
Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

?/

p

x--y

2<1

x+y Hi!

Dave Mount: CMSC 420: Data Structures1 Spring 2001, Lessons 17&18.

http://www.cs.umd.edu/~mount/420/Lects/420lects.pdf

Hanan Samet: Foundations of multidimensional and metric data structures, Elsevier, 2006, chapter 1.5.

http://www.amazon.com/Foundations-Multidimensional-Structures-Kaufmann-Computer/dp/0123694469

To read

See PAL webpage for references

 Search trees, k-d tree

Marko Berezovský

Radek Mařík

PAL 2012

40, 55

20, 45

75, 35

30, 60

25, 30

60, 70

65, 10

50, 20

10, 15

15, 70

15, 25

85, 25

90, 80

60, 70

85, 25

75, 35

65, 10

50, 20

40, 55

30, 60

15, 70

20, 45

25, 30
15, 25

10, 15

90, 80

Points in plane in general position are given, suppose no two are identical.

 K-d tree in dimension 2 Data points 1

0, 0 100, 0

0, 100 100, 100

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Scheme of area divison exploited in k-d tree.

60, 70

85, 25

75, 35

65, 10

50, 20

40, 55

30, 60

15, 70

20, 45

25, 30
15, 25

10, 15

90, 80

 Cells of k-d tree in dim 2 Area division 2

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Note that k-d tree presented here is basic simple variant, many others, more

effective, more sophisticated variants do exist.

 K-d tree Description 3

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

K-d tree is a binary search tree representing a rectangular area in D-dimensional

space. The area is divided (and recursively subdivided) into rectangular cells.

Denote dimensions naturaly by their index 0, 1, 2, ... D1.

Denote R root of a tree or subtree.

A rectangular D-dimensional cell C(R) (hyperrectangle) is associated with R.

Let R coordinates be R[0], R[2], ..., R[D1] and its depth in tree h.

The cell C(R) is splitted into two subcells by a hyperplane of dim D1,

for all which points y holds y[h%D] = R[h%D].

All nodes in left subtree of R are characterised by their (h%D)-th coordinate being

less than R[h%D].

All nodes in right subtree of R are characterised by their (h%D)-th coordinate

being greater than or equal to R[h%D].

Let us call value h%D splitting /cutting dimension of a node in depth h.

Splitting/dividing hyperplane

Node R

Typically node R lies on the boundary of its associated cell

Cell associated with R
Cell associated with

left subtree of R

Cell associated with

right subtree of R

Line through R parallel to axis

of splitting dimension

 K-d tree cell Illustration 4

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

40, 55

85, 25

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

x < 40 x >= 40

Scheme of area divison exploited in k-d tree.

 K-d tree structure Step by step I 5

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

20, 45

75, 35

85, 25

y < 45 y >= 45 y < 35 y >=35

Scheme of area divison exploited in k-d tree.

 K-d tree structure Step by step II 6

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

60, 30 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25 25, 30

30,60

65, 10

60,70

Scheme of area divison exploited in k-d tree.

 K-d tree structure Step by step III 7

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

15, 70

50, 20
85, 25

90, 80

10, 15

Scheme of area divison exploited in k-d tree.

 K-d tree structure Step by step IV 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

40, 55

30, 60

15, 70

20, 45

15, 25

10, 15

25, 30

65, 10

50, 20
85, 25

75, 35

90, 80

60, 70

Complete k-d tree with with marked area division.

 K-d tree structure Complete in dim 2 9

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Operation Find(key) Is analogous to 1D trees.

Let

Q[] = Q[0], Q[1], ..., Q[D1] be the coordinates of the query point Q,

N[] = N[0], N[1], ..., N[D1] be the coordinates of the current node N,

h be the depth of current node N.

If Q[] == N[] stop, Q was found

if Q[h%D] < N[h%D] continue search recursively in left subtree of N.

if Q[h%D] >= N[h%D] continue search recursively in right subtree of N.

 K-d tree operation Find Description 10

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

40, 55

30, 60

20, 45

15, 25

10, 15

25, 30

65, 10

50, 20

85, 25

75, 35

90, 80

60, 70

Find [15, 70] Find [15, 70]

15, 70

Operation Find works analogously as in other (1D) trees.

Note how cutting dimension along which the tree is searched

alternates regularly with the depth of a node currently visited.

 K-d tree operation Find Example I 11

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

15 < 40

40, 55

Find [15, 70] Find [15, 70]

Operation Find works analogously as in other (1D) trees.

Search along x-dimension in depth 0. Compare x-coordinate of searched key

with x-coordinate of the node and either stop(found) or go L/R accordingly.

 K-d tree operation Find Example II 12

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

70 >= 45
Find [15, 70] Find [15, 70]

20, 45

Operation Find works analogously as in other (1D) trees.

Search along y-dimension in depth 1.

 K-d tree operation Find Example III 13

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 15, 70

15, 25

85, 25

15 < 30

10, 15

Find [15, 70] Find [15, 70]

30, 60

Operation Find works analogously as in other (1D) trees.

Search along x-dimension in depth 2.

 K-d tree operation Find Example IV 14

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 15, 70

15, 25

85, 25 10, 15

Found [15, 70] Found [15, 70]

Operation Find works analogously as in other (1D) trees.

Search along y-dimension in depth 3, etc.

 K-d tree operation Find Example V, finished 15

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Operation Insert(point) is analogous to 1D trees.

Let P[] = P[0], P[1], ..., P[D1] be the coordinates of the inserted point P.

Perform search for P in the tree.

Let L[] = L[0], L[1], ..., L[D1] be the coordinates of the leaf L which was

last node visited during the search. Let h be the depth of L.

Create node node N containing P as a key.

If P[h%D] < L[h%D] set N as left child of L

If P[h%D] >= L[h%D] set N as right child of L

 K-d tree operation Insert Description 16

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

40, 55

30, 60

15, 70

20, 45

15, 25

10, 15

25, 30

65, 10

50, 20

85, 25

75, 35

90, 80

60, 70

Insert [55, 30] Insert [55, 30]

Operation Insert works analogously as in other (1D) trees.

Find the place for the new node under some of the leaves and insert node there.

Do not accept key which is identical to some other key already stored in the tree.

 K-d tree operation Insert Example I 17

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

55 >= 40

40, 55

Insert [55, 30] Insert [55, 30]

Operation Insert works analogously as in other (1D) trees.

Searching for the place for the inserted key/node.

 K-d tree operation Insert Example II 18

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

75, 35

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

30 < 35 Insert [55, 30] Insert [55, 30]

Operation Insert works analogously as in other (1D) trees.

Searching for the place for the inserted key/node.

 K-d tree operation Insert Example III 19

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

65, 10

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 15, 70

15, 25

85, 25

55 < 65

10, 15

Insert [55, 30] Insert [55, 30]

Operation Insert works analogously as in other (1D) trees.

Searching for the place for the inserted key/node.

 K-d tree operation Insert Example IV 20

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

65, 10

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 15, 70

15, 25

85, 25

30 >= 20 Insert [55, 30] Insert [55, 30]

10, 15

Operation Insert works analogously as in other (1D) trees.

Searching for the place for the inserted key/node.

 K-d tree operation Insert Example V 21

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

65, 10

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 15, 70

15, 25

85, 25

55, 30

Inserted [55, 30] Inserted [55, 30]

10, 15

Operation Insert works analogously as in other (1D) trees.

The place for the inserted key/node was found, node/key was inserted.

 K-d tree operation Insert Example VI, finished 22

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Node insert(Point x, Node t, int cd) {

 if (t == null) // under a leaf

 t = new Node(x);

 else if (x.equals(t.coords))

 throw new ExceptionDuplicatePoint();

 else if (x[cd] < t.coords[cd])

 t.left = insert(x, t.left, (cd+1)%D);

 else

 t.right = insert(x, t.right, (cd+1)%D);

 return t;

}

 K-d tree operation Insert Code 23

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Operation FindMin(dim = k)

Searching for key which k-th coordinate is mimimal of all keys in the tree.

FindMin(dim = k) is performed as part of Delete operation.

The k-d tree offers no simple method of keeping track of the keys with

minimum coordinates in any dimension because Delete operation may

often significantly change the structure of the tree.

FindMin(dim = k) is the most costly operation,

with complexity O(n11/d), in the tree with n nodes and dimension d.

For d = 2 it is O(n1/2).

 K-d tree operation FindMin Description 24

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

FindMin(dim = y) FindMin(dim = y)

Node with minimal y-coordinate can be in L or R subtree of a node N

corresponding to cutting dimension other than y, thus both subtrees of N

(including N) must be searched.

 K-d tree operation FindMin Example I 25

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

FindMin(dim = y) FindMin(dim = y)

Node with minimal y-coordinate can be only in L subtree of a node N

corresponding to cutting dimension y, thus only L subtree of N (including N)

must be searched.

 K-d tree operation FindMin Example II 26

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

FindMin(dim = y) FindMin(dim = y)

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

Node with minimal y-coordinate can be in L or R subtree of a node N

corresponding to cutting dimension other than y, thus both subtrees of N

(including N) must be searched.

 K-d tree operation FindMin Example III 27

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

40, 55

20, 45 75, 35

30, 60 25, 30 60, 70 65, 10

50, 20 90, 80 10, 15 15, 70

15, 25

85, 25

FindMin(dim = y) FindMin(dim = y)

Node with minimal y-coordinate can be only in L subtree of a node N

corresponding to cutting dimension y, thus only L subtree of N (including N)

must be searched.

 K-d tree operation FindMin Example IV, finished 28

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Node findMin(Node t, int dim, int cd) {

 if (t == null) return null;

 if (cd == dim)

 if (t.left == null) return t;

 else return findMin(t.left, dim,(cd+1)%D);

 else

 return min(dim,

 t,

 findMin(t.left, dim, (cd+1)%D),

 findMin(t.right, dim, (cd+1)%D));

}

Function min(int dim; Node t1, t2, t3) returns that node out of t1, t2, t3 which

coordinate in dimension dim is the smallest.
if (t1.coords[dim] <= t2.coords[dim] && t1.coords[dim] <= t3.coords[dim]) return t1;

if (t2.coords[dim] <= t1.coords[dim] && t2.coords[dim] <= t3.coords[dim]) return t2;

etc…

 K-d tree operation FindMin Code 29

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Only leaves are physically deleted.

Deleting an inner node X is done by substituting its key values by key

values of another suitable node Y deeper in the tree. If Y is leaf, physically

delete Y otherwise set X := Y and continue recursively.

Denote cuting dimension of X by cd.

If right subtree R of X is unempty use operation FindMin to find node Y in R

which coordinate in cd is minimal. (It may be sometimes even equal to X

coordinate in cd.

If right subtree R of X is empty use operation FindMin to find node Y in left

subtree L of X which coordinate in cd is minimal. Substitute key values of X

by those of Y. Make (by simple reference swap) subtree L be the right

subtree of updated X. Now X has right subtree, continue process with

previous case.

 K-d tree operation Delete Description 30

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

35, 60
90, 60

20, 45

10, 35

80, 40

50, 30

20, 20

70, 25

60, 10

60, 80
60, 80

35, 60

90, 60

20, 45

10, 35 80, 40

50, 30 20, 20

70, 25

60, 10

Delete [35, 60] Delete [35, 60]

Deleting node [35, 60], its cutting dimension is x.

Find node W with minimum x-coordinate in right subtree of [35, 60].

Note that W might have different cutting dimension.

 K-d tree operation Delete Example I 31

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

90, 60

20, 45

10, 35

80, 40

50, 30

20, 20

70, 25

60, 10

60, 80
60, 80

50, 30

90, 60

20, 45

10, 35 80, 40

50, 30 20, 20

70, 25

60, 10

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress....

Deleting node [35, 60], its cutting dimension is x.

Find node W with minimum x-coordinate in right subtree of [35, 60].

Fill node [35, 60] with keys of W

and if W is not a leaf continue by recursively deleting W.

Delete [50, 30] Delete [50, 30]

 K-d tree operation Delete Example II 32

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 80

50, 30

90, 60

20, 45

10, 35 80, 40

50, 30 20, 20

70, 25

60, 10

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress....

Deleting original node [50, 30], it cutting dimension is y, it has no R subtree.

Find node Z with minimum y-coordinate in LEFT subtree of [50, 30],

Fill [50, 30] with keys of Z and move L subtree of [50, 30] to its R subtree.

Delete [50, 30] Delete [50, 30]

90, 60

20, 45

10, 35

80, 40

50, 30

20, 20

70, 25

60, 10

60, 80

 K-d tree operation Delete Example III 33

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 80

50, 30

90, 60

20, 45

10, 35 80, 40

60, 10 20, 20

70, 25

60, 10

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress....

Deleting original node [50, 30], it cutting dimension is y, it has no R subtree.

Find node Z with minimum y-coordinate in LEFT subtree of [50, 30],

Fill [50, 30] with keys of Z and move L subtree of [50, 30] to its R subtree.

If Z is not a leaf continue by recursively deleting Z.

Delete [50, 30]...

In progress...

Delete [50, 30]...

In progress...

90, 60

20, 45

10, 35

80, 40

50, 30

20, 20

70, 25

60, 10

60, 80

 K-d tree operation Delete Example IV 34

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 80

50, 30

90, 60

20, 45

10, 35 80, 40

60, 10 20, 20

70, 25

60, 10

Delete [35, 60] ... In progress.... Delete [35, 60] ... In progress....

Deleting original node [60, 10], it it is a leaf, delete it and and stop.

Note the change in the cell division left to [80, 40], the node with minimal

y-coordinate becomes the splitting node for the corresponding area .

Delete [50, 30]...

In progress...

Delete [50, 30]...

In progress...

Delete [60, 10] Delete [60, 10]

90, 60

20, 45

10, 35

80, 40

50, 30

20, 20

70, 25

60, 10

60, 80

 K-d tree operation Delete Example V 35

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

90, 60

20, 45

10, 35

80, 40

50, 30

20, 20

70, 20

60, 10

60, 80
60, 80

50, 30

90, 60

20, 45

10, 35 80, 40

60, 10 20, 20

70, 25

Deleted [35, 60] Deleted [35, 60]

 K-d tree operation Delete Example VI, finished 36

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

90, 60

20, 45

10, 35

80, 40
50, 30

20, 20

70, 20

60, 10

60, 80
60, 80

50, 30

90, 60

20, 45

10, 35 80, 40

60, 10 20, 20

70, 25

Deleted [35, 60] Deleted [35, 60]

35, 60 90, 60

20, 45

10, 35

80, 40
50, 30

20, 20

70, 25

60, 10

60, 80
60, 80

35, 60

90, 60

20, 45

10, 35 80, 40

50, 30 20, 20

70, 25

60, 10

Delete [35, 60] Delete [35, 60]

 K-d tree operation Delete Example recapitulation 37

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Node delete(Point x, Node t, int cd) {

 if (t == null) throw new ExceptionDeleteNonexistentPoint();

 else if (x.equals(t.coords)) { // point x found in t

 if (t.right != null) { // replace deleted from right

 t.coords = findMin(t.right, cd, (cd+1)%D).coords();

 t.right = delete(t,coords, t.right, (cd+1)%D);

 }

 else if (t.left != null) { // replace deleted from left

 t.coords = findMin(t.left, cd, (cd+1)%D).coords();

 t.right = delete(t,coords, t.left, (cd+1)%D);

 t.left = null;

 }

 else t = null; // delete leaf t

 }

 else // point x not found yet

 if (x[cd] < t.coords[cd]) // search left subtree

 t.left = delete(x, t.left, (cd+1)%D);

 else // search right subtree

 t.right = delete(x, t.right, (cd+1)%D);

 return t;

}

 K-d tree operation Delete Code 38

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Search runs recursively in L and R subtrees of a node (root at the start).

Register and update partial results:

Object close = {close.point, close.dist}.

Field .point refers to node(point) which is so far closest to the query,

field.dist contains euclidean distance from .point to the query.

Perform pruning:

During search dismiss the cells (and associated subtrees) which are too far

from query. Object close helps to accomplish this task.

Traversal order (left or right subtree is searched first) depends on simple

(in other vartiants of k-d tree on more advanced) heuristic:

First search the subtree whose cell associated with it is closer to the query.

This does not guarantee better results but in practice it helps.

 K-d tree Nearest Neighbor Description 39

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 10

35, 90

90, 60

10, 75

25, 10

80, 40

70, 30

20, 50

50, 25

70, 80
35, 90

10, 75

25, 10 80, 40

70, 30 20, 50

50, 25

60, 10

The query point [35, 50] is inside leaf cell defined by node [70, 30].

The closest point to query [35, 50] is the point [20, 50] which lies in a distant

part of the tree.

35, 50

70, 80

50, 90

90, 60

35, 50

 Nearest Neighbor search Example I 40

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 10

35, 90

90, 60

10, 75

25, 10

80, 40

70, 30

20, 50

50, 25

70, 80
35, 90

10, 75

25, 10 80, 40

70, 30 20, 50

50, 25

60, 10

35, 50

70, 80

50, 90

90, 60

Closest

so far

Searched nodes Searched nodes

Dist = 40.311

 Nearest Neighbor search Example II 41

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 10

35, 90

90, 60

10, 75

25, 10

80, 40

70, 30

20, 50

50, 25

70, 80
35, 90

10, 75

25, 10 80, 40

70, 30 20, 50

50, 25

60, 10

35, 50

70, 80

50, 90

90, 60

Closest

so far

Searched nodes Searched nodes

Dist = 29.155

 Nearest Neighbor search Example III 42

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 10

35, 90

90, 60

10, 75

25, 10

80, 40

70, 30

20, 50

50, 25

70, 80
35, 90

10, 75

25, 10 80, 40

70, 30 20, 50

50, 25

60, 10

35, 50

70, 80

50, 90

90, 60

Closest

so far

Searched nodes Searched nodes

Dist = 29.155

Pruned

 Nearest Neighbor search Example III 43

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

60, 10

35, 90

90, 60

10, 75

25, 10

80, 40

70, 30

20, 50

50, 25

70, 80
35, 90

10, 75

25, 10 80, 40

70, 30 20, 50

50, 25

60, 10

35, 50

70, 80

50, 90

90, 60

Closest

so far

Searched nodes Searched nodes

Dist = 15.0

Pruned

 Nearest Neighbor search Example IV 44

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

To implement Nearest Neighbour Search suppose existence of following:

1. Class HyperRectangle (or Box, in 2D just Rectangle) representing cells of

particular nodes in k-d tree. This class offers two methods:

 HyperRectangle trimLeft(int cd, coords c)

 HyperRectangle trimRight(int cd, coords c)

When hyperrectangle this represents current cell, cd represents cutting

dimension, c represents coordinates of a point (or node)

then trimLeft returns the hyperrectangle associated with the left subtree of

the point/node with coordinates c. Analogously trim Right returns

hyperrectangle associated with the right subtree.

 2. Class or utility G (like Geometry) equipped with methods

distance(Point p, Point q) with obvious functionality

distance(point p, Hyperrectangle r) which computes distance from q to the

point of r which is nearest to q.

3. Object close with fields dist and point, storing the best distance found so

far and reference to the point at which it was attained. Initialize by

dist = inf, point = null.

 Nearest Neighbor search Implementation 45

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

NNres nn(point q, Node t, int cd, HypRec r, Nnres close){

 if (t == null) return close; // out of tree

 if (G.distance(q, r) >= close.dist)

 return close; // cell of t is too far from q

 Number dist = G.distance(q, t.coords);

 if (dist < close.dist) // upd close if necessary

 { close.coords = t.coords; close.dist = dist; }

 if (q[cd] < t.coords[cd] { // q closer to L child

 close = nn(q, t.left, (cd+1)%D,

 r.trimLeft(cd, t.coords), close);

 close = nn(q, t.right, (cd+1)%D,

 r.trimRight(cd, t.coords), close);

 } else { // q closer to R child

 close = nn(q, t.right, (cd+1)%D,

 r.trimRight(cd, t.coords), close);

 close = nn(q, t.left, (cd+1)%D,

 r.trimLeft(cd, t.coords), close);

 }

 return close;

}

 Nearest Neighbor search Code 46

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

Complexity of NN search might be close to O(n) when data points and query

point are unfavorably arranged. However, this happens only when:

A. The dimension D is relatively high, 7,8… and more, 10 000 etc…

B. The arrangement of points in low dimension D is very special (artificially

constructed etc.)

Expected time of NN search is close to O(2d + log n) with uniformly

distributed data.

Thus it is effective only when 2d is significantly smaller than n.

 Nearest Neighbor search Complexity 47

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 13/14

