\section*{O P P \\ | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

Expressive Description Logics

Petr Křemen
petr.kremen@fel.cvut.cz

FEL ČVUT

Our plan

From $\mathcal{A L C}$ to $\operatorname{OWL}(2)$-DL

Final Remarks

From $\mathcal{A L C}$ to $O W L(2)-D L$

Extending . . . $\mathcal{A L C}$...

- We have introduced $\mathcal{A L C}$, together with a decision procedure. Its expressiveness is higher than propositional calculus, still it is insufficient for many practical applications.
- Let's take a look, how to extend $\mathcal{A L C}$ while preserving decidability.

Extending $\ldots \mathcal{A} \mathcal{L C}$

\mathcal{N} (Number restructions) are used for restricting the number of successors in the given role for the given concept. syntax (concept) semantics

$$
\left\{\begin{array}{ll}
\{a \mid & \left|\left\{b \mid(a, b) \in R^{\mathcal{I}}\right\}\right| \geq n \\
a \mid & \left|\left\{b \mid(a, b) \in R^{\mathcal{I}}\right\}\right| \leq n \\
\{a \mid & \left|\left\{b \mid(a, b) \in R^{\mathcal{I}}\right\}\right|=n
\end{array}\right\}
$$

Example

- Concept Woman \sqcap (≤ 3 hasChild) denotes women who have at most 3 children.
- What denotes the axiom Car $\sqsubseteq ~(~ \geq 4$ hasWheel) ?
- ... and Bicycle \equiv (= 2 hasWheel) ?

Extending $\ldots \mathcal{A} \mathcal{L C}$

\mathcal{Q} (Qualified number restrictions) are used for restricting the number of successors of the given type in the given role for the given concept.
$\begin{array}{ll}\text { syntax (concept) } & \text { semantics } \\ \left.\begin{array}{ll}(\geq n R C) & \{a \mid \\ (\leq n R C) & \left|\left\{b \mid(a, b) \in R^{\mathcal{I}} \wedge b^{\mathcal{I}} \in C^{\mathcal{I}}\right\}\right| \geq n \\ (=n R C) & \{a \mid \\ \left(\left\{b \mid(a, b) \in R^{\mathcal{I}} \wedge b^{\mathcal{I}} \in C^{\mathcal{I}}\right\} \mid \leq n\right. \\ & \{a \mid \\ & \left|\left\{b \mid(a, b) \in R^{\mathcal{I}} \wedge b^{\mathcal{I}} \in C^{\mathcal{I}}\right\}\right|=n\end{array}\right\}\end{array}$

Example

- Concept Woman $\sqcap(\geq 3$ hasChild Man) denotes women who have at least 3 sons.
- What denotes the axiom Car $\sqsubseteq ~(~ \geq 4$ hasPart Wheel) ?
- Which qualified number restrictions can be expressed in $\mathcal{A L C}$?

Extending . . . $\mathcal{A L C}$... (4)

\mathcal{O} (Nominals) can be used for naming a concept elements explicitely.

syntax (concept)	semantics
$\left\{a_{1}, \ldots, a_{n}\right\}$	$\left\{a_{1}^{T}, \ldots, a_{n}^{T}\right\}$

Example

- Concept $\{$ MALE, FEMALE $\}$ denotes a gender concept that must be interpreted with at most two elements. Why at most ?
- Continent \equiv \{EUROPE, ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA $\}$?
\mathcal{I} (Inverse roles) are used for defining role inversion.

syntax (role)	semantics
R^{-}	$\left(R^{工}\right)^{-1}$

Example

- Role maDite ${ }^{-}$denotes the relationship maRodice.
- What denotes axiom Person $\sqsubseteq ~(=2 ~ h a s C h i l d ~-~) ~ ? ~$
- What denotes axiom Person $\sqsubseteq \exists h a s C h i l d{ }^{-} \cdot \exists$ hasChild • T ?

Extending . . . $\mathcal{A L C}$... (6)

.trans (Role transitivity axiom) denotes that a role is transitive.
Attention - it is not a transitive closure operator.

syntax $($ axiom $)$	semantics
$\operatorname{trans}(R)$	R^{I} is transitive

Example

- Role isPartOf can be defined as transitive, while role hasParent is not. What about roles hasPart, hasPart ${ }^{-}$, hasGrandFather ${ }^{-}$?
- What is a transitive closure of a relationship ? What is the difference between a transitive closure of hasDirectBoss ${ }^{\mathcal{I}}$ and hasBoss ${ }^{\text {I }}$.

Extending . . . A LC ...(7)

\mathcal{H} (Role hierarchy) serves for expressing role hierarchies (taxonomies) - similarly to concept hierarchies.

syntax (axiom)	semantics
$R \sqsubseteq S$	$R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

Example

- Role hasMother can be defined as a special case of the role hasParent.
- What is the difference between a concept hierarchy Mother \sqsubseteq Parent and role hierarchy hasMother \sqsubseteq hasParent.

Extending . . . $\mathcal{A L C}$... (8)

\mathcal{R} (role extensions) serve for defining expressive role constructs, like role chains, role disjunctions, etc.

syntax	semantics
$R \circ S \sqsubseteq P$	$R^{\mathcal{I}} \circ S^{\mathcal{I}} \sqsubseteq P^{\mathcal{I}}$
$\operatorname{Dis}(R, R)$	$R^{\mathcal{I}} \cap S^{\mathcal{I}}=\emptyset$
$\exists R \cdot$ Self	$\left\{a \mid(a, a) \in R^{\mathcal{I}}\right\}$

Example

- How would you define the role hasUncle by means of hasSibling and hasParent ?
- how to express that R is transitive, using a role chain ?
- Whom does the following concept denote Person $\sqcap \exists l i k e s$. Self ?

Extending . . . $\mathcal{A L C}$... - OWL-DL a OWL2-DL

- From the previously introduced extensions, two prominent decidable supersets of $\mathcal{A L C}$ can be constructed:
- $\mathcal{S H O I N}$ is a description logics that backs OWL-DL.
- $\mathcal{S R O I Q}$ is a description logics that backs OWL2-DL.
- Both OWL-DL and OWL2-DL are semantic web languages they extend the corresponding description logics by:
syntactic sugar - axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.
extralogical constructs - imports, annotations
data types - XSD datatypes are used

Extending $\mathcal{A L C}$ - Reasoning

- What is the impact of the extensions to the automated reasoning procedure? The introduced tableau algorithm for $\mathcal{A} \mathcal{L C}$ has to be adjusted as follows:
- additional inference rules reflecting the semantics of newly added constructs $(\mathcal{O}, \mathcal{N}, \mathcal{Q})$
- definition of R-neighbourhood of a node in a completion graph. R-neighbourhood notion generalizes simple tests of two nodes being connected with an edge, e.g. in \exists-rule. $(\mathcal{H}, \mathcal{R}, \mathcal{I})$
- new conditions for direct clash detection
- more strict blocking conditions (blocking over graph structures).
- This results in significant computation blowup - from EXPTIME ($\mathcal{A L C}$) to
- NEXPTIME for $\mathcal{S H O I N}$
- N2EXPTIME for $\mathcal{S R O I Q}$

Final Remarks

Other extensions

Modal Logic introduces modal operators - possibility/necessity, used in multiagent systems.

Example

- (\square represents e.g. the "believe" operator of an agent)

$$
\begin{equation*}
\square(\text { Man } \sqsubseteq \text { Person } \sqcap \forall \text { hasFather • Man }) \tag{1}
\end{equation*}
$$

- As $\mathcal{A L C}$ is a syntactic variant to a multi-modální propositional logic, where each role represents the accessibility relationa between worlds in Kripke structure, the previous example can be transformed to the modal logic as:
-

$$
\begin{equation*}
\square\left(\text { Man } \Rightarrow \text { Person } \wedge \square_{\text {hasFather }} \text { Man }\right) \tag{2}
\end{equation*}
$$

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions (see [HPS05]).
Data Types (\mathcal{D}) allow integrating a data domain (numbers, strings), e.g.
Person $\sqcap \exists$ hasAge $\cdot 23$ represents the concept describing " 23 -years old persons".

DL Tools and Reasoners

RacerPro (http://www.racer-systems.com) is a commercial LISP-based system for OWL-DL and SWRL (also available in client/server version).
Pellet (http://www.mindswap.org) is an open-source Java OWL2-DL engine.
Jena http://jena.sourceforge.net/ is an open-source Java framework and API for OWL and RDF(S).
FaCT++ http://owl.man.ac.uk/factplusplus/ is a DL reasoner for $\mathcal{S H O I Q}$ written in $\mathrm{C}++$.
and other ... KAON2, FOWL, Kris

\section*{O P P
 | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

