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Points in plane in general position are given, suppose no two are identical. 
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Scheme of area divison exploited in k-d tree. 
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   Cells of k-d tree in dim 2 Area division 2 
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Note that k-d tree presented here is basic simple variant, many others, more 

effective, more sophisticated variants do exist.  

     K-d tree Description 3 
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K-d tree is a binary search tree representing a rectangular area in D-dimensional 

space. The area is divided (and recursively subdivided) into rectangular cells.  

Denote dimensions naturaly by their index 0, 1, 2, ...  D1. 

 

Denote R root of a tree or subtree.  

A rectangular D-dimensional cell C(R) (hyperrectangle) is associated with R.   

Let R coordinates be R[0], R[2], ..., R[D1] and its depth in tree h.  

The cell C(R) is splitted into two subcells by a hyperplane  of dim D1,  

for all which points y holds  y[h%D] = R[h%D]. 

 

All nodes in left subtree of R are characterised by their (h%D)-th coordinate being 

less than R[h%D]. 

All nodes in right subtree of R are characterised by their (h%D)-th coordinate 

being greater than or equal to R[h%D]. 

 

Let us call value h%D splitting /cutting dimension of a node in depth h. 



 

 

 

 

 

Splitting/dividing hyperplane 

Node R 

Typically node R lies on the boundary of its associated  cell 

Cell associated with R 
Cell associated with 

left subtree of R 

Cell associated with 

right subtree of R 

Line through R parallel to axis  

of splitting dimension 

     K-d tree cell Illustration 4 
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40, 55 

40, 55 

85, 25 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

x < 40 x >= 40 

Scheme of area divison exploited in k-d tree. 

     K-d tree structure  Step by step I 5 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

20, 45 

75, 35 

85, 25 

y < 45 y >= 45 y < 35 y >=35 

Scheme of area divison exploited in k-d tree. 

     K-d tree structure Step by step II 6 

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14 



40, 55 

20, 45 75, 35 

60, 30 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 25, 30 

30,60 

65, 10 

60,70 

Scheme of area divison exploited in k-d tree. 

     K-d tree structure Step by step III 7 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

15, 70 

50, 20 
85, 25 

90, 80 

10, 15 

Scheme of area divison exploited in k-d tree. 

     K-d tree structure Step by step IV 8 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

40, 55 

30, 60 

15, 70 

20, 45 

15, 25 

10, 15 

25, 30 

65, 10 

50, 20 
85, 25 

75, 35 

90, 80 

60, 70 

Complete k-d tree with with marked area division. 

     K-d tree structure Complete in dim 2 9 
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Operation Find(key) Is analogous to 1D trees. 

 

Let   

Q[] = Q[0], Q[1], ..., Q[D1] be the coordinates of the query point Q, 

N[] = N[0], N[1], ..., N[D1] be the coordinates of the current node N,  

h be the depth of current node N. 

 

If  Q[] == N[]  stop, Q was found   

if Q[h%D]  <  N[h%D] continue search recursively in left subtree of N. 

if Q[h%D] >= N[h%D] continue search recursively in right subtree of N. 

 

     K-d tree  operation Find Description 10 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

40, 55 

30, 60 

20, 45 

15, 25 

10, 15 

25, 30 

65, 10 

50, 20 

85, 25 

75, 35 

90, 80 

60, 70 

Find [15, 70]  Find [15, 70]  

15, 70 

Operation Find works analogously as in other (1D) trees.  

Note how cutting dimension along which the tree is searched  

alternates regularly with the depth of a node currently visited. 

     K-d tree  operation Find Example I 11 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

15 <  40 

40, 55 

Find  [15, 70]  Find  [15, 70]  

Operation Find works analogously as in other (1D) trees.  

Search along x-dimension in depth 0. Compare x-coordinate of searched key 

with x-coordinate of the node and either stop(found) or go L/R accordingly. 

     K-d tree  operation Find Example II 12 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

70  >=  45 
Find  [15, 70]  Find  [15, 70]  

20, 45 

Operation Find works analogously as in other (1D) trees.  

Search along y-dimension in depth 1. 

     K-d tree  operation Find Example III 13 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 15, 70 

15, 25 

85, 25 

15  <  30 

10, 15 

Find  [15, 70]  Find  [15, 70]  

30, 60 

Operation Find works analogously as in other (1D) trees.  

Search along x-dimension in depth 2. 

     K-d tree  operation Find Example IV 14 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 15, 70 

15, 25 

85, 25 10, 15 

Found [15, 70]  Found [15, 70]  

Operation Find works analogously as in other (1D) trees.  

Search along y-dimension in depth 3, etc. 

     K-d tree  operation Find Example V, finished 15 

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14 



Operation Insert(point) is analogous to 1D trees. 

 

Let   P[] = P[0], P[1], ..., P[D1] be the coordinates of the inserted point P. 

Perform search for P in the tree. 

Let L[] = L[0], L[1], ..., L[D1] be the coordinates of the leaf L which was 

last node visited during the search. Let h be the depth of L. 

 

Create node node N containing P as a key. 

If P[h%D]  <   L[h%D]  set N as left child of L 

If P[h%D]  >= L[h%D]  set N as right child of L 

  

   K-d tree operation Insert Description 16 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

40, 55 

30, 60 

15, 70 

20, 45 

15, 25 

10, 15 

25, 30 

65, 10 

50, 20 

85, 25 

75, 35 

90, 80 

60, 70 

Insert [55, 30]  Insert [55, 30]  

Operation Insert works analogously as in other (1D) trees.  

Find the place for the new node under some of the leaves and insert node there. 

Do not accept key which is identical to some other key already stored in the tree. 

   K-d tree operation Insert Example I 17 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

55  >=  40 

40, 55 

Insert  [55, 30]  Insert  [55, 30]  

Operation Insert works analogously as in other (1D) trees.  

Searching for the place for the inserted key/node. 

   K-d tree operation Insert Example II 18 
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75, 35 

40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

30  <  35 Insert [55, 30]  Insert [55, 30]  

Operation Insert works analogously as in other (1D) trees.  

Searching for the place for the inserted key/node. 

   K-d tree operation Insert Example III 19 
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65, 10 

40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 15, 70 

15, 25 

85, 25 

55  <  65 

10, 15 

Insert [55, 30]  Insert [55, 30]  

Operation Insert works analogously as in other (1D) trees.  

Searching for the place for the inserted key/node. 

   K-d tree operation Insert Example IV 20 
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65, 10 

40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 15, 70 

15, 25 

85, 25 

30 >= 20 Insert [55, 30]  Insert [55, 30]  

10, 15 

Operation Insert works analogously as in other (1D) trees.  

Searching for the place for the inserted key/node. 

   K-d tree operation Insert Example V 21 
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65, 10 

40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 15, 70 

15, 25 

85, 25 

55, 30 

Inserted [55, 30]  Inserted [55, 30]  

10, 15 

Operation Insert works analogously as in other (1D) trees.  

The place for the inserted key/node was found, node/key was inserted. 

   K-d tree operation Insert Example VI, finished 22 
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Node insert(Point x, Node t, int cd) { 

  if (t == null)               // under a leaf 

    t = new Node(x); 

  else if (x.equals(t.coords)) 

    throw new ExceptionDuplicatePoint(); 

  else if (x[cd] < t.coords[cd])  

    t.left = insert(x, t.left, (cd+1)%D); 

  else 

    t.right = insert(x, t.right, (cd+1)%D); 

  return t; 

} 

  

   K-d tree operation Insert Code 23 
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Operation FindMin(dim = k) 

 

Searching for key which k-th coordinate is mimimal of all keys in the tree. 

 

FindMin(dim = k) is performed as part of  Delete operation. 

 

The k-d tree offers no simple method of keeping track of the keys with 

minimum coordinates in any dimension because Delete operation may 

often significantly change the structure of the tree. 

 

FindMin(dim = k) is the most costly operation,  

with complexity O(n11/d), in the tree with n nodes and dimension d. 

For d = 2 it is O(n1/2). 

  

 K-d tree operation FindMin Description 24 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

FindMin(dim = y)    FindMin(dim = y)    

Node with minimal y-coordinate can be in L or R subtree of a node N 

corresponding to cutting dimension other than y, thus both subtrees of N 

(including N) must be searched. 

 K-d tree operation FindMin Example I 25 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

FindMin(dim = y)    FindMin(dim = y)    

Node with minimal y-coordinate can be only in L subtree of a node N 

corresponding to cutting dimension y, thus only L subtree of N (including N) 

must be searched. 

 K-d tree operation FindMin Example II 26 

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14 



FindMin(dim = y)    FindMin(dim = y)    

40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

Node with minimal y-coordinate can be in L or R subtree of a node N 

corresponding to cutting dimension other than y, thus both subtrees of N 

(including N) must be searched. 

 K-d tree operation FindMin Example III 27 
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40, 55 

20, 45 75, 35 

30, 60 25, 30 60, 70 65, 10 

50, 20 90, 80 10, 15 15, 70 

15, 25 

85, 25 

FindMin(dim = y)    FindMin(dim = y)    

Node with minimal y-coordinate can be only in L subtree of a node N 

corresponding to cutting dimension y, thus only L subtree of N (including N) 

must be searched. 

 K-d tree operation FindMin Example IV, finished 28 
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Node findMin(Node t, int dim, int cd) { 

  if (t == null) return null; 

  if (cd == dim) 

    if (t.left == null) return t; 

    else return findMin(t.left, dim,(cd+1)%D); 

  else 

    return min(dim, 

               t, 

               findMin(t.left, dim, (cd+1)%D), 

               findMin(t.right, dim, (cd+1)%D)); 

} 

Function min(int dim; Node t1, t2, t3) returns that node out of t1, t2, t3 which 

coordinate in dimension dim is the smallest. 
if (t1.coords[dim] <= t2.coords[dim] && t1.coords[dim] <= t3.coords[dim]) return t1; 

if (t2.coords[dim] <= t1.coords[dim] && t2.coords[dim] <= t3.coords[dim]) return t2; 

etc… 

 K-d tree operation FindMin Code 29 
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Only leaves are physically deleted.  

 

Deleting an inner node X is done by substituting its key values by key 

values of another suitable node Y deeper in the tree. If Y is leaf, physically 

delete Y otherwise set X := Y and continue recursively. 

 

Denote cuting dimension of X by cd. 

 

If right subtree R of X is unempty use operation FindMin to find node Y in R 

which coordinate in cd is minimal. (It may be sometimes even equal to X 

coordinate in cd. 

   

If right subtree R of X is empty use operation FindMin to find node Y in left 

subtree L of X which coordinate in cd is minimal. Substitute key values of X 

by those of Y. Make (by simple reference swap) subtree L be the right 

subtree of updated X. Now X has right subtree, continue process with 

previous case. 

  

 K-d tree operation Delete Description 30 
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35, 60 
90, 60 

20, 45 

10, 35 

80, 40 

50, 30 

20, 20 

70, 25 

60, 10 

60, 80 
60, 80 

35, 60 

90, 60 

20, 45 

10, 35 80, 40 

50, 30 20, 20 

70, 25 

60, 10 

Delete [35, 60]  Delete [35, 60]  

Deleting node [35, 60], its cutting dimension is x. 

Find node W with minimum x-coordinate in right subtree of  [35, 60]. 

Note that W might have different cutting dimension. 

 K-d tree operation Delete Example I 31 
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90, 60 

20, 45 

10, 35 

80, 40 

50, 30 

20, 20 

70, 25 

60, 10 

60, 80 
60, 80 

50, 30 

90, 60 

20, 45 

10, 35 80, 40 

50, 30 20, 20 

70, 25 

60, 10 

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress.... 

Deleting node [35, 60], its cutting dimension is x. 

Find node W with minimum x-coordinate in right subtree of  [35, 60]. 

Fill node [35, 60] with keys of W  

and if W is not a leaf  continue by recursively deleting W. 

Delete [50, 30]  Delete [50, 30]  

 K-d tree operation Delete Example II 32 
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60, 80 

50, 30 

90, 60 

20, 45 

10, 35 80, 40 

50, 30 20, 20 

70, 25 

60, 10 

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress.... 

Deleting original  node [50, 30], it cutting dimension is y, it has no R subtree. 

Find node Z with minimum y-coordinate in LEFT subtree of  [50, 30], 

Fill  [50, 30] with keys of Z and move L subtree of [50, 30] to its R subtree. 

Delete [50, 30]  Delete [50, 30]  

90, 60 

20, 45 

10, 35 

80, 40 

50, 30 

20, 20 

70, 25 

60, 10 

60, 80 

 K-d tree operation Delete Example III 33 
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60, 80 

50, 30 

90, 60 

20, 45 

10, 35 80, 40 

60, 10 20, 20 

70, 25 

60, 10 

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress.... 

Deleting original node [50, 30], it cutting dimension is y, it has no R subtree. 

Find node Z with minimum y-coordinate in LEFT subtree of  [50, 30], 

Fill  [50, 30] with keys of Z and move L subtree of [50, 30] to its R subtree. 

If Z is not a leaf continue by recursively deleting Z. 

Delete [50, 30]... 

In progress...  

Delete [50, 30]... 

In progress...  

90, 60 

20, 45 

10, 35 

80, 40 

50, 30 

20, 20 

70, 25 

60, 10 

60, 80 

 K-d tree operation Delete Example IV 34 
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60, 80 

50, 30 

90, 60 

20, 45 

10, 35 80, 40 

60, 10 20, 20 

70, 25 

60, 10 

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress.... 

Deleting original node [60, 10], it it is a leaf, delete it and and stop. 

Note the change in the cell division left to [80, 40], the node with minimal 

y-coordinate becomes the splitting node for the corresponding area        . 

Delete [50, 30]... 

In progress...  

Delete [50, 30]... 

In progress...  

Delete [60, 10]  Delete [60, 10]  

90, 60 

20, 45 

10, 35 

80, 40 

50, 30 

20, 20 

70, 25 

60, 10 

60, 80 

 K-d tree operation Delete Example V 35 
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90, 60 

20, 45 

10, 35 

80, 40 

50, 30 

20, 20 

70, 20 

60, 10 

60, 80 
60, 80 

50, 30 

90, 60 

20, 45 

10, 35 80, 40 

60, 10 20, 20 

70, 25 

Deleted [35, 60] Deleted [35, 60] 

 K-d tree operation Delete Example VI, finished 36 
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90, 60 

20, 45 

10, 35 

80, 40 
50, 30 

20, 20 

70, 20 

60, 10 

60, 80 
60, 80 

50, 30 

90, 60 

20, 45 

10, 35 80, 40 

60, 10 20, 20 

70, 25 

Deleted [35, 60] Deleted [35, 60] 

35, 60 90, 60 

20, 45 

10, 35 

80, 40 
50, 30 

20, 20 

70, 25 

60, 10 

60, 80 
60, 80 

35, 60 

90, 60 

20, 45 

10, 35 80, 40 

50, 30 20, 20 

70, 25 

60, 10 

Delete [35, 60]  Delete [35, 60]  

 K-d tree operation Delete Example recapitulation 37 
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Node delete(Point x, Node t, int cd) { 

  if (t == null) throw new ExceptionDeleteNonexistentPoint(); 

  else if (x.equals(t.coords)) {   // point x found in t 

    if (t.right != null) {       // replace deleted from right   

      t.coords = findMin(t.right, cd, (cd+1)%D).coords(); 

      t.right = delete(t,coords, t.right, (cd+1)%D); 

    } 

    else if (t.left != null) {   // replace deleted from left 

      t.coords = findMin(t.left, cd, (cd+1)%D).coords(); 

      t.right = delete(t,coords, t.left, (cd+1)%D); 

      t.left = null; 

    } 

    else t = null;                  // delete leaf t 

  } 

  else                              // point x not found yet 

    if (x[cd] < t.coords[cd])       // search left subtree 

      t.left = delete(x, t.left, (cd+1)%D); 

    else                            // search right subtree 

      t.right = delete(x, t.right, (cd+1)%D); 

  return t; 

}  

 K-d tree operation Delete Code 38 
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Search runs recursively in L and R subtrees of a node (root at the start). 

 

Register and update partial results:  

Object  close = {close.point, close.dist}.  

Field .point refers to node(point) which is so far closest to the query, 

field.dist contains euclidean distance from .point to the query. 

 

Perform pruning: 

During search dismiss the cells (and associated subtrees) which are too far 

from query. Object close helps to accomplish this task.  

 

Traversal order (left or right subtree is searched first) depends on simple 

(in other vartiants of k-d tree on more advanced) heuristic: 

First search the subtree whose cell associated with it is closer to the query. 

This does not guarantee better results but in practice it helps. 

   

 

 K-d tree Nearest Neighbor Description 39 
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To implement Nearest Neighbour Search suppose existence of following: 

 

1. Class HyperRectangle (or Box, in 2D just Rectangle) representing cells of 

particular nodes in k-d tree. This class offers two methods: 

  HyperRectangle trimLeft(int cd, coords c) 

  HyperRectangle trimRight(int cd, coords c) 

When hyperrectangle this represents current cell, cd represents cutting 

dimension, c represents coordinates of a point (or node)   

then trimLeft returns the hyperrectangle associated with the left subtree of 

the point/node with coordinates c. Analogously trim Right returns 

hyperrectangle associated with the right subtree. 

 

 2. Class or utility G (like Geometry) equipped with methods 

distance(Point p, Point q) with obvious functionality 

distance(point p, Hyperrectangle r) which computes distance from q to the 

point of r which is nearest to q.   

 

3. Object close with fields dist and point, storing the best distance found so 

far and reference to the point at which it was attained. Initialize by  

dist = inf, point = null. 
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NNres nn(point q, Node t, int cd, HypRec r, Nnres close){ 

  if (t == null) return close;      // out of tree 

  if (G.distance(q, r) >= close.dist)  

    return close;            // cell of t is too far from q 

  Number dist = G.distance(q, t.coords); 

  if (dist < close.dist)     // upd close if necessary 

    { close.coords = t.coords; close.dist = dist; } 

  if (q[cd] < t.coords[cd] {          // q closer to L child 

     close = nn(q, t.left, (cd+1)%D,  

                   r.trimLeft(cd, t.coords), close); 

     close = nn(q, t.right, (cd+1)%D,  

                   r.trimRight(cd, t.coords), close); 

  } else {                            // q closer to R child 

     close = nn(q, t.right, (cd+1)%D,  

                   r.trimRight(cd, t.coords), close);          

     close = nn(q, t.left, (cd+1)%D,  

                   r.trimLeft(cd, t.coords), close); 

  } 

  return close; 

} 
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Complexity of NN search might be close to O(n) when data points and query 

point are  unfavorably arranged. However,  this happens only when: 

A. The dimension D is relatively high, 7,8… and more, 10 000 etc… 

B. The arrangement of points in low dimension D is very special (artificially 

constructed etc.) 

 

Expected time of NN  search is close to O(2d + log n) with uniformly 

distributed data.  

Thus it is effective only when 2d  is significantly smaller than n.  

 Nearest Neighbor search Complexity 47 

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  13/14 


