\section*{O P P \\ | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

ePAL - Heaps

Radek Mařík
Marko Genyk-Berezovskyj

ČVUT FEL, K13133
October 17, 2012

Outline

(1) Binary Heap

(2) Binomial Heap

Outline

(1) Binary Heap

(2) Binomial Heap

Example 1

One of the following sequences represents a heap stored in an array. Which one?
(1) 95463
(2) 54239
(3) 38956
(ㄷ) 51891
(3) 13654

Example 2

One of the following sequences represents a heap stored in an array. Which one?
(1) 32674
(2) 93164
(3) 24879
(1) 63873
(6) 27481

Example 3

One of the following sequences represents a heap stored in an array. Which one?
(1) 25649
(2) 26549
(3) 26594
(9) 25496
(6) 29456

Example 4

One of the following sequences represents a heap stored in an array. Which one?
(1) 14538
(2) 14385
(3) 15438
(1) 15483
(5) 18345

Example 5

One of the following sequences represents a heap stored in an array. Which one?
(1) 39475
(2) 34975
(3) 43579
(9) 35749
(5) 45379

Example 6

One of the following sequences represents a heap stored in an array. Which one?
(1) 29386
(2) 32689
(3) 26398
(9) 29863
(5) 36289

Example 7

What are the minimum and maximum numbers of elements in a heap of height h ?

Example 8

Show that in any subtree of a max-heap, the root of the subtree contains the largest value occurring anywhere in that subtree.

Example 9

Where in a max-heap might the smallest element reside, assuming that all elements are distinct?

Example 10

Is an array that is in sorted order a min-heap?

Example 11

Is the array with values $[23 ; 17 ; 14 ; 6 ; 13 ; 10 ; 1 ; 5 ; 7 ; 12]$ a max-heap?

Example 12

Insert elements $[45,13,12,16,9,5]$ in this order into a min-heap.

Example 13

Delete all minimum elements in step by step manner from the following array representing a min-heap $[5,12,9,45,16,13]$.

Example 14

What is the result min-heap represented as an array if the input sequence of elements is
$[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]$

Example 15

Decrease key 9 by 6 and then 17 by 16 in the min-heap
$[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]$.

Example 16

Create a min-heap by inserting elements from the input sequence $[45,1,32,27,13,7,3,16,8,11,21,9,5,10,31]$

Example 17

Delete keys $8,13,9$ in this order from the min-heap $[1,8,3,13,11,5,7,45,16,27,21,32,9,10,31]$.

Example 18

Create two min-heaps from input sequences [$45,1,32,27,13,7,3$] and $[16,8,11,21,9,5,10,31]$ and then merge both heaps.

Outline

(1) Binary Heap

(2) Binomial Heap

Example 1

Create a binomial heap from the input sequence [30, 10, 90, 80, 60, 70, 20, 50, 40].

Example 2

[30, 10, 90, 80, 60, 70, 20, 50, 40]

Extract a half of elements from the binomial heap created from the above input sequence (the previsous example).

Example 3

Now, decrease the key of the max node (of the heap of the previous example) to that of the original min node (10).

Example 4

...... and then extract the min again. Which should be 10.

References I

\section*{O P P
 | PRA | HA |
| :--- | :--- |
| PRA | GUE |
| PRA | GA |
| PRA | G |}

OPPA European Social Fund Prague \& EU: We invest in your future.

