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Outline

This topic covers splay trees
– A binary search tree
– An alternate idea to optimizing run times
– A possible height of O(n) but amortized run times of (ln(n))
– Each access or insertion moves that node to the root
– Operations are zig-zag and zig-zig
– Similar to, but different from, AVL trees
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Background

AVL trees and red-black trees are binary search trees with 
logarithmic height
– This ensures all operations are O(ln(n))

An alternative to maintaining a height logarithmic with respect to the 
number of nodes, an alternative idea is to make use of an old 
maxim:

Data that has been recently accessed is more likely to
be accessed again in the near future.
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Background

Accessed nodes could be rotated or splayed to the root of the tree:
– Accessed nodes are splayed to the root during the count/find operation
– Inserted nodes are inserted normally and then splayed
– The parent of a removed node is splayed to the root

Invented in 1985 by Daniel Dominic Sleator and Robert Endre Tarjan
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Insertion at the Root

Immediately, inserting at the root makes it clear that we will still have 
access times that are O(n):
– Insert the values 1, 2, 3, 4, …, n, in that order

– Now, an access to 1 requires that a linked list be traversed 
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Inserting at the Root

However, we are interested in amortized run times:
– We only require that n accesses have (n ln(n)) time
– Thus O(ln(n)) of those accesses could still be O(n)
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Inserting at the Root

Before we consider insertions, how can we simply move an access 
node to the root?
– We could consider AVL rotations, the simplest of which is:
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Single Rotations

Unfortunately, as we will see, using just single rotations does not 
work
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Single Rotations

Consider this splay tree with five entries
– They were inserted in the order 1, 2, 3, 4 and 5
– Let us access 1 by find it and then rotating it back to the root
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Single Rotations

Rotating 1 and 2
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Single Rotations

Rotating 1 and 3
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Single Rotations

Rotating 1 and 4
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Single Rotations

Rotating 1 and 5
– The result still looks like a linked list
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Single Rotations

Accessing 2 next doesn’t do much
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Single Rotations

Accessing 2 next doesn’t do much
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Single Rotations

Accessing 2 next doesn’t do much
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Single Rotations

Accessing 2 next doesn’t do much
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Single Rotations

Accessing 2 next doesn’t do much
– The resulting tree is shallower by only 1
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Single Rotations

Accessing 3 isn’t significant, either
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Single Rotations

Accessing 3 isn’t significant, either
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Single Rotations

Accessing 3 isn’t significant, either
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Single Rotations

Accessing 3 isn’t significant, either
– Essentially, it is two linked lists and the left sub-tree is turning into the 

original linked list
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Single Rotations

In a general splay tree created in the order
1, 2, 3, 4, …, n

and then accessed repeated in the order
1, 2, 3, 4, …, n

will require 

comparisons—an amortized run time of O(n)
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Single Rotations

Thus, a single rotation will not do
– It can convert a linked list into a linked list
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Depth-2 Rotations

Let’s try rotations with entries at depth 2
– Suppose we are accessing A on the left and B on the right
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In the first case, two rotations at the root bring A to the root
– We will call this a zig-zig rotation

Depth-2 Rotations
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In the second, two rotations bring B to the root
– It doesn’t seem we’ve done a lot…
– We will call this a zig-zag rotation

Depth-2 Rotations
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Depth-2 Rotations

If the accessed node is a child of the root, we must revert to a single 
rotation:
– A zig rotation
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Operations

Accessing any node splays the node to the root

Inserting a new element into a splay tree follows the binary search 
tree model:
– Insert the node as per a standard binary search tree
– Splay the object to the root

Removing a node also follows the pattern of a binary search tree
– Copy the minimum of the right sub-tree
– Splay the parent of the removed node to the root
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Examples

With a little consideration, it becomes obvious that inserting 1 
through 10, in that order, will produce the splay tree
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Examples

We will repeatedly access the deepest node in the tree
– With each operation, this node will be splayed to the root
– We begin with a zig-zig rotation
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Examples

This is followed by another zig-zig operation...
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Examples

...and another
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Examples

...and another
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Examples

At this point, this requires a single zig operation to bring 1 to the root
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Examples

The height of this tree is now 6 and no longer 9
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Examples

The deepest node is now 3:
– This node must be splayed to the root beginning with a zig-zag 

operation
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Examples

The node 3 is rotated up
– Next we require a zig-zig operation
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Examples

Finally, to bring 3 to the root, we need a zig-zag operation
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Examples

The height of this tree is only 4
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Examples

Of the three deepest nodes, 9 requires a zig-zig operation, so will 
access it next
– The zig-zig operation will push 6 and its left sub-tree down
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Examples

This is closer to a linked list; however, we’re not finished
– A zig-zag operation will move 9 to the root
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Examples

In this case, the height of the tree is now greater:  5
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Examples

Accessing the deepest node, 5, we must begin with a zig-zag 
operation
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Examples

Next, we require a zig-zag operation to move 5 to the location of 3
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Examples

Finally, we require a single zig operation to move 5 to the root
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Examples

The height of the tree is 4; however, 7 of the nodes form a perfect 
tree at the root
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Examples

Accessing 7 will require two zig-zag operations
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Examples

The first zig-zag moves it to depth 2



Splay Trees

50

Examples

7 is promoted to the root through a zig-zag operation
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Examples

Finally, accessing 2, we first require a zig-zag operation



Splay Trees

52

Examples

This now requires a zig-zig operation to promote 2 to the root
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Examples

In this case, with 2 at the root, 3-10 must be in the right sub-tree
– The right sub-tree happens to be AVL balanced
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Examples

To remove a node, for example, 6, splay it to the root
– First we require a zig-zag operation
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Examples

At this point, we need a zig operation to move 6 to the root
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Examples

We will now copy the minimum element from the right sub-tree
– In this case, the node with 7 has a single sub-tree, we will simply move 

it up



Splay Trees

57

Examples

Thus, we have removed 6 and the resulting tree is, again, 
reasonably balanced
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Performance

It is very difficult with small trees to demonstrate the amortized 
logarithmic behaviour of splay trees

The original ACM article proves the balance theorem:
The run time of performing a sequence of m operations on a splay tree 
with n nodes is O( m(1 + ln(n)) + n ln(n) ).

Therefore the run time for a splay tree is comparable to any 
balanced tree assuming at least n operations
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Performance
From the time of introducing splay trees (1985) up till today 
the following  conjecture (among others) remains unproven.

Dynamic optimality conjecture[2]

Consider any sequence of successful accesses on an n-node search 
tree. Let A be any algorithm that carries out each access by traversing 
the path from the root to the node containing the accessed item, at a 
cost of one plus the depth of the node containing the item, and that 
between accesses performs an arbitrary number of rotations anywhere 
in the tree, at a cost of one per rotation. Then the total time to perform 
all the accesses by splaying is no more than O(n) plus a constant times 
the time required by algorithm A.
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Performance

The ECE 250 web site has an implementation of splay trees at
http://ece.uwaterloo.ca/~ece250/Algorithms/Splay_trees/

It allows the user to export trees as SVG files
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Comparisons

Advantages:
– The amortized run times are similar to that of AVL trees and red-black 

trees
– The implementation is easier
– No additional information (height/colour) is required

Disadvantages:
– The tree will change with read-only operations
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Summary

This topic covers splay trees
– A binary search tree
– Splay accessed or inserted nodes to the root
– The height is O(n) but amortized run times of (ln(n)) for (n) operations
– Operations are termed zig, zig-zag and zig-zig
– Requires no additional memory
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Usage Notes

• These slides are made publicly available on the web for anyone to use
• If you choose to use them, or a part thereof, for a course at another 

institution, I ask only three things:
– that you inform me that you are using the slides,
– that you acknowledge my work, and
– that you alert me of any mistakes which I made or changes which you make, and 

allow me the option of incorporating such changes (with an acknowledgment) in 
my set of slides

Sincerely,
Douglas Wilhelm Harder, MMath
dwharder@alumni.uwaterloo.ca
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