
OPPA European Social Fund
Prague & EU: We invest in your future.

Advanced algorithms
asymptotic notation,

graphs and their representation in computers

Jiří Vyskočil, Radek Mařík

2011

Advanced algorithms
2 / 32

Introduction

 Subject WWW pages:

 https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start

 Goals

 Individual implementation of variants of standard (basic and intermediate) problems

from several selected IT domains with rich applicability. Algorithmic aspects and
effectiveness of practical solutions is emphasized. The seminars are focused mainly
on implementation elaboration and preparation, the lectures provide a necessary
theoretical foundation.

 Prerequisites

 The course requires programming skills in at least one of programming languages

C/C++/Java. There are also homework programming tasks. Understanding to basic
data structures such as arrays, lists, and files and their usage for data processing is
assumed.

https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start
https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start
https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start

Advanced algorithms
3 / 32

Asymptotic notation

 Asymptotic upper bound:

 Meaning:

 The value of the function f is on or below the value of the

function g (within a constant factor)

 Definition:

𝑓(𝑛) ∈ Ο(𝑔(𝑛))

 ∃𝑐 > 0 ∃𝑛0 ∀𝑛 > 𝑛0 ∶ 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)

Advanced algorithms
4 / 32

Asymptotic notation

 Asymptotic lower bound :

 Meaning:

 The value of the function f is on or above the value of the

function g (within a constant factor)

 Definition:

𝑓(𝑛) ∈ Ω(𝑔(𝑛))

 ∃𝑐 > 0 ∃𝑛0 ∀𝑛 > 𝑛0 ∶ 𝑐 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛)

Advanced algorithms
5 / 32

Asymptotic notation

 Asymptotic tight bound :

 Meaning:

 The value of the function f is equal to the value of the

function g (within a constant factor).

 Definition:

𝑓(𝑛) ∈ Θ(𝑔(𝑛))

 ∃𝑐1, 𝑐2 > 0 ∃𝑛0 ∀𝑛 > 𝑛0 : 𝑐1 ∙ 𝑔(𝑛) < 𝑓(𝑛) < 𝑐2 ∙ 𝑔(𝑛)

Advanced algorithms
6 / 32

Asymptotic notation

 Example: Consider two-dimensional array MxN of
integers. What is asymptotic growth of searching for the
maximum number in this array?

 upper:
 O((M+N)2)

 O(max(M,N)2)

 O(N2)

 O(M N)

 tight:
 (M N)

 lower:
 (1)

 (M)

 (M N)

Advanced algorithms
7 / 32

Graphs

 A graph is an ordered pair of a set of vertices (nodes)
and a set of edges (arcs)

 where V is a set of vertices and

 E is a set of edges

 such as:

 Example:
 V={a,b,c,d,e}

 E={{a,b},{b,e},{e,c},{c,d},

 {d,a},{a,c},{b,d},{b,c}} a

b

e

d

c 𝐸 ⊆
𝑉
2

𝐺 = (𝑉, 𝐸)

Advanced algorithms
8 / 32

Graphs - orientation

 Undirected graph
 Edge is not ordered pair of

vertices

 E={{a,b},{b,e},{e,c},{c,d},

 {d,a},{a,c},{b,d},{b,c}}

 Directed graph (digraph)
 Edge is an ordered pair of

vertices

E={(b,a),(b,e),(c,e),(c,d),

 (a,d),(c,a),(b,d),(b,c)}

a

b

e

d

c

a

b

e

d

c

Advanced algorithms
9 / 32

Graphs – weighted graph

 Weighted graph
 A number (weight) is assigned to each edge

 Often, the weight is formalized using a weight

function:

 w({a,b}) = 1.1 w({a,c})= 7.2

 w({b,e}) = 2.0 w({b,d})= 10

 w({e,c}) = 0.3 w({b,c})= 0

 w({c,d}) = 6.8

 w({d,a}) = -2.4

𝑤: 𝐸 → ℝ

a

b

e

d

c

0.3 2.0

6.8

0

1.1

-2.4

10

7.2

Advanced algorithms
10 / 32

Graphs – node degree

 incidence

 If two nodes x,y are linked by edge e, nodes x,y are said to be incident

to edge e or, edge e is incident to nodes x,y.

 Node degree (for undirected graph)

 A function that returns a number of edges incident to a given node.

 deg(a)=3

 deg(b)=4

 deg(c)=4

 deg(d)=3

 deg(e)=2

deg 𝑢 = {𝑒 ∈ 𝐸|𝑢 ∈ 𝑒}

a

b

e

d

c

Advanced algorithms
11 / 32

Graphs – node degree

 Node degree (for directed graphs)

 indegree

 outdegree

 deg+(a)=2 deg-(a)=1

 deg+(b)=0 deg-(b)=4

 deg+(c)=1 deg-(c)=3

 deg+(d)=3 deg-(d)=0

 deg+(e)=2 deg-(e)=0

𝑑𝑒𝑔+(𝑢) = 𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 ∶ 𝑒 = (𝑣, 𝑢)}

𝑑𝑒𝑔−(𝑢) = 𝑒 ∈ 𝐸 ∃𝑣 ∈ 𝑉 ∶ 𝑒 = (𝑢, 𝑣)}

a

b

e

d

c

Advanced algorithms
12 / 32

Graphs – handshaking lemma

 Handshaking lemma (for undirected graphs)

 Explanation: Each edges is added twice – once for the
source node, then once for target node.

 The variant for directed graphs

 𝑑𝑒𝑔(𝑣)

𝑣∈𝑉

= 2 𝐸

 (𝑑𝑒𝑔+(𝑣)

𝑣∈𝑉

+ 𝑑𝑒𝑔−(𝑣)) = 2 𝐸

Advanced algorithms
13 / 32

Graphs – complete graph

 complete graph
 Every two nodes are linked by an edge

 A consequence

𝐸 =
𝑉
2

 ∀𝑣 ∈ 𝑉 ∶ deg 𝑣 = 𝑉 − 1

1

2

4

6

5 3

Advanced algorithms
14 / 32

Graphs – path, circuit, cycle

 path
 A path is a sequence of vertices and

edges (v0, e1, v1,..., et, vt), where all

vertices v0,..., vt differ from each

other and for every i = 1,2,...,t, ei =

{vi-1, vi} E(G). Edges are traversed

in forward direction.

 circuit
 A circuit is a closed path, i.e. a

sequence (v0, e1, v1,..., et, vt = v0),.

 cycle
 A cycle is a closed simple chain.

Edges can be traversed in both

directions.

1

2

4

6

5 3

(1,{1,6},6,{6,5},5,{5,3},3,{3,4},4)

1

2

4

6

5 3

(2,{2,5},5,{5,3},3,{3,2},2)

Advanced algorithms
15 / 32

Graphs – connectivity

 connectivity
 Graph G is connected if for every pair of vertices x

and y in G, there is a path from x to y.

Connected graph Disconnected graph

Advanced algorithms
16 / 32

Graphs - trees

 tree

The following definitions of a tree (graph G) are equivalent:

 G is a connected graph without cycles.

 G is such a graph so that a cycle occurs if an arbitrary

new edges is added.

 G is such a connected graph so that it becomes

disconnected if any edge is removed.

 G is a connected graph with |V|-1 edges.

 G is a graph in which every two vertices are connected

by just one path.

Advanced algorithms
17 / 32

Graphs - trees

 Undirected trees
 A leaf is a node of degree 1.

 Directed trees (the orientation might be opposite sometimes!)
 A leaf is a node with no outgoing edge.

 A root is a node with no incoming edge.

Advanced algorithms
18 / 32

Graphs – adjacency matrix

 Adjacency matrix
 Let G=(V,E) be a graph with n vertices.

 Let’s label vertices v1, …,vn (in some order).

Adjacency matrix of graph G is a square matrix

 defined as follows

𝑎𝑖 ,𝑗 =

1 for {𝑣𝑖 , 𝑣𝑗 } ∈ 𝐸

 0 otherwise

𝐴G = 𝑎𝑖 ,𝑗 𝑖,𝑗=1

𝑛

Advanced algorithms
19 / 32

Graphs – adjacency matrix

(for directed graph)

1

2

0

3

4

5

0

0

1

0

1

0

1

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

v1

v2

v5

v4

v3

v1

v2

v5

v4

v3

1 2 3 4 5

0

Advanced algorithms
20 / 32

Graphs – Laplacian matrix

 Laplacian matrix
 Let G=(V,E) be a graph with n vertices

 Let’s label vertices v1, …,vn (in an arbitrary order).

Laplacian matrix of graph G is a square matrix

 defined as follows

𝐿G = 𝑙𝑖,𝑗 𝑖,𝑗=1

𝑛

𝑙𝑖 ,𝑗 =
deg 𝑣𝑖 for 𝑖 = 𝑗
−1 for {𝑣𝑖 , 𝑣𝑗 } ∈ 𝐸

0 otherwise

Advanced algorithms
21 / 32

Graphs – Laplacian matrix

1

2

3

3

4

5

-1

-1

-1

0

-1

4

-1

-1

-1

-1

-1

4

-1

-1

-1

-1

-1

3

0

0

-1

-1

0

v1

v2

v5

v4

v3

v1

v2

v5

v4

v3

1 2 3 4 5

2

Advanced algorithms
22 / 32

Graphs – distance matrix

 Distance matrix
 Let G=(V,E) is a graph with n vertices and

 a weight function w.

 Let’s label vertices v1, …,vn (in an arbitrary order).

Distance matrix of graph G is a square matrix

 defined by the formula

𝐴G = 𝑎𝑖 ,𝑗 𝑖,𝑗=1

𝑛

𝑎𝑖 ,𝑗 =
𝑤(𝑣𝑖 , 𝑣𝑗) for {𝑣𝑖 , 𝑣𝑗 } ∈ 𝐸

0 otherwise

Advanced algorithms
23 / 32

Graphs – DAG

 DAG (Directed Acyclic Graph)
 DAG is a directed graph without cycles (=acyclic)

Advanced algorithms
24 / 32

Graphs – multigraph

 Multigraph (pseudograph)
 It is a graph where multiple edges and/or edges

incident to a single node are allowed.

Advanced algorithms
25 / 32

Graphs – incidence matrix

 Incidence matrix
 Let G=(V,E) be a graph where |V|=n and |E|=m.

 Let’s label vertices v1, …,vn (in some arbitrary order) and edges

e1, …,em (in some arbitrary order). Incidence matrix of graph G

is a matrix of type

 defined by the formula

In other words, every edge has -1 at the source vertex and +1 at

the target vertex. There is +1 at both vertices for undirected

graphs.

{−1,0, +1}𝑛×𝑚

(𝐼)𝑖 ,𝑗 =

−1 for 𝑒𝑗 = 𝑣𝑖 ,∗

+1 for 𝑒𝑗 = ∗, 𝑣𝑖

 0 otherwise

Advanced algorithms
26 / 32

Graphs – incidence matrix

1

2

0

3

4

5

0

1

0

-1

0

0

1

-1

0

1

0

0

-1

0

-1

1

0

0

0

0

1

0

0

-1

v1

v2

v5

v4

v3

v1

v2

v5

v4

v3

e1 e5

e6

e2 e4

e3

e7

e8

1 2 3 4 5 6

0

1

-1

0

0

-1

0

1

0

0

0

1

0

-1

0

7 8

Advanced algorithms
27 / 32

Graphs – adjacency list
 adjacency list (list of neighbours)

 In an adjacency list representation, we keep, for each vertex in the graph, a

list of all other vertices which it has an edge to (that vertex's "adjacency list").

 For instance, the adjacency list of graph G could be an array P of pointers of

size n, where P[i] points to a linked list of all node indices to which node vi is

linked by an edge (similarly defined for the case of directed graph).

v1

v2

v5

v4

v3

v1 2 3 4

v2 5 3

v3 4

v4 3 1 2

v5 2 3

1 4

2 1 5

A hash list or a hash table (instead of a linked list) can improve
access times to vertices.

Advanced algorithms
28 / 32

Comparison of graph representations
Adjacency
Matrix

Laplacian
Matrix

Adjacency List Incidence Matrix

Storage |V||V| ∈ O(|V|
2
) O(|V|+|E|) |V||E| ∈ O(|V||E|)

Add vertex O(|V|
2
) O(|V|) O(|V||E|)

Add edge O(1) O(|V||E|)

Remove vertex O(|V|
2
) O(|E|) O(|V||E|)

Remove edge O(1) O(|V|) O(|V||E|)

Query: are
vertices u, v
adjacent?

O(1) deg(v) ∈ O(|V|) O(|E|)

Query: get node
degree of vertex
v (=deg(v))

|V| ∈ O(|V|) O(1) deg(v) ∈ O(|V|) |E| ∈ O(|E|)

Remarks Slow to add or remove vertices,
because matrix must be resized/copied

When removing edges or
vertices, need to find all
vertices or edges

Slow to add or remove vertices
and edges, because matrix
must be resized/copied

Advanced algorithms
29 / 32

Graphs - DFS

 DFS - Depth First Search

 procedure dfs(start_vertex : Vertex)

 var to_visit : Stack = empty;

 visited : Vertices = empty;

 {

 to_visit.push(start_vertex);

 while (size(to_visit) != 0) {

 v = to_visit.pop();

 if v not in visited then {

 visited.add(v);

 for all x in neighbors of v {

 to_visit.push(x);

 }

 }

 }

 }

Advanced algorithms
30 / 32

Graphs - BFS

 BFS - Breadth First Search

 procedure bfs(start_vertex : Vertex)

 var to_visit : Queue = empty;

 visited : Vertices = empty;

 {

 to_visit.push(start_vertex);

 while (size(to_visit) != 0) {

 v = to_visit.pop();

 if v not in visited then {

 visited.add(v);

 for all x in neighbors of v {

 to_visit.push(x);

 }

 }

 }

 }

Advanced algorithms
31 / 32

Graphs – priority queue

 priority queue
 Is a queue with operation insert to the queue with

a priority.

 In case the priority is the lowest, the queue behaves

as push into a normal queue.

 In case the priority is the highest, the queue behaves

as push into a stack.

 Both DFS and BFS might be realized using a priority

queue with an appropriate value of priority during

inserting of elements.

Advanced algorithms
32 / 32

References

 Matoušek, J.; Nešetřil, J. Kapitoly z diskrétní matematiky.
Karolinum. Praha 2002. ISBN 978-80-246-1411-3.

 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT
Press and McGraw-Hill. ISBN 0-262-53196-8.

OPPA European Social Fund
Prague & EU: We invest in your future.

