
OPPA European Social Fund
Prague & EU: We invest in your future.

ECE 250 Algorithms and Data Structures

Douglas Wilhelm Harder, M.Math. LEL
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

Copyright © 2011 by Douglas Wilhelm Harder. All rights reserved.

Splay Trees

Splay Trees

2

Outline

This topic covers splay trees
– A binary search tree
– An alternate idea to optimizing run times
– A possible height of O(n) but amortized run times of (ln(n))
– Each access or insertion moves that node to the root
– Operations are zig-zag and zig-zig
– Similar to, but different from, AVL trees

Splay Trees

3

Background

AVL trees and red-black trees are binary search trees with
logarithmic height
– This ensures all operations are O(ln(n))

An alternative to maintaining a height logarithmic with respect to the
number of nodes, an alternative idea is to make use of an old
maxim:

Data that has been recently accessed is more likely to
be accessed again in the near future.

Splay Trees

4

Background

Accessed nodes could be rotated or splayed to the root of the tree:
– Accessed nodes are splayed to the root during the count/find operation
– Inserted nodes are inserted normally and then splayed
– The parent of a removed node is splayed to the root

Invented in 1985 by Daniel Dominic Sleator and Robert Endre Tarjan

Splay Trees

5

Insertion at the Root

Immediately, inserting at the root makes it clear that we will still have
access times that are O(n):
– Insert the values 1, 2, 3, 4, …, n, in that order

– Now, an access to 1 requires that a linked list be traversed

Splay Trees

6

Inserting at the Root

However, we are interested in amortized run times:
– We only require that n accesses have (n ln(n)) time
– Thus O(ln(n)) of those accesses could still be O(n)

Splay Trees

7

Inserting at the Root

Before we consider insertions, how can we simply move an access
node to the root?
– We could consider AVL rotations, the simplest of which is:

Splay Trees

8

Single Rotations

Unfortunately, as we will see, using just single rotations does not
work

Splay Trees

9

Single Rotations

Consider this splay tree with five entries
– They were inserted in the order 1, 2, 3, 4 and 5
– Let us access 1 by find it and then rotating it back to the root

Splay Trees

10

Single Rotations

Rotating 1 and 2

Splay Trees

11

Single Rotations

Rotating 1 and 3

Splay Trees

12

Single Rotations

Rotating 1 and 4

Splay Trees

13

Single Rotations

Rotating 1 and 5
– The result still looks like a linked list

Splay Trees

14

Single Rotations

Accessing 2 next doesn’t do much

Splay Trees

15

Single Rotations

Accessing 2 next doesn’t do much

Splay Trees

16

Single Rotations

Accessing 2 next doesn’t do much

Splay Trees

17

Single Rotations

Accessing 2 next doesn’t do much

Splay Trees

18

Single Rotations

Accessing 2 next doesn’t do much
– The resulting tree is shallower by only 1

Splay Trees

19

Single Rotations

Accessing 3 isn’t significant, either

Splay Trees

20

Single Rotations

Accessing 3 isn’t significant, either

Splay Trees

21

Single Rotations

Accessing 3 isn’t significant, either

Splay Trees

22

Single Rotations

Accessing 3 isn’t significant, either
– Essentially, it is two linked lists and the left sub-tree is turning into the

original linked list

Splay Trees

23

Single Rotations

In a general splay tree created in the order
1, 2, 3, 4, …, n

and then accessed repeated in the order
1, 2, 3, 4, …, n

will require

comparisons—an amortized run time of O(n)

 2 2 2

1 1

1 1
O

2 2

n n

k k

n n n n
n k n k n n

Splay Trees

24

Single Rotations

Thus, a single rotation will not do
– It can convert a linked list into a linked list

Splay Trees

25

Depth-2 Rotations

Let’s try rotations with entries at depth 2
– Suppose we are accessing A on the left and B on the right

Splay Trees

26

In the first case, two rotations at the root bring A to the root
– We will call this a zig-zig rotation

Depth-2 Rotations

Splay Trees

27

In the second, two rotations bring B to the root
– It doesn’t seem we’ve done a lot…
– We will call this a zig-zag rotation

Depth-2 Rotations

Splay Trees

28

Depth-2 Rotations

If the accessed node is a child of the root, we must revert to a single
rotation:
– A zig rotation

Splay Trees

29

Operations

Accessing any node splays the node to the root

Inserting a new element into a splay tree follows the binary search
tree model:
– Insert the node as per a standard binary search tree
– Splay the object to the root

Removing a node also follows the pattern of a binary search tree
– Copy the minimum of the right sub-tree
– Splay the parent of the removed node to the root

Splay Trees

30

Examples

With a little consideration, it becomes obvious that inserting 1
through 10, in that order, will produce the splay tree

Splay Trees

31

Examples

We will repeatedly access the deepest node in the tree
– With each operation, this node will be splayed to the root
– We begin with a zig-zig rotation

Splay Trees

32

Examples

This is followed by another zig-zig operation...

Splay Trees

33

Examples

...and another

Splay Trees

34

Examples

...and another

Splay Trees

35

Examples

At this point, this requires a single zig operation to bring 1 to the root

Splay Trees

36

Examples

The height of this tree is now 6 and no longer 9

Splay Trees

37

Examples

The deepest node is now 3:
– This node must be splayed to the root beginning with a zig-zag

operation

Splay Trees

38

Examples

The node 3 is rotated up
– Next we require a zig-zig operation

Splay Trees

39

Examples

Finally, to bring 3 to the root, we need a zig-zag operation

Splay Trees

40

Examples

The height of this tree is only 4

Splay Trees

41

Examples

Of the three deepest nodes, 9 requires a zig-zig operation, so will
access it next
– The zig-zig operation will push 6 and its left sub-tree down

Splay Trees

42

Examples

This is closer to a linked list; however, we’re not finished
– A zig-zag operation will move 9 to the root

Splay Trees

43

Examples

In this case, the height of the tree is now greater: 5

Splay Trees

44

Examples

Accessing the deepest node, 5, we must begin with a zig-zag
operation

Splay Trees

45

Examples

Next, we require a zig-zag operation to move 5 to the location of 3

Splay Trees

46

Examples

Finally, we require a single zig operation to move 5 to the root

Splay Trees

47

Examples

The height of the tree is 4; however, 7 of the nodes form a perfect
tree at the root

Splay Trees

48

Examples

Accessing 7 will require two zig-zag operations

Splay Trees

49

Examples

The first zig-zag moves it to depth 2

Splay Trees

50

Examples

7 is promoted to the root through a zig-zag operation

Splay Trees

51

Examples

Finally, accessing 2, we first require a zig-zag operation

Splay Trees

52

Examples

This now requires a zig-zig operation to promote 2 to the root

Splay Trees

53

Examples

In this case, with 2 at the root, 3-10 must be in the right sub-tree
– The right sub-tree happens to be AVL balanced

Splay Trees

54

Examples

To remove a node, for example, 6, splay it to the root
– First we require a zig-zag operation

Splay Trees

55

Examples

At this point, we need a zig operation to move 6 to the root

Splay Trees

56

Examples

We will now copy the minimum element from the right sub-tree
– In this case, the node with 7 has a single sub-tree, we will simply move

it up

Splay Trees

57

Examples

Thus, we have removed 6 and the resulting tree is, again,
reasonably balanced

Splay Trees

58

Performance

It is very difficult with small trees to demonstrate the amortized
logarithmic behaviour of splay trees

The original ACM article proves the balance theorem:
The run time of performing a sequence of m operations on a splay tree
with n nodes is O(m(1 + ln(n)) + n ln(n)).

Therefore the run time for a splay tree is comparable to any
balanced tree assuming at least n operations

Splay Trees

59

Performance
From the time of introducing splay trees (1985) up till today
the following conjecture (among others) remains unproven.

Dynamic optimality conjecture[2]

Consider any sequence of successful accesses on an n-node search
tree. Let A be any algorithm that carries out each access by traversing
the path from the root to the node containing the accessed item, at a
cost of one plus the depth of the node containing the item, and that
between accesses performs an arbitrary number of rotations anywhere
in the tree, at a cost of one per rotation. Then the total time to perform
all the accesses by splaying is no more than O(n) plus a constant times
the time required by algorithm A.

Splay Trees

60

Performance

The ECE 250 web site has an implementation of splay trees at
http://ece.uwaterloo.ca/~ece250/Algorithms/Splay_trees/

It allows the user to export trees as SVG files

Splay Trees

61

Comparisons

Advantages:
– The amortized run times are similar to that of AVL trees and red-black

trees
– The implementation is easier
– No additional information (height/colour) is required

Disadvantages:
– The tree will change with read-only operations

Splay Trees

62

Summary

This topic covers splay trees
– A binary search tree
– Splay accessed or inserted nodes to the root
– The height is O(n) but amortized run times of (ln(n)) for (n) operations
– Operations are termed zig, zig-zag and zig-zig
– Requires no additional memory

Splay Trees

63

References

[1] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison
Wesley, §4.5, pp.149-58.

[2] Daniel D. Sleator and Robert E. Tarjan, "Self-Adjusting Binary Search
Trees", Journal of the ACM 32 (3), 1985, pp.652-86.

Splay Trees

64

Usage Notes

• These slides are made publicly available on the web for anyone to use
• If you choose to use them, or a part thereof, for a course at another

institution, I ask only three things:
– that you inform me that you are using the slides,
– that you acknowledge my work, and
– that you alert me of any mistakes which I made or changes which you make, and

allow me the option of incorporating such changes (with an acknowledgment) in
my set of slides

Sincerely,
Douglas Wilhelm Harder, MMath
dwharder@alumni.uwaterloo.ca

OPPA European Social Fund
Prague & EU: We invest in your future.

