into a single axiom

TETc

where T ¢ denotes a concept (=G LUDy)M...M(=C, U Dy)

o for each model Z of the theory K, each element of AT must
belong to the interpretation of the concept at the right-hand
side. How to achieve this ?
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What about this ?
—c rule

o T
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What about this ?

—C rule

if Tc ¢ Lg(a) for some a € V.
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What about this ?

—C rule

if Tc ¢ Lg(a) for some a € V.
then §'=5Su {Gl} \ {G}, where G’ = (VG7 Eg, LG/), a

Le/(a) = Lg(a) U{T ¢} and otherwise is the same as Lg.
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General Inclusions (2)

What about this ?
—c rule
if T¢ ¢ Lg(a) for some a € V.
then S’ =SU{G'}\ {G}, where G' = (Vg,Eg, Lgr), a
Le/(a) = Lg(a) U{T ¢} and otherwise is the same as Lg.

Consider K3 = ({Muz T 3maRodice - Muz}, As). Then T¢ is
—Muz LI dmaRodice - Muz. Let's use the introduced TA enriched
by —c rule. Repeating several times the application of rules —,

—, —3 to Gy (that is not complete w.r.t. to — rule) from the
previous example we get ...




General Inclusions (3)

AN

(¥ mabite -(“Muz u ~Prarodic))
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Prarodic ("Muz u ~Prarodic)
“Prarodic
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@ TA tries to find an infinite model. It is necessary to force it

representing an infinite model by a finite completion graph.
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@ TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.
blocking.

@ The mechanism that enforces finite representation is called
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Blocking in TA

@ TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

@ The mechanism that enforces finite representation is called
blocking.

@ Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.
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@ The mechanism that enforces finite representation is called
blocking.

@ Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.

e For ALC it can be shown that so called subset blocking is
enough:

e In completion graph G a node x (not present in ABOX
A) is blocked by node y, if there is an oriented path from
y to x and Lg(x) C Lg(y).



Blocking in TA

@ TA tries to find an infinite model. It is necessary to force it
representing an infinite model by a finite completion graph.

@ The mechanism that enforces finite representation is called
blocking.

@ Blocking ensures that inference rules will be applicable until
their changes will not repeat “sufficiently frequently”.
e For ALC it can be shown that so called subset blocking is
enough:
e In completion graph G a node x (not present in ABOX
A) is blocked by node y, if there is an oriented path from
y to x and Lg(x) C Lg(y).
@ All inference rules are applicable until the node a in their
definition is not blocked by another node.



@ In the previous example, the blocking ensures that node “2" is

blocked by node “0" and no other expansion occurs. Which
model corresponds to such graph ?
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Blocking in TA (2)

@ In the previous example, the blocking ensures that node 2" is
blocked by node “0" and no other expansion occurs. Which
model corresponds to such graph ?

@ Introduced TA with subset blocking is sound, complete
and finite decision procedure for ALC.



o http://krizik.felk.cvut.cz/km/dl /index.html
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