Data structures and algorithms

Part 9

Searching and Search Trees II

Petr Felkel

Topics

Red-Black tree
 - Insert
 - Delete
 B-Tree

- Motivation
- Search
- Insert
- Delete

[^0]
Red-Black tree

Approximately balanced BST

$$
h_{R B} \leq 2 x h_{\text {BST }} \quad \text { (height } \leq 2 x \text { height of balanced tree) }
$$

Additional bit for COLOR = \{red | black $\}$ nil (non-existent child) $=$ pointer to nill node

Red-Black tree

A binary search tree is a red-black tree if:

1. Every node is either red or black
2. Every leaf (nil) is black
3. If a node is red, then both its children are black
4. Every simple path from a node to a descendant leaf contains the same number of black nodes
(5. Root is black)

Black-height $\mathbf{b h}(\mathbf{x})$ of a node \mathbf{x} is the number of black nodes on any path from x to a leaf, not counting x

Red-Black tree

Binary Search Tree -> RB Tree

Red-Black tree

Black-height $b h(x)$ of a node x

- is the number of black nodes on any path from \mathbf{x} to a leaf, not counting x
- is equal for all paths from \mathbf{x} to a leaf
- For given \mathbf{h} is $\mathbf{b h}(\mathbf{x})$ in the range from $\mathbf{h} / \mathbf{2}$ to \mathbf{h}
- if $1 / 2$ of nodes red $\quad=>b h(x) \approx 1 / 2 h(x), h(x) \approx 2 \lg (n+1)$
- if all nodes black $\quad=\quad b h(x)=h(x)=\lg (n+1)-1$

Height $\mathbf{h (x)}$ of a RB-tree rooted in node \mathbf{x}

- is at maximum twice of the optimal height of a balanced tree
- $h \leq 2 \lg (n+1)$
$\ldots . h \in \Theta(\lg (n))$

RB-tree height proof [comen, p.264]

A red-black tree with n internal nodes has height h at most $2 \lg (n+1)$

Proof: 1. Show that subtree starting at x contains at least $2^{\text {bh(}(x)}-1$ internal nodes. By induction on height of x :
I. If x is a leaf, then $\operatorname{bh}(x)=0,2^{\mathrm{bh}(x)}-1=0$ internal nodes $/ / \ldots$ nil node
II. Consider x with height h and two children (with height $h-1$)

- x's children black-height is either $\mathrm{bh}(x)-1$ or $\mathrm{bh}(x) \quad / /$ black or red
- Ind. hypothesis: x^{\prime} s children subtree has at least $2^{\text {bh(}(x)-1}-1$ internal nodes
- So subtree starting at x contains at least $\left(2^{\mathrm{bh}(x)-1}-1\right)+\left(2^{\mathrm{bh}(x)-1}-1\right)+1=2^{\mathrm{bh}(x)}-1$ internal nodes $=>$ proved

2. Let $h=$ height of the tree rooted at x

- $\min 1 / 2$ nodes are black on any path to leaf $=>b h(x) \geq h / 2$
- Thus, $n \geq 2^{h / 2}-1<=>n+1 \geq 2^{h / 2}<=>\lg (n+1) \geq h / 2$
$-h \leq 2 \lg (n+1)$

Inserting in Red-Black Tree

Color new node Red Insert it as in the standard BST

If parent is Black, stop. Tree is a Red-Black tree. If parent is Red (3+3 cases)...
resp.

While x is not root and parent is Red

$$
\begin{array}{ll}
\text { if } x \text { 's } \text { uncle is Red then case } 1 & \text { // propagate red up } \\
\text { else if } x \text { is Right child then case } 2 & \text { // double rotation } \\
\text { case } 3 & \text { // single rotation }
\end{array}
$$

Color root Black

Inserting in Red-Black Tree

x's parent is Black

Insert 1

Inserting in Red-Black Tree

x 's parent is Red
x 's uncle y is Red
x is a Left child

$$
\text { Loop: } x=\text { x.p.p }
$$

x is node of interest
x 's uncle is Red

Inserting in Red-Black Tree

x's parent is Red
x 's uncle y is Red
x is a Right child

$$
\text { Loop: } x=\text { x.p.p }
$$

Inserting in Red-Black Tree

x 's parent is Red
x 's uncle y is Black
x is a Right child
Case 2

12 transform to Case 3
x is a Right child $\quad x$'s uncle is Black

Inserting in Red-Black Tree

x 's parent is Red
x 's uncle y is Black
x is a Left child
Terminal case, tree is a Red-Black tree

Inserting in Red-Black Tree

Cases Right from the grandparent are symmetric


```
RB-Insert \((T, x)\)
    Tree-Insert \((T, x)\)
    color \([x] \leftarrow \mathrm{RED}\)
    3 while \(x \neq \operatorname{root}[T]\) and \(\operatorname{color}[p[x]]=\operatorname{RED}\)
        \(\mathrm{p}[\mathrm{x}]=\) parent of x
    left \([x]=\) left son of \(x\)
    \(y=\) uncle of \(x\)
        do if \(p[x]=\operatorname{left}[p[p[x]]]\)
        then \(y \leftarrow \operatorname{right}[p[p[x]]] \quad\) Red uncle y ->recolor up
        if color \([y]=\) RED
                        then \(\operatorname{color}[p[x]] \leftarrow\) BLACK \(\quad \triangleright\) Case 1
                color \([y] \leftarrow\) BLACK \(\quad \triangleright\) Case 1
                \(\operatorname{color}[p[p[x]]] \leftarrow\) RED \(\quad \triangleright\) Case 1
                    \(x \leftarrow p[p[x]]\)
                            \(\triangleright\) Case 1
        else if \(x=\operatorname{right}[p[x]]\)
                then \(x \leftarrow p[x]\)
                            \(\triangleright\) Case 2
                            \(\operatorname{Left}-\operatorname{Rotate}(T, x) \quad \triangleright\) Case 2
                \(\operatorname{color}[p[x]] \leftarrow\) BLACK
                            \(\triangleright\) Case 3
                \(\operatorname{color}[p[p[x]] \leftarrow\) RED
                            \(\triangleright\) Case 3
\(\operatorname{Right-Rotate}(T, p[p[x]])\)
    \(\triangleright\) Case 3
        else (same as then clause
        with "right" and "left" exchanged)
    18 color \([\operatorname{root}[T]] \leftarrow\) BLACK
```


Inserting in Red-Black Tree

Insertion in $\mathrm{O}(\log (\mathrm{n}))$ time
Requires at most two rotations

DEMO: http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html (Intuitive, good for understanding) http://reptar.uta.edu/NOTES5311/REDBLACK/RedBlack.htm| (little different order of re-coloring and rotations)

Deleting in Red-Black Tree

Find node to delete
Delete node as in a regular BST
Node y to be physically deleted will have at most one child x!!!

If we delete a Red node, tree still is a Red-Black tree, stop Assume we delete a black node

Let \mathbf{x} be the child of deleted (black) node If x is red, color it black and stop
while (x is not root) AND (x is black) move x with virtual black mark through the tree (If x is black, mark it virtually double black Al)

Deleting in Red-Black Tree

while(x is not root) AND (x is black) \{
$/ /$ move x with virtual black mark Athrough the tree
// just recolor or rotate other subtree up (decrease bh in R subtree)
if(red sibling)
-> Case 1: Rotate right subtree up, color sibling black, and continue in left subtree with new sibling
if(black sibling with both black children)
-> Case 2: Color sibling red and go up
else // black sibling with one or two red children
if(red left child) -> Case 3: rotate to surface
Case 4: Rotate right subtree up

Deleting in R-B Tree - Case 1

x is the child of the physically deleted black node => double black x 's sibling w (sourozenec) is red
(x's parent MUST be black)

x stays at the same black height
[Possibly transforms to case 2a and terminates - depends on 3,4]

Deleting in R-B Tree - Case 2a

x 's sibling w is black x's parent is red x 's sibling left child is black x 's sibling right child is black

Terminal case, tree is Red-Black tree

Deleting in R-B Tree - Case 2b

x 's sibling w is black
x's parent is black
x 's sibling left child is black
x 's sibling right child is black

Decreases x black height by one

Deleting in R-B Tree - Case 3

x 's sibling w is black
x 's parent is either
x's sibling left child is red // blocks coloring w red
x's sibling right child is black
Case 3

Deleting in R-B Tree - Case 4

x 's sibling w is black x's parent is either
x 's sibling left child is either
x 's sibling right child is red // blocks coloring w red

Terminal case, tree is Red-Black tree

Deleting in Red-Black Tree

$\operatorname{RB-Delete}(T, z)$

$\begin{array}{lc} \hline 1 & \text { if } \operatorname{left}[z]=\operatorname{nil}[T] \text { or } \operatorname{right}[z]=\operatorname{nil}[T] \\ 2 & \text { then } y \leftarrow z \\ 3 & \text { else } y \leftarrow \mathrm{TREE}-\operatorname{SUCCESSOR}(z) \\ \hline \end{array}$
$\begin{array}{lc} \hline 4 & \text { if } \operatorname{left}[y] \neq \operatorname{nil}[T]] \\ 5 & \text { then } x \leftarrow \operatorname{left}[y] \\ 6 & \text { else } x \leftarrow \operatorname{right}[y] \end{array}$
$7 p[x] \leftarrow p[y]$
8 if $p[y]=\operatorname{nil}[T]$ 9 then $\operatorname{root}[T] \leftarrow x$ 10 else if $y=\operatorname{left}[p[y]]$ 11 then $\operatorname{left}[p[y]] \leftarrow x$ 12 else $\operatorname{right}[p[y]] \leftarrow x$
```if }y\not= then key[z]}\leftarrowkey[y \| If y has other fields, copy them, too.```
```16 if color[y] = BLACK 17 then RB-Delete-Fixup (T, x)```
18 return y

Notation similar to AVL
z = logically removed
$y=$ physically removed
$x=y$'s only son

RB-Delete-Fixup (T, x)
1 while $x \neq \operatorname{root}[T]$ and $\operatorname{color}[x]=\operatorname{BLACK}$
2 do if $x=\operatorname{left}[p[x]]$
$x=$ son of removed node $\mathrm{p}[x]=$ parent of x
$w=$ sibling (brother) of x

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
then $w \leftarrow \operatorname{right}[p[x]]$

```if color[w] = RED then color[w]\leftarrow BLACK color[p[x]]}\leftarrow RE Left-Rotate(T, p[x]) w\leftarrow\operatorname{right}[p[x]]```	$\triangleright$ Case 1   $\triangleright$ Case 1   $\triangleright$ Case 1   $\triangleright$ Case 1	R subtree up Check L
$\begin{array}{cc} \text { if color }[\operatorname{left}[w]]=\text { BLACK and color }[\operatorname{right}[w]]=\text { BLACK } \\ \text { then } \operatorname{color}[w] \leftarrow \text { RED } & \triangleright \text { Case } 2 \\ x \leftarrow p[x] & \triangleright \text { Case } 2 \end{array}$		Recolor   Black up   Goup
elseif color $[\operatorname{right}[w]]=\operatorname{BLACK}$   then $\operatorname{color}[\operatorname{left}[w]] \leftarrow$ BLACK   $\operatorname{color}[w] \leftarrow \operatorname{RED}$   $\operatorname{RIGHT}-\operatorname{ROTATE}(T, w)$   $w \leftarrow \operatorname{right}[p[x]]$	$\square$ Case 3 $\triangleright$ Case 3 $\triangleright$ Case 3 $\triangleright$ Case 3	inner Rsubtree up
$\begin{aligned} & \operatorname{color}[w] \leftarrow \operatorname{color}[p[x]] \\ & \operatorname{color}[p[x]] \leftarrow \text { BLACK } \\ & \operatorname{color}[\operatorname{right}[w]] \leftarrow \text { BLACK } \\ & \operatorname{LEFT} \operatorname{ROTATE}(T, p[x]) \\ & x \leftarrow \operatorname{root}[T] \end{aligned}$	$\triangleright$ Case 4   $\triangleright$ Case 4    $\triangleright$ Case 4    $\triangleright$ Case 4    $\triangleright$ Case 4	$\begin{aligned} & \text { R subtree up } \\ & \text { stop } \end{aligned}$

23 color $[x] \leftarrow$ BLACK
[Cormen90]

## Deleting in R-B Tree

Delete time is $\mathrm{O}(\log (\mathrm{n}))$
At most three rotations are done

## Which BS tree is the best? [Pfaff 2004]

It is data dependent

- For random sequences
=> use unsorted tree, no waste time for rebalancing
- For mostly random ordering with occasional runs of sorted order
=> use red-black trees
- For insertions often in a sorted order and
- later accesses tend to be random => AVL trees
- later accesses are sequential or clustered => splay trees
- self adjusting trees,
- update each search by moving searched element to the root


## B-tree as BST on disk

## B-tree



Based on [Cormen] and [Maire]

## B-tree

1. Motivation
2. Multiway search tree
3. B-tree
4. Search
5. Insert
6. Delete

## B-tree

## Motivation

- Large data do not fit into operational memory -> disk
- Time for disk access is limited by HW (Disk access = Disk-Read, Disk-Write)
- Disk access is MUCH slower compared to instruction
- 1 disk access ~ 13000000 instructions!!!!
- Number of disk accesses dominates the computational time


## B-tree

## Motivation

Disk access = Disk-Read, Disk-Write

- Disk divided into blocks
(512, 2048, 4096, 8192 bytes)
- Whole block transferred
- Design a multiway search tree
- Each node fits to one disk block


## B-tree

## Multiway search tree

= a generalization of Binary search tree

Each node has at most $m$ children $\square$ $(m>2)$ Internal node with $n$ keys has $n+1$ successors, $n<m$
(except root)
Leaf nodes with no successors
Tree is ordered \%
Keys in nodes separates the ranges in subtrees \%

## B-tree

Multiway search tree - internal node
Keys in internal node separate the ranges of keys in subtrees

© Frederic Maire, QUT

$$
\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{5}
$$

## B-tree

Multiway search tree - leaf node
Leaves have no subtrees and do not use pointers


Leaves have no pointers to subtrees

$$
\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{5}
$$

## B-tree

## B-tree

$=$ of order $m$ is an $m$-way search tree, such that

- All leaves have the same height (B-tree is balanced)
- All internal nodes are constrained to have
- at least $m / 2$ non-empty children and (precisely later)
- at most $m$ non-empty children
- The root can have 0 or between 2 to $m$ children
- 0 - leaf
-m - a full node


## B-tree

## B-tree - problems with notation

## Different authors use different names

- Order m B-tree
- Maximal number of children
- Maximal number of keys (No. of children - 1)
- Minimal number of keys
- Minimum degree $t$
- Minimal number of children [Cormen]


## B-tree

## B-tree - problems with notation

Relation between minimal and maximal number of children also differs
For minimal number $t$ of children
Maximal number $m$ of children is

- $m=2 \mathrm{t}-1$ simple B-tree, multiphase update strategy
- $m=2 \mathrm{t}$ optimized B-tree, singlephase update strategy


## B-tree



B-tree of order $m=1000$ of height 2 contains
1001001 nodes ( $1+1000+1000$ 000) 999999999 keys ~ one billion keys (1 miliarda klíčů)

## B-tree

## B-tree node fields

$n \ldots$ number of keys $k_{i}$ stored in the node $n<m$.
Node with $n=m-1$ is a full-node
$k_{i} \ldots n$ keys, stored in non-decreasing order $k_{1} \leq k_{2} \leq \ldots \leq k_{n}$
leaf ... boolean value, true for leaf, false for internal node
$c_{i} \ldots n+1=m$ pointers to successors (undefined for leaves)
Keys $k_{i}$ separate the keys in subtree:
For keys ${ }_{i}$ in the subtree with root $k_{i}$ holds

$$
\text { keys }_{1} \leq k_{1} \leq \text { keys }_{2} \leq k_{2} \leq \ldots \leq k_{n} \leq \text { keys }_{n+1}
$$

## B-tree

## B-tree algorithms

- Search
- Insert
- Delete


## B-tree search

Similar to BST tree search
Keys in nodes sequentially or binary search

Input: pointer to tree root and a key $k$
Output: an ordered pair $(y, i)$, node $y$ and index $i$

$$
\text { such that } y \cdot k[i]=k
$$

or NIL, if $k$ not found

## B-tree search

Search 17


17 not found => return NIL

Search 18


18 found $=>$ return ( $x, 3$ )

## B-tree search

## B-treeSearch(x,k)

$i \leftarrow 1$
while $i \leq x . n$ and $k>x . k[i] \quad / / s e q u e n t i a l$ search
if $\frac{\text { do }}{\mathbf{i}} \leq x . n$ and $k=x . k[i]$
return (x, i) // pair: node \& index
if x.leaf
then return NIL
else

> Disk-Read(x.c[i]) // tree traversal return B-treeSearch(x.c[i],k)

## B-tree search

## B-treeSearch complexity

## Using tree order $m$

Number of disk pages read is

$$
\mathrm{O}(h)=\mathrm{O}\left(\log _{m} n\right)
$$

Where $h$ is tree height and
$m$ is the tree order
$n$ is number of tree nodes
Since num. of keys x. $n<m$, the while loop takes $O(m)$ and
total time is $\mathbf{O}\left(\boldsymbol{m} \log _{\boldsymbol{m}} \boldsymbol{n}\right)$

## B-tree search

## B-treeSearch complexity Using minimum degree $t$

Number of disk pages read is

$$
\mathrm{O}(h)=\mathrm{O}\left(\log _{t} n\right)
$$

Where $h$ is tree height and
$t$ is the minimum degree of B-tree
$n$ is number of tree nodes
Since num. of keys x. $n<2 t$, the while loop takes $O(t)$ and
total time is $O\left(t \log _{t} n\right)$

## B-tree update strategies

Two principal strategies

1. Multiphase strategy
"solve the problem, when appears" $m=2 t-1$ children
2. Single phase strategy [Cormen]
"avoid the future problems"
$m=2 t$ children

Actions:
Split full nodes
Merge nodes with less than minimum entries

## B-tree insert - 1.Multiphase strategy

## Insert to a non-full node

## Insert 17



## B-tree insert - 1.Multiphase strategy

## Insert to a full node


median
1.Multiphase strategy
"solve the problem, when appears"


## B-tree insert - 1.Multiphase strategy

Insert ( $\mathrm{x}, \mathrm{T}$ ) - pseudocode
Find the leaf for $x$
x...key, T...tree

Top down phase

If not full, insert $x$ and stop while (current_node full)
(node overflow) find median (in keys in the node after insertion of $x$ ) split node into two

Bottom-up phase
promote median up as new $x$
current_node = parent of current_node or new root Insert $x$ and stop

## B-tree insert - 2.Singlephase strategy

Principle: "avoid the future problems" Top down phase only

- Split the full node with 2t-1 keys when enter
- It creates space for future medians from the children
- No need to go bottom-up
- Splitting of
- Root => tree grows by one
- Inner node or leaf => parent gets median key


## B-tree insert - 2. Singlephase strategy

Insert to a non-full node

$m=2 t=6$ children<br>$m-1$ keys $=$ odd max number Insert B



## B-tree insert - 2.Singlephase strategy

1 new node
Splitting a passed full node and insert to a not full node Insert Q



## B-tree insert - 2.Singlephase strategy

2 new nodes
Splitting a passed full root and insert to a not full node


## B-tree insert - 2.Singlephase strategy



## B-tree insert - 2.Singlephase strategy

Insert (x, T) - pseudocode
While searching the leaf $x$
if (node full)
find median (in keys in the full node only)
split node into two
insert median to parent (there is space)
Insert $x$ and stop

## B-tree delete

## Delete ( x , btree) - principles

## Multipass strategy only

- Search for value to delete
- Entry is in leaf
is simple to delete. Do it. Corrections of number of elements later...
- Entry is in Inner node
- It serves as separator for two subtrees
- swap it with predecessor(x) or successor(x)
- and delete in leaf

Leaf in detail
if leaf had more than minimum number of entries delete $x$ from the leaf and STOP
else
redistribute the values to correct and delete x in leaf (may move the problem up to the parent, problem stops by root, as it has no minimum number of entries)

## B-tree delete

Node has less than minimum entries

- Look to siblings left and right

- If one of them has more than minimum entries
- Take some values from it
- Find new median in the sequence:
(sibling values - separator- node values)
- Make new median a separator (store in parent)
- Both siblings are on minimum
- Collapse node - separator - sibbling to one node
- Remove separator from parent
- Go up to parent and correct



## B-tree delete

Delete (x, btree) - pseudocode Multipass strategy only
if( $x$ to be removed is not in a leaf)
swap it with successor(x)
currentNode $=$ leaf
while(currentNode underflow)
try to redistribute entries from an immediate sibling into currentNode via its parent
if(impossible) then merge currentNode with a
sibling and one entry from the parent
currentNode $=$ parrent of CurrentNode

## Maximum height of B-tree

$\mathrm{h}_{\nmid m / 2\rceil^{((\mathrm{n}+1) / 2)}} \quad \begin{gathered}\text { half node used for } \mathrm{k}, \\ \text { half of children }\end{gathered}$
Gives the upper bound to number of disk accesses See [Maire] or [Cormen] for details

## References

[Cormen] Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990

## Red Black Tree

[Whitney]: CS660 Combinatorial Algorithms, San Diego State University, 1996], RedBlack, B-trees http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.htm|\#RT FToC5
[RB tree] John Franco - java applet
http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html
[RB tree] Robert Lafore. Applets accompanying the book "Data Structures and Algorithms in Java," Second Edition. Robert Lafore, 2002 (applet, v němž si Ize vyzkoušet vkládání a mazání u Red-Black Tree) http://cs.brynmawr.edu/cs206/WorkshopApplets/Chap09/RBTree/RBTree.html

## B-tree

[Maire] Frederic Maire: An Introduction to Btrees, Queensland University of Technology,1998] http://sky.fit.qut.edu.au/~maire/baobab/lecture/

## References

[Wiki] B-tree. Wikipedia, The Free Encyclopedia. (2006, November 24). Retrieved December 12, 2006, from http://en.wikipedia.org/w/index.php?title=B-tree\&oldid=89805120
[Jones] Jeremy Jones: B-Tree animation - java applet https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm

## Splay tree

[Wiki] Splay tree. Wikipedia, The Free Encyclopedia. (2007, Oct 29) Retrieved November 27, 2007 from <http://en.wikipedia.org/w/index.php?title=Splay tree\&oldid=167855497>.

## Tree comparison

[Pfaff 2004] Ben Pfaff. Performance Analysis of BSTs in System Software, extended abstract of this paper appeared in the proceedings of SIGMETRICS/Performance 2004. http://www.stanford.edu/~blp/papers/libavl.pdf


[^0]:    Based on:
    [Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990]
    [Whitney: CS660 Combinatorial Algorithms, San Diego State University, 1996]
    [Frederic Maire: An Introduction to Btrees, Queensland University of Technology,1998]

