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Introduction 

 Subject WWW pages: 

 https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start 

 Goals 

 Individual implementation of variants of standard (basic and intermediate) problems 

from several selected IT domains with rich applicability. Algorithmic aspects and 
effectiveness of practical solutions is emphasized. The seminars are focused mainly 
on implementation elaboration and preparation, the lectures provide a necessary 
theoretical foundation. 

 Prerequisites 

 The course requires programming skills in at least one of programming languages 

C/C++/Java. There are also homework programming tasks. Understanding to basic 
data structures such as arrays, lists, and files and their usage for data processing is 
assumed.  

https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start
https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start
https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start
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Asymptotic notation 

 Asymptotic upper bound: 

 

 Meaning:  

 The value of the function f  is on or below the value of the 

function g (within a constant factor) 

 Definition:  

 

 

𝑓(𝑛) ∈ Ο(𝑔(𝑛)) 

 ∃𝑐 > 0  ∃𝑛0  ∀𝑛 > 𝑛0 ∶   𝑓(𝑛) ≤  𝑐 ∙ 𝑔(𝑛)  
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Asymptotic notation 

 Asymptotic lower bound : 

 

 Meaning:  

 The value of the function f  is on or above the value of the 

function g (within a constant factor) 

 Definition:  

 

 

𝑓(𝑛) ∈ Ω(𝑔(𝑛)) 

 ∃𝑐 > 0  ∃𝑛0  ∀𝑛 > 𝑛0 ∶   𝑐 ∙ 𝑔(𝑛) ≤  𝑓(𝑛)  
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Asymptotic notation 

 Asymptotic tight bound : 

 

 Meaning:  

 The value of the function f  is equal to the value of the 

function g (within a constant factor). 

 Definition:  

 

 

𝑓(𝑛) ∈ Θ(𝑔(𝑛)) 

 ∃𝑐1, 𝑐2 > 0  ∃𝑛0  ∀𝑛 > 𝑛0 :  𝑐1 ∙ 𝑔(𝑛) <  𝑓(𝑛) <  𝑐2 ∙ 𝑔(𝑛)  
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Asymptotic notation 

 Example: Consider two-dimensional array MxN of 
integers. What is asymptotic growth of searching for the 
maximum number in this array? 

 upper: 
 O((M+N)2)   

 O(max(M,N)2)   

 O(N2)      

 O(M N)    

 tight: 
 (M N) 

 

 

 lower:  
 (1)    

 (M)    

 (M N)    
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Graphs 

 A graph is an ordered pair of a set of vertices (nodes) 
and a set of edges (arcs) 

   

 where V is a set of vertices and 

          E is a set of edges  

 such as: 

  

 Example: 
 V={a,b,c,d,e} 

 E={{a,b},{b,e},{e,c},{c,d}, 

         {d,a},{a,c},{b,d},{b,c}} a 

b 

e 

d 

c 𝐸 ⊆  
𝑉
2
  

𝐺 = (𝑉, 𝐸) 



Advanced algorithms 
8 / 32 

Graphs - orientation 

 Undirected graph 
 Edge is not ordered pair of 

vertices 

 E={{a,b},{b,e},{e,c},{c,d},           

 {d,a},{a,c},{b,d},{b,c}} 

 

 Directed graph (digraph) 
 Edge is an ordered pair of 

vertices 

E={(b,a),(b,e),(c,e),(c,d),           

 (a,d),(c,a),(b,d),(b,c)} 

 

a 

b 

e 

d 

c 

a 

b 

e 

d 

c 
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Graphs – weighted graph  

 Weighted graph 
 A number (weight) is assigned to each edge 

 Often, the weight is formalized using a weight 

function: 

 

 

 w({a,b}) = 1.1  w({a,c})= 7.2 

 w({b,e}) = 2.0 w({b,d})= 10 

 w({e,c}) = 0.3 w({b,c})= 0 

 w({c,d}) = 6.8 

 w({d,a}) = -2.4 

 

𝑤: 𝐸 → ℝ 

a 

b 

e 

d 

c 

0.3 2.0 

6.8 

0 

1.1 

-2.4 

10 

7.2 
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Graphs – node degree 

 incidence 

 If two nodes x,y are linked by edge e, nodes x,y are said to be incident 

to edge e or,  edge e is incident to nodes x,y.  

 Node degree (for undirected graph) 

 A function that returns a number of edges incident to a given node.  

 

 

 

    deg(a)=3 

    deg(b)=4 

    deg(c)=4 

    deg(d)=3 

    deg(e)=2 

  

deg 𝑢 =  {𝑒 ∈ 𝐸|𝑢 ∈ 𝑒}  

a 

b 

e 

d 

c 
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Graphs – node degree 

 Node degree (for directed graphs) 

 indegree 

 

 

 outdegree 

 

 

 

  deg+(a)=2  deg-(a)=1 

  deg+(b)=0  deg-(b)=4 

  deg+(c)=1 deg-(c)=3 

  deg+(d)=3  deg-(d)=0 

  deg+(e)=2  deg-(e)=0 

  

𝑑𝑒𝑔+(𝑢) =   𝑒 ∈ 𝐸    ∃𝑣 ∈ 𝑉 ∶ 𝑒 = (𝑣, 𝑢)}  

𝑑𝑒𝑔−(𝑢) =   𝑒 ∈ 𝐸    ∃𝑣 ∈ 𝑉 ∶ 𝑒 = (𝑢, 𝑣)}  

a 

b 

e 

d 

c 
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Graphs – handshaking lemma 

 Handshaking lemma (for undirected graphs) 

 

 

 Explanation: Each edges is added twice – once for the 
source node, then once for target node. 

 The variant for directed graphs 

 

 𝑑𝑒𝑔(𝑣)

𝑣∈𝑉

= 2 𝐸  

 (𝑑𝑒𝑔+(𝑣)

𝑣∈𝑉

+ 𝑑𝑒𝑔−(𝑣)) = 2 𝐸  
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Graphs – complete graph 

 complete graph 
 Every two nodes are linked by an edge 

 

 

 

 A consequence 

𝐸 =  
𝑉
2
  

 ∀𝑣 ∈ 𝑉 ∶ deg 𝑣 =  𝑉 − 1 

1 

2 

4 

6 

5 3 
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Graphs – path, circuit, cycle 

 path 
 A path is a sequence of vertices and 

edges (v0, e1, v1,..., et, vt ), where all 

vertices v0,..., vt differ from each 

other  and for every i = 1,2,...,t,  ei = 

{vi-1, vi}  E(G). Edges are traversed 

in forward direction. 

 circuit 
 A circuit is a closed path, i.e. a 

sequence (v0, e1, v1,..., et, vt = v0),. 

 cycle  
  A cycle is a closed simple chain. 

Edges can be traversed in both 

directions. 

1 

2 

4 

6 

5 3 

(1,{1,6},6,{6,5},5,{5,3},3,{3,4},4) 

1 

2 

4 

6 

5 3 

(2,{2,5},5,{5,3},3,{3,2},2) 
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Graphs – connectivity 

 connectivity 
 Graph G is connected if for every pair of vertices x 

and y in G, there is a path from x to y. 

Connected graph Disconnected graph 
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Graphs - trees 

 tree 

The following definitions of a tree (graph G) are equivalent: 

 G is a connected graph without cycles. 

 G is such a graph so that a cycle occurs if an arbitrary 

new edges is added. 

 G is such a connected graph so that it becomes 

disconnected if any edge is removed. 

 G is a connected graph with |V|-1 edges. 

 G is a graph in which every two vertices are connected 

by just one path. 
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Graphs - trees 

 Undirected trees  
 A leaf is a node of degree 1. 

 Directed trees (the orientation might be opposite sometimes!) 
 A leaf is a node with no outgoing edge. 

 A root is a node with no incoming edge. 
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Graphs – adjacency matrix 

 Adjacency matrix 
 Let G=(V,E)  be a graph with n vertices.  

 Let’s label vertices v1, …,vn (in some order). 

Adjacency matrix of graph G is a square matrix   

 

    

   defined as follows 

  
𝑎𝑖 ,𝑗 =  

1    for {𝑣𝑖 , 𝑣𝑗 } ∈ 𝐸

          0    otherwise                   
 

𝐴G =  𝑎𝑖 ,𝑗  𝑖,𝑗=1

𝑛
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Graphs – adjacency matrix  

(for directed graph) 

1 

2 

0 

3 

4 

5 

0 

0 

1 

0 

1 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

v1 

v2 

v5 

v4 

v3 

v1 

v2 

v5 

v4 

v3 

1 2 3 4 5 

0 
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Graphs – Laplacian matrix 

 Laplacian matrix 
 Let G=(V,E) be a graph with n vertices  

 Let’s label vertices v1, …,vn (in an arbitrary order). 

Laplacian matrix of graph G is a square matrix   

 

    

   defined as follows 

  

𝐿G =  𝑙𝑖,𝑗  𝑖,𝑗=1

𝑛
 

𝑙𝑖 ,𝑗 =  
deg 𝑣𝑖     for 𝑖 = 𝑗              
−1            for {𝑣𝑖 , 𝑣𝑗 } ∈ 𝐸

0            otherwise                
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Graphs – Laplacian matrix  

1 

2 

3 

3 

4 

5 

-1 

-1 

-1 

0 

-1 

4 

-1 

-1 

-1 

-1 

-1 

4 

-1 

-1 

-1 

-1 

-1 

3 

0 

0 

-1 

-1 

0 

v1 

v2 

v5 

v4 

v3 

v1 

v2 

v5 

v4 

v3 

1 2 3 4 5 

2 
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Graphs – distance matrix 

 Distance matrix 
 Let G=(V,E) is a graph with n vertices and  

    a weight function w.  

 Let’s label vertices v1, …,vn (in an arbitrary order). 

Distance matrix of graph G is a square matrix   

 

    

   defined by the formula 

  

𝐴G =  𝑎𝑖 ,𝑗  𝑖,𝑗=1

𝑛
 

𝑎𝑖 ,𝑗 =  
𝑤( 𝑣𝑖 , 𝑣𝑗  )    for {𝑣𝑖 , 𝑣𝑗 } ∈ 𝐸

0                  otherwise                   
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Graphs – DAG  

 DAG (Directed Acyclic Graph) 
 DAG is a directed graph without cycles (=acyclic) 
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Graphs – multigraph  

 Multigraph (pseudograph) 
 It is a graph where multiple edges and/or edges 

incident to a single node are allowed. 
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Graphs – incidence matrix 

 Incidence matrix 
 Let G=(V,E) be a graph where |V|=n and |E|=m.  

 Let’s label vertices v1, …,vn (in some arbitrary order) and edges 

e1, …,em (in some arbitrary order). Incidence matrix of graph G 

is a matrix of type   

 

   defined by the formula 

 

 

 

 

In other words, every edge has -1 at the source vertex and +1 at 

the target vertex. There is +1 at both vertices for undirected 

graphs.  

  

{−1,0, +1}𝑛×𝑚  

(𝐼)𝑖 ,𝑗 =  

−1            for 𝑒𝑗 =  𝑣𝑖 ,∗  

+1            for 𝑒𝑗 =  ∗, 𝑣𝑖 

    0            otherwise                    
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Graphs – incidence matrix 

  
1 

2 

0 

3 

4 

5 

0 

1 

0 

-1 

0 

0 

1 

-1 

0 

1 

0 

0 

-1 

0 

-1 

1 

0 

0 

0 

0 

1 

0 

0 

-1 

v1 

v2 

v5 

v4 

v3 

v1 

v2 

v5 

v4 

v3 

e1 e5 

e6 

e2 e4 

e3 

e7 

e8 

1 2 3 4 5 6 

0 

1 

-1 

0 

0 

-1 

0 

1 

0 

0 

0 

1 

0 

-1 

0 

7 8 
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Graphs – adjacency list 
 adjacency list (list of neighbours) 

 In an adjacency list representation, we keep, for each vertex in the graph, a 

list of all other vertices which it has an edge to (that vertex's "adjacency list").  

 For instance, the adjacency list of graph G could be an array P of pointers of 

size n, where P[i] points to a linked list of all node indices to which node vi  is 

linked by an edge (similarly defined for the case of directed graph). 

  

v1 

v2 

v5 

v4 

v3 

v1  2 3 4 

v2 5 3 

v3 4 

v4 3 1 2 

v5 2 3 

1 4 

2 1 5 

A hash list or a hash table (instead of a linked list) can improve 
access times to vertices.  
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Comparison of graph representations 
Adjacency 
Matrix 

Laplacian 
Matrix 

Adjacency List Incidence Matrix 

Storage |V||V| ∈ O(|V|
2
) O(|V|+|E|) |V||E| ∈ O(|V||E|) 

Add vertex O(|V|
2
) O(|V|) O(|V||E|) 

Add edge O(1) O(|V||E|) 

Remove vertex O(|V|
2
) O(|E|) O(|V||E|) 

Remove edge O(1) O(|V|) O(|V||E|) 

Query: are 
vertices u, v 
adjacent?  

O(1) deg(v) ∈ O(|V|) O(|E|) 

Query: get node 
degree of vertex 
v (=deg(v)) 
 

|V| ∈ O(|V|) O(1) deg(v) ∈ O(|V|) |E| ∈ O(|E|) 

Remarks Slow to add or remove vertices, 
because matrix must be resized/copied 

When removing edges or 
vertices, need to find all 
vertices or edges 

Slow to add or remove vertices 
and edges, because matrix 
must be resized/copied 
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Graphs - DFS 

 DFS - Depth First Search 

 procedure dfs(start_vertex : Vertex)  

 var  to_visit : Stack = empty; 

  visited : Vertices = empty; 

 { 

  to_visit.push(start_vertex);  

  while (size(to_visit) != 0) { 

    v = to_visit.pop(); 

    if v not in visited then { 

    visited.add(v); 

     for all x in neighbors of v { 

     to_visit.push(x); 

    } 

   } 

  } 

 } 
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Graphs - BFS 

 BFS - Breadth First Search 

 procedure bfs(start_vertex : Vertex)  

 var  to_visit : Queue = empty; 

  visited : Vertices = empty; 

 { 

  to_visit.push(start_vertex);  

  while (size(to_visit) != 0) { 

    v = to_visit.pop(); 

    if v not in visited then { 

    visited.add(v); 

     for all x in neighbors of v { 

     to_visit.push(x); 

    } 

   } 

  } 

 } 
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Graphs – priority queue 

 priority queue 
 Is a queue with operation insert to the queue with 

a priority. 

 In case the priority is the lowest, the queue behaves  

as push into a normal queue. 

 In case the priority is the highest, the queue behaves 

as push into a stack. 

 Both DFS and BFS might be realized using a priority 

queue with an appropriate value of priority during 

inserting of elements.  
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