OPPA European Social Fund Prague \& EU: We invest in your future.

Automaton A_{1} accepts union of sets
$L_{1}=\{00,0011,001100,00110011,0011001100, \ldots\}$ $\cup\{11,1100,110011,11001100,1100110011, \ldots\}$.

Automaton A_{2} accepts language L_{2} over $\Sigma=\{0,1\}$, in each word of L_{2} :
-- there is at least one symbol 1 ,
-- each symbol 1 is followed by exactly two or three symbols 0 .

Automaton A_{3} accepts all binary nonnegative integers divisible by 3, any number of leading zeros may be included.

Automaton A_{4} accepts all binary positive integers divisible by 3, no leading zeros are allowed.

Operations on regular languages revisited

Let L_{1} and L_{2} be any languages. Then
$L_{1} \cup L_{2}$ is union of L_{1} and L_{2}. It is a set of all words which are in L_{1} or L_{2}.
$L_{1} \cap L_{2}$ is intersection of L_{1} and L_{2}. It is a set of all words
which are simultaneously in L_{1} and L_{2}.
$L_{1} \cdot L_{2}$ is concatenation of L_{1} and L_{2}. It is a set of all words w for which holds $w=w_{1} w_{2}$ (concatenation of words w_{1} and w_{2}), where $w_{1} \in L_{1}$ and $w_{2} \in L_{2}$.
$L_{1}{ }^{*}$ is Kleene star or Kleene closure or iteration of language L_{1}.
It is a set of all words which are concatenations of any number (incl. zero) of any words of L_{1} in any order.
Closure
Whenever L_{1} and L_{2} are regular languages
then $L_{1} \cup L_{2}, L_{1} \cap L_{2}, L_{1} \cdot L_{2}, L_{1}{ }^{*}$ are regular languages too.

Automata support

When L_{1} is regular language accepted by automaton A_{1} and
L_{2} is regular language accepted by automaton A_{2}
then there also are automata $\mathrm{A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}, \mathrm{~A}_{6}$, which accept $L_{1} \cup L_{2}, L_{1} \cap L_{2}, L_{1} \cdot L_{2}, L_{1}{ }^{*}$, respectively.

Automaton A_{3} accepting union of two regular languages L_{1}, L_{2} accpted by automata A_{1}, A_{2} respectively.

Automaton A_{3} is constructed using A_{1} and A_{2} :
Do not change A_{1} and A_{2}.
Create new aditional start state S_{0}, add ε - transitions from S_{0} to start states S_{1} and S_{2} of A_{1} and A_{2} respectively.
Define set of final states of A_{3} as union of final states of A_{1} and A_{2}.

Scheme

Automaton A_{3} accepts any word from sets $\{00,0011,001100,00110011,0011001100, \ldots\}$ $\{11,1100,110011,11001100,1100110011, \ldots\}$ and also any binary nonnegative integer divisible by 3 with any number of leading zeros

Automaton A_{5} accepting concatenation of two regular languages L_{1}, L_{2} accepted by automata A_{1}, A_{2} respectively.

Automaton A_{5} is constructed using A_{1} and A_{2} :
Do not change A_{1} and A_{2}.
Add ε - transitions from each final state F_{k} of A_{1} to start state S_{2} of A_{2}.
Define start state of A_{5} equal to start state of A_{1}.
Define set of final states of A_{5} as equal to those of A_{2}.

Scheme

Automaton A_{5} accepts any word over $\{0,1\}$ which can be split into two consecutive words $w 1$ and $w 2$, where word $w 1$ is described by regular expression $0 *(100+1000)(100+1000)^{*}$, word w2 represents binary positive integer divisible by $3 \mathrm{w} / \mathrm{o}$ leading 0 's.

Automaton A_{6} accepting iteration of language L_{1}

 accepted by automaton A_{1}.Automaton A_{6} is constructed using A_{1} :
Do not change A_{1}.
Create new aditional start state S_{0} and add ε - transition from S_{0} to start state S_{1} of A_{1}
Add ε - transitions from all final states F_{k} of A_{1} to state S_{1}. Define start state of A_{6} to be S_{0}.
Define set of final states of A_{6} as union of final states F_{k} and S_{0}.

Scheme

Automaton A_{6} accepts any word created by concatenation and repetition of any words of A_{1} including empty word.

Maybe you can find some more telling informal description of the corresponding language?

Automaton A_{4} accepting intersection of two regular languages L_{1}, L_{2} accepted by automata A_{1}, A_{2} respectively.

Automaton A_{4} is constructed using A_{1} and A_{2} :
Create Cartesian product $Q_{1} \times Q_{2}$, where Q_{1}, Q_{2} are sets of states of A_{1}, A_{2}. Each state of A_{4} will be an ordered pair of states of A_{1}, A_{2}.
State $\left(S_{1}, S_{2}\right)$ will be start state of A_{4}, S_{1}, S_{2} are start states of A_{1}, A_{2}.
Final states of A_{4} will be just those pairs (F, G),
where F is final state of A_{1} and G is final state of A_{2}.
Create transition from state $\left(p_{1}, p_{2}\right)$ to $\left(q_{1}, q_{2}\right)$ in A_{4} labeled by symbol a
if and only if there is transition $p_{1} \rightarrow q_{1}$ labeled by a in A_{1} and there is also transition $p_{2} \rightarrow q_{2}$ labeled by a in A_{2}.

Hamming distance

Hamming distance of two strings is equal to $k(k \leq 0)$, whenever k is minimal number of rewrite operations which when applied on one of the strings produce the other string.
Rewrite operation rewrite one symbol of the alphabet by some other symbol of the alpahabet.
Symbols cannot be deleted or inserted.
Hammingova distance is defined only for pairs of strings of equal length.
Informally: Align the strings and count the number of mismatches of corresponding symbols.

Learn some Gzech

```
l o k O m o t i v a
v y k o l e j i l a distance = 6
m a l é _ p i v o
v e l k ý v ů z distance = 8
```

Automaton A_{1} for aproximate pattern matching. It detects all occurences of substrings which Hamming distance form the pattern $p_{1} p_{2} p_{3} p_{4}$ is less or equal to 3 .

Automaton A_{2} for aproximate pattern matching. It detects all occurences of substrings which Hamming distance form the pattern rose is less or equal to 3 .

Automaton A_{2} detects among others also the words:
rose (distance $=0$) dose (distance $=1$) rest (distance $=2$) list (distance $=3$) and more...

Example

NFA accepting any word with subsequence $p_{1} p_{2} p_{3} p_{4}$ anywhere in it.

Example

NFA accepting any word with subsequence $p_{1} p_{2} p_{3} p_{4}$ anywhere in it, one symbol in the sequence may be altered.

Alternatively: NFA accepting any word containing a subsequence \mathbf{Q} which Hamming distance from $p_{1} p_{2} p_{3} p_{4}$ is at most 1.

Hamming distance of the found pattern Q from pattern $\mathrm{P}=$ rose cannot be deduced from the particular end state.
E.g.: "rope":
r-1-o-2-p-7-e-8.
r-5-o-6-p-10-e-11.

Notation: $\overline{\mathbf{x}}=\Sigma-\{\mathrm{x}\}$ means: Complement of \mathbf{x} in Σ.

Hamming distance from the pattern $P=$ rose to the found pattern Q corresponds exactly to the end state.

Levenshtein distance

Levenshtein distance of two strings A and B is such minimal $k(k \geq 0)$, that we can change A to o B or B to A by applying exactly k edit operations on one of them.
The edit operation is Remove, Insert or Rewrite any symbol of the alphabet anywhere in the string. (Rewrite is also called Substitution.)

Levenshtein distance is thus defined for any two strings over a given alphabet.

```
    B R U X E L L E S Delete X
    B E T E L G E U S E Rewrite R->E, U->T, L->G
    Insert U, E
distance = 6
```


Note

Although the distance is defined unambiguously (prove!), the particular edit operations transforming one string to another may vary (find an example).

Calculating Levenshtein distance

Apply a simple Dynamic Programming approach.
Let $A=a[1] . a[2] a[n]=A[1 . . n], B=b[1] . b[2] . \ldots . b[m]=b[1 . . m], n, m \geq 0$.
$\operatorname{Dist}(\mathrm{A}, \mathrm{B})=|\mathrm{m}-\mathrm{n}|$
if $\mathbf{n}=\mathbf{0}$ or $\mathbf{m}=\mathbf{0}$
$\operatorname{Dist}(A, B)=1+\min (\operatorname{Dist}(A[1 . . n-1], B[1 . . m])$, $\operatorname{Dist}(\mathrm{A}[1 . . n], \mathrm{B}[1 . . \mathrm{m}-1])$, $\operatorname{Dist}(A[1 . . n-1], B[1 . . m-1]))$
$\operatorname{Dist}(A, B)=\operatorname{Dist}(A[1 . . n-1], B[1 . . m-1]])$
if $\boldsymbol{n}>\mathbf{0}$ and $\mathbf{m}>\mathbf{0}$ and $A[n] \neq B[m]$

Calculation corresponds to ... Operation
$\operatorname{Dist}(\mathrm{A}[1 . . \mathrm{n}-1], \mathrm{B}[1 . . \mathrm{m}])$,...$\quad \operatorname{Insert}(\mathrm{A}, \mathrm{n}-1, \mathrm{~B}[\mathrm{~m}])$ or Delete($\mathrm{B}, \mathrm{m})$
$\operatorname{Dist}(A[1 . . n], B[1 . . m-1])$, ... $\operatorname{Insert}(B, m-1, A[n])$ or $\operatorname{Delete}(A, n)$
$\operatorname{Dist}(A[1 . . n-1], B[1 . . m-1]) \quad$... $\operatorname{Rewrite}(A, n, B[m]) \quad$ or Rewrite(B, $m, A[n])$

Dist("BETELGEUSE","BRUXELLES") = 6

	B	E	T	E	L	G	E	U	S	E	
	$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10
B	1	0	1	2	3	4	5	6	7	8	9
R	2	1	1	2	3	4	5	6	7	8	9
U	3	2	2	2	3	4	5	6	6	7	8
X	4	3	3	3	3	4	5	6	7	7	8
E	5	4	3	4	3	4	5	5	6	7	7
L	6	5	4	4	4	3	4	5	6	7	8
L	7	6	5	5	5	4	4	5	6	7	8
E	8	7	6	6	5	5	5	4	5	6	7
S	9	8	7	7	6	6	6	5	5	5	6

Warning

Some top of Google search links to "compute Levenshtein distance" are wrong, typically they mistakenly init 0-th row/column with 0's. Wikipedia code is correct.

NFA searches in text for a pattern within Levenshtein distance 3

 from the pattern "rose". Note the ε-transitions.More transitions than in Hamming distance NFA
vertical ... Insert operation epsilon ... Delete operation

Self-check question

Label the verical transitions by Σ (whole alphabet). How will it change the functionality of this NFA?

Another example

Challenge?

There is a kind of discrepancy, seemingly:

1. Levenshtein distance of strings A and B can be calculated using the DP approach in $O(m \cdot n)$ time.
2. Determining the Levenshtein distance between A and B can be done also by treating A as text and B as a pattern (or vice versa) and applying the appropriate NFA on the text, which would run in just $O(\min (m, n))$ time. Why bother to do calculations with DP?

Bit representation of NFA

Size of transition table T is $|\mathrm{Q}| \times|\Sigma|$ and each its element $\mathrm{T}[\mathrm{i}, \mathrm{k}]$ corresponds to state $q_{i} \in Q$ and symbol $a_{k} \in \Sigma . \quad T[i, k]$ is vector of length $|Q|$ and holds:
$T[i, k][j]==1 \Leftrightarrow q_{j} \in \delta\left(q_{i}, a_{k}\right)$.
For bit vector \mathbf{F} of final states holds $F[j]=1 \Leftrightarrow q_{j} \in F_{A}$

Simulation of work of NFA without ε-transitions Basic method, implemented with bit vectors.

Input: Bit table T of transitions, bit vector F of final states, number of states Q.size, text in array t (indexed from 1).
Output: Simulated run and output of the automaton.

```
S[0] = [100..0]; i = 1; // init
while ((i <= t.length) && (S[i-1]!=[000...0])) {
    for(j=0; j < Q.size; j++)
        if ((S[i][j] == 1) && (F[j] == 1))
        print (q[j].final_state_info);
    S[i] = [000...0];
    for(j=0; j < Q.size; j++)
        if (S[i-1][j]==1)
        S[i] = S[i] or T[j][t[i]];
    i++;
}
```

OPPA European Social Fund Prague \& EU: We invest in your future.

