

OPPA European Social Fund Prague & EU: We invest in your future.

Obrázek 2.19: Deterministický konečný automat z příkladu 2.70

2.3.6 Konečné automaty a operace nad jazyky

Jazyky přijímané konečnými automaty, jsou regulární jazyky. Je proto možné sestrojit konečné automaty pro jazyky vzniklé operacemi sjednocení, součinu a iterace. Dále je možné sestrojit konečný automat pro doplněk jazyka a průnik dvou jazyků. Pomocí těchto operací je možné postupnými kroky sestrojit konečný automat, který přijímá jazyk definovaný s použitím uvedených operací.

Nejdříve uvedeme konstrukci konečného automatu pro sjednocení dvou regulárních jazyků, která je založena na principu "paralelní" činnosti obou automatů pro vstupní jazyky. Jakmile se jeden z nich dostane do koncového stavu, je vstupní řetězec přijat.

Algoritmus 2.71

(d)

de-

ini-

Konstrukce konečného automatu pro sjednocení jazyků – paralelní činnost.

Vstup: Dva úplně určené konečné automaty M_1 a M_2 .

Výstup: Konečný automat M, který přijímá jazyk $L(M) = L(M_1) \cup L(M_2)$.

Metoda: Označíme $M=(Q_1,T,\delta_1,q_{01},F_1),\,M_2=(Q_2,T,\delta_2,q_{02},F_2).$

Automat M je definován takto:

 $M=(Q_1\times Q_2,T,\delta,(q_{01},q_{02}),(F_1\times Q_2)\cup (Q_1\times F_2)), \text{ kde }\delta \text{ je definováno takto: }\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a)) \text{ pro }(q_1,q_2)\in Q_1\times Q_2.$

Důkaz:

Je třeba dokázat, že platí tyto implikace:

- (1) $x \in L(M_1) \Rightarrow x \in L(M)$,
- (2) $x \in L(M_2) \Rightarrow x \in L(M)$,
- (3) $x \in L(M) \Rightarrow x \in L(M_1)$ nebo $x \in L(M_2)$.

Nechť $x = a_1 a_2 \dots a_n$, $n \ge 0$. Dokážeme, že platí implikace (1).

Z podmínky, že $x \in L(M_1)$ plyne, že existuje posloupnost přechodů:

$$(q_{01}, a_1 a_2 \dots a_n) \vdash (q_{11}, a_2 a_3 \dots a_n) \vdash \dots \vdash (q_{n-2,1}, a_{n-1} a_n) \vdash (q_{n-1,1}, a_n) \vdash (q_{n,1}, \varepsilon)$$

pro nějakou posloupnost stavů automatu M_1 $q_{01}, q_{11}, \ldots, q_{n-2,1}, q_{n-1,1}, q_{n,1}$, kde $q_{n,1} \in F_1$. Potom v automatu M existuje tato posloupnost přechodů:

$$((q_{01}, q_{02}), a_1 a_2 \dots a_n) \vdash ((q_{11}, q_{12}), a_2 a_3 \dots a_n) \vdash \dots \vdash ((q_{n-2,1}, q_{n-2,2}), a_{n-1} a_n) \vdash ((q_{n-1,1}, q_{n-1,2}), a_n) \vdash ((q_{n,1}, q_{n,2}), \varepsilon)$$

pro nějakou posloupnost stavů konečného automatu M_2 $q_{02}, q_{12}, \ldots, q_{n,2}$. Protože $q_{n,1}$ je koncový stav konečného automatu M_1 , je řetězec $x = a_1 a_2 \ldots a_n$ automatem M přijat, protože $(q_{n,1}, q_{n,2})$ je jeho koncový stav.

Důkaz platnosti implikace (2) je symetrický k výše uvedenému postupu. Důkaz platnosti implikace (3) můžeme provést takto:

Jestliže v automatu M je možná posloupnost přechodů:

$$((q_{01}, q_{02}), a_1 a_2 \dots a_n) \vdash ((q_{11}, q_{12}, a_2 a_3 \dots a_n) \vdash \dots \vdash ((q_{n,1}, q_{n,2}), \varepsilon),$$
 pak buď v automatu M_1 existuje posloupnost přechodů:

$$(q_{01}, a_1 a_2 \dots a_n) \vdash (q_{11}, a_2 a_3 \dots a_n) \vdash \dots \vdash (q_{n,1}, \varepsilon)$$

anebo v automatu M_2 existuje posloupnost přechodů:

$$(q_{02}, a_1 a_2 \dots a_n) \vdash (q_{12}, a_2 a_3 \dots a_n) \vdash \dots \vdash (q_{n,2}, \varepsilon).$$

Z toho plyne, že implikace (3) platí.

Příklad 2.72

Jsou dány dva automaty nad abecedou $\{a,b\}$. Automat M_1 přijímá jazyk a^+ , automat M_2 přijímá jazyk b^+ . Automaty M_1 a M_2 jsou definovány takto:

$$M_1 = (\{1, 2, 0\}, \{a, b\}, \delta_1, 1, \{2\}).$$

$$M_2 = (\{1', 2', 0'\}, \{a, b\}, \delta_2, 1', \{2'\}).$$

δ_1	a	b
1	2	0
2	2	0
0	0	0

δ_2	a	b
1'	0'	2'
2'	0'	2'
0'	0'	0'

lo

Z

Automat M, který přijímá jazyk $a^+ \cup b^+$ vznikne aplikací algoritmu 2.71 na automaty M_1 a M_2 .

 $M = (\{(1,1'),(2,0'),(0,2'),(0,0')\},\{a,b\},\delta,(1,1'),\{(2,0'),(0,2')\}).$

δ	a	b
(1, 1')	(2,0')	(0, 2')
(2,0')	(2,0')	(0,0')
(0, 2')	(0,0')	(0, 2')
(0,0')	(0,0')	(0,0')

V tabulce přechodů jsou uvedeny jen stavy dosažitelné z (1,1').

Obrázek 2.20: Přechodový diagram konečného automatu z příkladu 2.72

Další možná konstrukce konečného automatu pro sjednocení jazyků je založena na myšlence vytvoření nového počátečního stavu a definici ε -přechodů z tohoto stavu do počátečních stavů obou automatů.

Algoritmus 2.73

 $q_{n,1}, \varepsilon$) 1, kde

 $_{n-1}a_n)$

rotože itoma-

Důkaz

2.71 na

Konstrukce konečného automatu pro sjednocení jazyků – ε -přechody.

Vstup: Dva konečné automaty M_1 a M_2 .

Výstup: Konečný automat M, který přijímá jazyk $L(M) = L(M_1) \cup L(M_2)$. **Metoda:**

- 1. Označíme $M_1=(Q_1,T,\delta_1,q_{01},F_1),\ M_2=(Q_2,T,\delta_2,q_{02},F_2).$
- 2. Výsledný automat $M=(Q,T,\delta,q_0,F)$ je zkonstruován takto:
 - (a) $Q = Q_1 \cup Q_2 \cup \{q_0\}, \ q_0 \not\in Q_1 \cup Q_2,$
 - (b) $\delta(q_0, \varepsilon) = \{q_{01}, q_{02}\},\$ $\delta(q, a) = \delta_1(q, a)$ pro všechna $q \in Q_1$ a všechna $a \in T$, $\delta(q, a) = \delta_2(q, a)$ pro všechna $q \in Q_2$ a všechna $a \in T$.

3.
$$F = F_1 \cup F_2$$
.

Důkaz:

Je třeba dokázat tyto implikace:

1. $x \in L(M_1) \Rightarrow x \in L(M)$,

2. $x \in L(M_2) \Rightarrow x \in L(M)$,

3. $x \in L(M) \Rightarrow x \in L(M_1)$ nebo $x \in L(M_2)$.

Nejdříve dokážeme první implikaci.

Nechť řetězec $x=a_1a_2\dots a_n\in L(M_1)$ pro $n\geq 0$. Pak v automatu M_1 existuje posloupnost přechodů:

dot

sta

Al

Koi

Vs

Vý

Me

Vý

M

 $\delta(($

Dů

Je

x e

pos

Dá

DOS

Pal ((q

ply

 a_{10}

((q tuj

L(1

Př Ses

Pře Au M₁ che

 $(q_{01}, a_1 a_2 \dots a_n) \vdash (q_{11}, a_2 a_3 \dots a_n) \vdash \dots \vdash (q_{n-2,1}, a_{n-1} a_n) \vdash (q_{n-1,1}, a_n) \vdash (q_{n,1}, \varepsilon)$ pro nějakou posloupnost stavů automatu M_1 $q_{01}, q_{11}, \dots, q_{n-2,1}, q_{n-1,1}, q_{n,1}$, kde $q_{n,1} \in F_1$. Potom v automatu M existuje tato posloupnost přechodů začínající ε -přechodem:

 $(q_0, a_1 a_2 \dots a_n) \vdash (q_{01}, a_1 a_2 \dots a_n),$

která dále pokračuje stejně jako v automatu M_1 . Z toho plyne, že řetězec $x \in L(M)$. Důkaz druhé implikace je podobný důkazu první implikace. Důkaz třetí implikace provedeme takto:

Nechť pro řetězec $x = a_1 a_2 \dots a_n \in L(M)$, $n \ge 0$. Pak v automatu M existuje posloupnost přechodů:

 $(q_0, a_1a_2 \dots a_n) \vdash (q_1, a_1a_2 \dots a_n) \vdash (q_2, a_2 \dots a_n) \vdash \dots \vdash (q_n, a_n) \vdash (q_f, \varepsilon)$ taková, že první přechod je ε -přechod a $q_f \in F$. Vynecháme-li počáteční ε -přechod a položíme-li $q_1 = q_{01}$ (nebo $q_1 = q_{02}$), pak vzniklá posloupnost přechodů existuje v automatu M_1 a $q_f \in F_1$ (nebo v automatu M_2 a $q_f \in F_2$), protože $\delta_1(q, a) = \delta(q, a)$ (nebo $\delta_2(q, a) = \delta(q, a)$). Z toho plyne platnost třetí implikace.

Příklad 2.74

Pro konečné automaty M_1 a M_2 z příkladu 2.72 sestrojíme automat M pomocí algoritmu 2.73. Jeho přechodový diagram je na obr. 2.21.

Obrázek 2.21: Konečný automat přijímající jazyk $a^+ \cup b^+$ z příkladu 2.74

Konstrukce konečného automatu, který přijímá průnik jazyků se provede podobně jako v algoritmu 2.28 pro sjednocení. Rozdíl je pouze v definici koncových stavů a v tom, že vstupní automaty nemusí být úplně určené.

Algoritmus 2.75

Konstrukce konečného automatu pro průnik jazyků - paralelní činnost.

Vstup: Dva konečné automaty M_1 a M_2 .

Výstup: Automat M přijímající jazyk $L(M) = L(M_1) \cap L(M_2)$

Metoda: Označíme $M_1 = (Q_1, T, \delta_1, q_{01}, F_1), M_2 = (Q_2, T, \delta_2, q_{02}, F_2).$

Výsledný automat M je definován takto:

 $M = (Q_1 \times Q_2, T, \delta, (q_{01}, q_{02}), F_1 \times F_2)$, kde δ je definováno takto:

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$ pro všechna (q_1,q_2) z $Q_1\times Q_2$.

Důkaz:

istuje

 $(n,1,\varepsilon)$

, kde

nající

c x ∈

třetí

istuje

ční ε-

chodů

rotože ikace.

omoci

2.74

Je třeba dokázat, že platí pro $x = a_1 a_2 \dots a_n$, že z $x \in L(M_1) \cap L(M_2)$ plyne, že $x \in L(M)$. V automatu M_1 existuje posloupnost přechodů pro x:

 $(q_{01}, a_1 a_2 \dots a_n) \vdash (q_{11}, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1,1}, a_n) \vdash (q_{n,1}, \varepsilon)$ pro nějakou posloupnost stavů $q_{01}, q_{11}, \dots, q_{n,1}$, kde $q_{n,1} \in F_1$.

Dále v automatu M_2 existuje posloupnost přechodů pro x:

 $(q_{02}, a_1 a_2 \dots a_n) \vdash (q_{12}, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1,2}, a_n) \vdash (q_{n,2}, \varepsilon)$ pro nějakou posloupnost stavů $q_{02}, q_{12}, \dots, q_{n,2}$, kde $q_{n,2} \in F_2$.

Pak musí existovat pro x tato posloupnost přechodů v M:

 $((q_{01},q_{02}),a_1a_2\ldots a_n)\vdash ((q_{11},q_{12}),a_2\ldots a_n)\vdash \ldots \vdash ((q_{n-1,1},q_{n-1,2}),a_n)$ $\vdash ((q_{n,1},q_{n,2}),\varepsilon)$ a stav $(q_{n,1},q_{n,2})\in F_1\times F_2$. Dále dokážeme, že z $x\in L(M)$ plyne, že $x\in L(M_1)\cap L(M_2)$. Jestliže v automatu M existuje pro řetězec $x=a_1a_2\ldots a_n,\ n\geq 0$, posloupnost přechodů

 $((q_{01}, q_{02}), a_1 a_2 \dots a_n) \vdash ((q_{11}, q_{12}), a_2 \dots a_n) \vdash \dots \vdash ((q_{n-1,1}, q_{n-1,2}, a_n) \vdash ((q_{n,1}, q_{n,2}), \varepsilon) \text{ a stav } (q_{n,1}, q_{n,2}) \in F_1 \times F_2, \text{ pak v automatu } M_i, i = 1, 2, \text{ existuje posloupnost přechodů:}$

 $(q_{0i}, a_1 a_2 \dots a_n) \vdash (q_{1i}, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1,i}, a_n) \vdash (q_{n,i}, \varepsilon)$ a $q_{n,i} \in F_i$. Z toho plyne, že řetězec x je přijat oběma automaty M_1 a M_2 a $x \in L(M_1) \cap L(M_2)$.

Příklad 2.76

Sestrojíme konečný automat, který přijímá řetězce nad abecedou $\{a,b\}$ začínající předponou aba a končící příponou bab.

Automat M_1 , který přijímá řetězce začínající předponou aba má tvar:

 $M_1 = (\{1, 2, 3, 4, \emptyset\}, \{a, b\}, \delta_1, 1, \{4\})$, zobrazení δ_1 je definováno tabulkou přechodů:

δ_1	a	b
1	2	Ø
2	Ø	3
3	4	Ø
4	4	4
0	Ø	Ø

Automat M_2 , který přijímá řetězce končící příponou bab má tvar: $M_2 = (\{1',2',3',4'\},\{a,b\},\delta_2,1',\{4'\})$, zobrazení δ_2 je definováno tabulkou přechodů:

δ_2	a	b
1'	1'	2'
2'	3'	2'
3'	1'	4'
4'	3'	2'

Výsledný automat bude mít tvar: $M = (\{(1,1'),(2,1'),(3,2'),(4,1'),(4,2'),(4,3'),(4,4'),(\emptyset,1'),(\emptyset,2'),(\emptyset,3'),(\emptyset,4')\}, \\ \{a,b\},\delta,(1,1'),\{(4,4')\}).$

δ	a	b
(1, 1')	(2,1')	$(\emptyset, 2')$
(2,1')	(0, 1')	(3, 2')
(0, 1')	$(\emptyset, 1')$	(0, 2')
(0, 2')	$(\emptyset, 3')$	$(\emptyset, 2')$
$(\emptyset, 3')$	$(\emptyset, 1')$	$(\emptyset, 4')$
(0, 4')	$(\emptyset, 3')$	$(\emptyset, 2')$
(3, 2')	(4, 3')	$(\emptyset, 2')$
(4, 3')	(4,1')	(4,4')
(4, 1')	(4, 1')	(4, 2')
(4, 2')	(4, 3')	(4, 2')
(4, 4')	(4,3')	(4,2')

Při optimalizaci tohoto automatu je možno stavy $(\emptyset, 1'), (\emptyset, 2'), (\emptyset, 3'), (\emptyset, 4')$ sjednotit.

Algoritmus 2.77

Konstrukce konečného automatu pro průnik jazyků – jen dosažitelné stavy. Vstup: Dva konečné automaty $M_1 = (Q_1, T, \delta_1, q_{01}, F_1), M_2 = (Q_2, T, \delta_2, q_{02}, F_2).$ Výstup: Konečný automat $M = (Q, T, \delta, q_0, F)$, který přijímá jazyk $L(M) = L(M_1) \cap L(M_2).$

Metoda:

2.

1. I

3.

4. 6

Ko duše. který množi považi meňm

Ko zyků j činnos

Algor Konst Vstur Výstu Meto

1.

2.

- 1. Definujeme $Q = \{(q_{01}, q_{02})\}$ a stav (q_{01}, q_{02}) budeme považovat za neoznačený.
- 2. Jestliže v Q jsou všechny stavy označeny, pokračuj krokem 4.
- 3. Vybereme z Q neoznačený stav $q=(q_{n1},q_{m2})$ a provedeme tyto operace:
 - (a) určíme $\delta((q_{n1}, q_{m2}), a) = (\delta_1(q_{n1}, a), \delta_2(q_{m2}, a))$ pro všechna $a \in T$,
 - (b) jestliže oba přechody $\delta_1(q_{n1},a)$ a $\delta_2(q_{m2},a)$ jsou definovány a vedou do jiného než nulového stavu, pak $Q = Q \cup (\delta_1(q_{n1},a),\delta_2(a_{m2},a))$ a stav $(\delta_1(q_{n1},a),\delta_2(q_{m2},a))$ budeme považovat za neoznačený, pokud jde o nový stav v Q,
 - (c) stav (q_{n1}, q_{m2}) v Q označíme,
 - (d) pokračujeme krokem 2.

4.
$$q_0 = (q_{01}, q_{02}).$$

u pře-

(0,4'),

sjed-

 $p_2, F_2).$

(M) =

5.
$$F = \{q : q \in Q, q = (q_{n1}, q_{m2}), q_{n1} \in F, q_{m2} \in F\}.$$

Konečný automat, který přijímá doplněk jazyka do T^* se sestrojí velice jednoduše. Je-li $M = (Q, T, \delta, q_0, F)$ automat, který přijímá jazyk L, potom automat, který přijímá jazyk $T^* - L$ je $M' = (Q, T, \delta, q_0, Q - F)$, to znamená, že pouze množina koncových stavů se mění a to tak, že za koncové stavy automatu M' považujeme všechny stavy automatu M, které nebyly koncové a naopak. Připomeňme, že automat M je úplně určený a deterministický.

Konstrukci konečného automatu, který přijímá součin (zřetězení) dvou jazyků provedeme pomocí následujícího algoritmu, který je založen na "paralelní" činnosti obou automatů.

Algoritmus 2.78

Konstrukce konečného automatu pro zřetězení jazyků – paralelní činnost.

Vstup: Dva konečné automaty M_1 a M_2 .

 $\delta(q,x)$ bude definováno takto:

Výstup: Konečný automat M přijímací jazyk $L(M) = L(M_1).L(M_2).$

Metoda:

- 1. Označíme $M_1=(Q_1,T_1,\delta_1,q_{01},F_1)$ a $M_2=(Q_2,T_2,\delta_2,q_{02},F_2)$.
- 2. Sestrojíme nedeterministický konečný automat $M' = (Q_1 \cup Q_2 \cup [q_{01}, q_{02}], T_1 \cup T_2, \delta, q_0, F), \text{ kde}$ $q_0 = \left\langle \begin{array}{c} q_{01}, \text{ jestliže } q_{01} \not\in F_1, \\ [q_{01}, q_{02}], \text{ jestliže } q_{01} \in F_1, \end{array} \right.$

(a)
$$\delta(q,x) = \delta_1(q,x)$$
, jestliže $q \in Q_1, \delta_1(q,x) \notin F_1$,

- (b) $\delta(q,x) = \delta_1(q,x) \cup \{q_{02}\}$, jestliže $q \in Q_1, \delta_1(q,x) \in F_1$,
- (c) $\delta(q, x) = \delta_2(q, x)$, jestliže $q \in Q_2$,
- (d) $\delta(q, x) = \delta_1(q_{01}, x) \cup \delta_2(q_{02}, x)$, jestliže $q = [q_{01}, q_{02}]$.
- (e) Množinu F sestrojíme takto:

Jestliže $q_{01} \notin F_1$, pak $F = F_2$.

Jestliže $q_{01} \in F_1$ a $q_{02} \in F_2$, pak $F = F_2 \cup \{[q_{01}, q_{02}]\}.$

3. Sestrojíme deterministický konečný automat M.

Důkaz:

Je třeba dokázat, že platí pro $y_1 = a_1 a_2 \dots a_n$ a $y_2 = b_1 b_2 \dots b_m$, $m, n \ge 0$, že z $y_1 \in L(M_1)$, $y_2 \in L(M_2)$ plyne, že $y_1 y_2 \in L(M)$.

V automatu M_1 existuje posloupnost přechodů pro y_1 :

 $(q_{01}, a_1 a_2 \dots a_n) \vdash (q_{11}, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1,1}, a_n) \vdash (q_{n,1}, \varepsilon)$ pro nějakou posloupnost stavů $q_{01}, q_{11}, \dots, q_{n,1}$, kde $q_{n,1} \in F_1$.

Dále v automatu M_2 existuje posloupnost přechodů pro y_2 :

 $(q_{02}, b_1 b_2 \dots b_m) \vdash (q_{12}, b_2 \dots b_m) \vdash \dots \vdash (q_{m-1,2}, b_m) \vdash (q_{m,2}, \varepsilon)$ pro nějakou posloupnost stavů $q_{02}, q_{12}, \dots, q_{m,2}$, kde $q_{m,2} \in F_2$.

Pak musí pro y_1y_2 existovat tato posloupnost přechodů v automatu M pro m, n > 0:

 $(q_{01}, a_1 a_2 \dots a_n b_1 b_2 \dots b_m) \vdash (q_{11}, a_2 \dots a_n b_1 b_2 \dots b_m) \vdash \dots$ $\vdash (q_{n-1,1}, a_n b_1 b_2 \dots b_m) \vdash (q_{02}, b_1 b_2 \dots b_m) \vdash (q_{12}, b_2 \dots b_m) \vdash \dots$

 $\vdash (q_{m-1,2}, b_m) \vdash (q_{m,2}, \varepsilon)$ a stav $q_{m,2} \in F_2$.

Jestliže n=0 a $m\geq 1$, pak počáteční stav je $[q_{01},q_{02}]$ a v automatu M existuje posloupnost přechodů:

 $([q_{01},q_{02}],b_1b_2...b_m) \vdash (q_{12},b_2...b_m) \vdash ... \vdash (q_{m-1,2},b_m) \vdash (q_{m,2},\varepsilon) \text{ a } q_{m,2} \in F_2.$

Jestliže $n \ge 1$ a m = 0, pak v automatu M existuje posloupnost přechodů:

 $(q_{01}, a_1 a_2 \dots a_n) \vdash (q_{11}, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1,1}, a_n) \vdash (q_{02}, \varepsilon) \text{ a stay } q_{02} \in F_2.$

Jestliže n, m = 0, pak automat M přijímá prázdný řetězec a stav $[q_{01}, q_{02}]$ je koncový stav. Dále je třeba dokázat, že z $y_1y_2 \in L(M)$ plyne, že $y_1 \in L(M_1)$ a $y_2 \in L(M_2)$. Předpokládejme, že existuje v automatu M tato posloupnost přechodů:

 $(q_{01},a_1a_2\ldots a_nb_1b_2\ldots b_m)\vdash (q_{11},a_2\ldots a_nb_1b_2\ldots b_m)\vdash \ldots \vdash (q_{n-1,1},a_nb_1b_2\ldots b_m)\vdash (q_{n,1},b_1b_2\ldots b_m)\vdash (q_{12},b_2\ldots b_m)\vdash \ldots \vdash (q_{m-1,2},b_m)\vdash (q_{m,2},\varepsilon)$. Přitom stav $q_{n,1}\in F_1$ a $q_{m,2}\in F_2$. To znamená, že řetězec $y_1=a_1a_2\ldots a_n\in L(M_1)$ a $y_2=b_1b_2\ldots b_m\in L(M_2)$. Jestliže n=0 a $m\geq 1$ pak existuje posloupnost přechodů v automatu M:

 $([q_{01},q_{02}],b_1b_2...b_m) \vdash (q_{12},b_2...b_m) \vdash ... \vdash (q_{m,2},\varepsilon)$ a $q_{m,2} \in F_2$, což znamená, že $y_2 \in L(M_2)$. Jestliže $n \geq 1$ a m = 0, pak v automatu M existuje posloupnost přechodů:

což z řetěz

Přík Sestr je au Pomo jazyk

1.

Výsle

2.

na po druh

Algo Kons Vsti Výsi

1.

2.

Met

 $(q_{01}, a_1 a_2 \dots a_n) \vdash (q_{11}, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1,1}, a_n) \vdash (q_{n,1}, \varepsilon)$ a stav $q_{n,1} \in F_1$, což znamená, že $y_1 \in L(M_1)$. Jestliže n, m = 0, pak automat M přijímá prázdný řetězec a stavy $q_{01} \in F_1$ a $q_{02} \in F_2$ a oba automaty M_1 a M_2 přijímají prázdné řetězec.

Příklad 2.79

Z

kou

kou

stuje

 $[M_1]$ je

onost

stav

 I_1) a

pnost

zna-

fistuje

 $b_2 \dots b_m) \vdash$

Sestrojíme automat, který přijímá jazyk a^+b^+ . Automat, který přijímá jazyk a^+ je automat M_1 z příkladu 2.72. Automat M_2 v témže příkladu přijímá jazyk b^+ . Pomocí algoritmu 2.78 sestrojíme konečný automat, který bude přijímat zřetězení jazyků a^+ a b^+ , tj. jazyk a^+b^+ .

Výsledný automat získáme tímto postupem:

1. Nejdříve sestrojíme nedeterministický konečný automat: $M=(\{1,2,\emptyset,1',2',\emptyset',[1,1']\},\{a,b\},\delta,1,\{2'\}).$

Zobrazení δ je definováno tabulkou přechodů.

8	а	b
1	$\{2,1'\}$	Ø
2	$\{2,1'\}$	Ø
Ø	Ø	0
1'	Ø'	{2'}
2'	Ø'	{2'}
0'	Ø'	Ø'

Stav [1, 1'] je nedosažitelný, protože $1 \notin F_1$.

2. Získaný nedeterministický automat převedeme na ekvivalentní deterministický.

Další možná konstrukce konečného automatu pro zřetězení jazyků je založena na použití ε-přechodů z koncových stavů prvního automatu do počátečního stavu druhého automatu.

Algoritmus 2.80

Konstrukce konečného automatu pro zřetězení jazyků - ε-přechody.

Vstup: Dva konečné automaty M_1 a M_2 .

Výstup: Konečný automat M přijímací jazyk $L(M) = L(M_1).L(M_2).$ Metoda:

- 1. Označíme $M_1 = (Q_1, T_1, \delta_1, q_{01}, F_1)$ a $M_2 = (Q_2, T_2, \delta_2, q_{02}, F_2)$.
- 2. Výsledný automat je zkonstruován takto:

$$M = (Q, T, \delta, q_{01}, F_2)$$

(a)
$$Q = Q_1 \cup Q_2$$
,

(b)
$$\delta(q, a) = \delta_1(q, a)$$
 pro všechna $q \in Q_1$ a $a \in T_1$, $\delta(q, a) = \delta_2(q, a)$ pro všechna $q \in Q_2$ a $a \in T_2$, $\delta(q, \varepsilon) = q_{02}$ pro všechna $q \in F_1$.

Důkaz:

Je třeba dokázat, že platí pro $y_1=a_1a_2\ldots a_n$ a $y_2=b_1b_2\ldots b_m,\ m,n\geq 0,$ že z $y_1\in L(M_1),\ y_2\in L(M_2)$ plyne, že $y_1y_2\in L(M)$.

V automatu M_1 existuje posloupnost přechodů pro y_1 :

 $(q_{01},a_1a_2\ldots a_n)\vdash (q_{11},a_2\ldots a_n)\vdash \ldots \vdash (q_{n-1,1},a_n)\vdash (q_{n,1},\varepsilon)$ pro nějakou posloupnost stavů $q_{01},q_{11},\ldots,q_{n,1}$, kde $q_{n,1}\in F_1$.

D Je

N

p

Dále v automatu M_2 existuje posloupnost přechodů pro y_2 :

 $(q_{02},b_1b_2...b_m) \vdash (q_{12},b_2...b_m) \vdash ... \vdash (q_{m-1,2},b_m) \vdash (q_{m,2},\varepsilon)$ pro nějakou posloupnost stavů $q_{02},q_{12},...,q_{m,2}$, kde $q_{m,2} \in F_2$.

Pak musí pro y_1y_2 existovat tato posloupnost přechodů v automatu M pro $m,n\geq 0$:

 $(q_{01}, a_1 a_2 \dots a_n b_1 b_2 \dots b_m) \vdash (q_{11}, a_2 \dots a_n b_1 b_2 \dots b_m) \vdash \dots$ $\vdash (q_{n-1,1}, a_n b_1 b_2 \dots b_m) \vdash (q_{n,1}, b_1 b_2 \dots b_m) \vdash (q_{02}, b_1 b_2 \dots b_m)$

 $\vdash (q_{12}, b_2 \dots b_m) \vdash \dots \vdash (q_{m-1,2}, b_m)$

 $\vdash (q_{m,2}, \varepsilon)$ a stav $q_{m,2} \in F_2$.

Z toho plyne, že $y_1y_2\in L(M)$. Důkaz, že z $y_1y_2\in L(M)$ plyne, že $y_1\in L(M_1)$ a $y_2\in L(M_2)$ je podobný stejné části důkazu správnosti algoritmu 2.78 a je ponechán na čtenáři.

Příklad 2.81

Sestrojíme konečný automat pro zřetězení jazyků a⁺ a b⁺.

 $M=(\{1,2,1',2'\},\{a,b\},\delta,1,\{2'\}),$ kde zobrazení δ je znázorněno přechodovým diagramem na obr. 2.22.

Obrázek 2.22: Přechodový diagram konečného automatu přijímajícího jazyk a^+b^+

Nakonec ještě ukážeme postup, jak je možno sestrojit automat, který přijímá iteraci jazyka L. Opět uvedeme dvě varianty. První vede na konečný automat bez ε -přechodů a druhá využívá ε -přechodů.

Algoritmus 2.82

Konstrukce konečného automatu pro iteraci jazyka – bez ε -přechodů. **Vstup:** Konečný automat $M = (Q, T, \delta, q_0, F)$, který přijímá jazyk L.

Výstup: Konečný automat M^* , který přijímá jazyk L^* . Metoda:

1. Sestrojíme nedeterministický konečný automat $M' = (Q, T, \delta', q_0, F \cup \{q_0\})$, kde zobrazení δ' je definováno takto: $\delta'(q, x) = \delta(q, x)$ jestliže $q \in Q, \delta(q, x) \cap F = \emptyset$.

 $\delta'(q,x) = \delta(q,x)$ jestnize $q \in Q, \delta(q,x) \cap F \neq \emptyset$. $\delta'(q,x) = \delta(q,x) \cup \{q_0\}$ jestliže $q \in Q, \delta(q,x) \cap F \neq \emptyset$.

2. K automatu M' sestrojíme deterministický konečný automat M^* .

Důkaz:

ou

oro

 I_1)
je

do-

·b+

ima

bez

Je třeba dokázat, že když automat M přijme řetězec $x = a_1 a_2 \dots a_n$, pak automat M^* přijme řetězec x^n pro všechna $n \geq 0$. V automatu M existuje tato posloupnost přechodů:

 $(q_0, a_1 a_2 \dots a_n) \vdash (q_1, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1}, a_n) \vdash (q_n, \varepsilon)$ pro nějakou posloupnost stavů $q_0, q_1, q_2, \dots, q_n$, kde $q_n \in F$.

Potom automat M^* přijme:

- a) prázdný řetězec, protože qo je koncový stav,
- b) řetězec x, protože q_n je koncový stav,
- c) řetězec $x^n, n > 1$, protože po přečtení řetězce x může být automat M^* ve stavu q_0 a znovu může být vždy řetězec x přečten s tím, že po jeho přečtení může automat M^* přejít do stavu $q_n \in F$ nebo do stavu q_0 .

Příklad 2.83

Je dán automat M, který přijímá všechny řetězce tvaru ab^*a . Přechodový diagram tohoto automatu je na obr. 2.23.

Obrázek 2.23: Přechodový diagram konečného automatu, který přijímá jazyk ab*a

Automat, který přijímá iteraci jazyka ab^*a , tj. jazyk $(ab^*a)^*$ získáme pomocí algoritmu 2.82. Jeho přechodový diagram je na obr. 2.24.

Deterministický konečný automat má přechodový diagram podle obr. 2.25.□

Obrázek 2.24: Přechodový diagram nedeterministického konečného automatu, který přijímá jazyk $(ab^*a)^*$

Př

Ses

Vý zná

Obrázek 2.25: Přechodový diagram deterministického konečného automatu, který přijímá jazyk $(ab^*a)^*$

Algoritmus 2.84

Konstrukce konečného automatu pro iteraci jazyka – s ε -přechody.

Vstup: Konečný automat $M = (Q, T, \delta, q_0, F)$, který přijímá jazyk L.

Výstup: Konečný automat M^* , který přijímá jazyk L^* .

Metoda: Sestrojme konečný automat $M^* = (Q, T, \delta', q_0, F \cup \{q_0\})$, kde zobrazení δ' je definováno takto:

$$\delta'(q, x) = \delta(q, x)$$
 pro všechna $q \in Q$ a všechna $x \in T$,

$$\delta'(q,\varepsilon) = \{q_0\}$$
 pro všechna $q \in F$.

Důkaz:

Je třeba dokázat, že když automat M přijme řetězec $x = a_1 a_2 \dots a_n$, pak automat M^* přijme řetězec x^n pro všechna $n \geq 0$. V automatu M existuje tato posloupnost přechodů:

 $(q_0, a_1 a_2 \dots a_n) \vdash (q_1, a_2 \dots a_n) \vdash \dots \vdash (q_{n-1}, a_n) \vdash (q_n, \varepsilon)$ pro nějakou posloupnost stavů $q_0, q_1, q_2, \dots, q_n$, kde $q_n \in F$.

Potom automat M^* přijme:

- a) prázdný řetězec, protože q₀ je koncový stav,
- b) řetězec x, protože q_n je koncový stav,
- c) řetězec $x^n, n > 1$, protože po přečtení řetězce x je automat M^* v koncovém stavu q_n a z tohoto stavu může přejít ε -přechodem do počátečního stavu q_0 a čtení řetězce x se může opakovat.

Příklad 2.85

tu,

ra-

nat

po-

vém avu □ Sestrojíme konečný automat, který přijímá iteraci jazyka ab^*a z příkladu 2.83. Výsledný automat má tvar $M = (\{1,2,3\},\{a,b\},\delta,1,\{3,1\})$, kde zobrazení δ je znázorněno přechodovým diagramem na obr. 2.26.

Obrázek 2.26: Konečný automat přijímající jazyk (ab*a)*

OPPA European Social Fund Prague & EU: We invest in your future.