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Talk Outline

� intro, applications

� MRF, labeling . . .

� how it can be computed at all?

� Applications in segmentation: GraphCut, GrabCut, demos
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1Please note that the lecture will be accompanied be several sketches and derivations on the blackboard
and few live-interactive demos in Matlab
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About this very lecture

few notes before we start

� MRF is a complicated topic

� this lecture is introductory

� some simplifications in order not to lose the whole picture

� most important references provided

� many accessible explanations on the web (wikipedia . . . )
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Markov Random Field – MRF

From wikipedia2:

A Markov random field, Markov network or undirected graphical model is a
graphical model in which a set of random variables have a Markov property
described by an undirected graph.

More formal definition, which we follow, can be found in the first chapter3
of the book [4].

Let think about images:
� image intensities are the random variables
� the values depend only on their immediate spatial neighborhood which
is the Markov property

� images are organized in a regular grid which can be seen as an
undirected graph

2http://en.wikipedia.org/wiki/Markov_random_field
3freely available at: http://www.nlpr.ia.ac.cn/users/szli/MRF_Book/MRF_Book.html
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Labeling for image analysis

Many image analysis and interpretation problems can be posed as labeling
problems.

� Assign a label to image pixel (or to features in general).
� Image intensity can be considered as a label (think about pallete
images).

Sites

S index a discrete set of m sites.

S = {1, . . . ,m}

Site could be:
� individual pixel
� image region
� corner point, line segment, surface patch . . .
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Labels and sites

A label is an event that may happen to a site.

Set of labels L.

We will discuss disrete labels:

L = {l1, . . . , lM}

shortly
L = {1, . . . ,M}

What can be a label?
� intensity value
� object label
� in edge detection binary flag L = {edge,nonedge}
� . . .
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Ordering of labels

Some labels can be ordered some not.

Ordered labels can be used to measure distance between labels.
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The Labeling Problem

Assigning a label from the label set L to each of the sites S.

Example: edge detection in an image

Assign a label fi from the set L = {edge,nonedge} to site i ∈ S where the
elements in S index the image pixels. The set

f = {f1, . . . , fm}

is called a labeling.

Unique labels

When each site is assigned a unique label, labeling can be seen as mapping
from S to L.

f : S −→ L
A labeling is also called a coloring in mathematical programming.
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How many possible labelings?

Assuming all m sites have the same label set L

F = L × L× . . .× L︸ ︷︷ ︸
m times

= Lm

Imagine the image restoration problem [3].

The the m is the number of pixels in the image and L equals to number of
intensity levels.

Many, many possible labelings. Usually only few are good.
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Labeling problems in image analysis

� image restoration

� region segmentation

� edge detection

� object detection and recognition

� stereo

� . . .
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Labeling with contextual analysis

In images, site neighborhood matters.

A probability P (fi) does not depend only on the site but also on the labeling
around. Mathematically speaking we must consider conditional probability

P (fi|{fi′})

where {fi′} denotes the set of other labels.

no context:
P (f) =

∏

i∈S
P (fi)

Markov Random Field - MRF

P (fi|fS−{i}) = P (fi|fNi)

where fNi stands for the labels at the sites neighboring i.

11/50
MRF a Gibbs Random Fields

How to specify an MRF: in terms of conditional probabilities P (fi|fNi) or
joint probability P (f)?

Hammersley–Clifford theorem about equivalence between MRF and Gibbs
distribution.

A set of random variables F is said to be a Gibbs Random Fields on S with
respect to N iff its configurations obey a Gibbs distribution

P (f) = Z−1 × e− 1
TU(f)

where

Z =
∑

f∈F
e−

1
TU(f)
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Gibbs distribution

P (f) = Z−1 × e− 1
TU(f)

� T is tempertature, T = 1 unless stated otherwise
� U(f) is the energy function
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Energy function

U(f) =
∑

c∈C
Vc(f)

is a sum of clique potentials Vc(f) over all possible cliques C.

4

4Illustration from the book [4]
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Simple cliques, Auto–models

Contextual constraints on two labels

U(f) =
∑

i∈S
V1(fi) +

∑

i∈S

∑

i′∈Ni

V2(fi, fi′)

This can be interpreted as

U(f) = Udata(f) + Usmooth(f)
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Neighborhood and cliques on a regular lattices

5

5Illustration from the book [4]
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Energy minimization

What is to be computed? Gibbs distribution:

P (f) = Z−1 × e− 1
TU(f)

Remind that f is the desired labeling

f : S −→ L

In MAP formulation we seek the most probable labeling P (f).

The best labeling minimizes energy U(f)

It is a combinatorial problem. The next explanation follows mainly [2].
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Energy – data term and smoothness term

U(f) = Udata(f) + Usmooth(f)

The data term measures how well a label fp fits the particular pixel (site) p.
Globally,

Udata(f) =
∑

p∈P
Dp(fp)

Example: in Image restoration Dp(fp) = (fp − Ip)2, where Ip is the
observed intensity and fp is the label (assigned intensity).

Smoothness term

Expresses the context. Setting a proper smoothness term is much more
tricky.

� smooth but not everywhere (think about object boundary)
� discontinuity preserving
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Interacting pixels

We consider the energy

U(f) =
∑

p∈P
Dp(fp) +

∑

{p,q}∈N
Vp,q(fp, fq)

where N is the set of interacting pixels, typically adjacent pixels. Dp is
assumed to be nonnegative.

Interaction of adjacent pixels may have long range impact!

Vp,q is called interaction penalty.



19/50
(reasonable) interaction penalties

labels α, β, γ ∈ L

V (α, β) = 0 ⇔ α = β , (1)
V (α, β) = V (β, α) ≥ 0 , (2)
V (α, β) ≤ V (α, γ) + V (γ, β) (3)

Penalty is metric if all hold and semimetric if only (1,2) is satisfied.

Examples of discontinutity preserving penalties

� truncated quadratic V (α, β) = min(K, (α− β)2)

� truncated absolute distance V (α, β) = min(K, |α− β|)
� Potts model V (α, β) = KT (α 6= β), where T () = 1 if argument is
true, otherwise 0.
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towards the best labeling (minimum energy)

Catch: finding global minimum is NP complete even for the simple Potts
model.

→ local minimum is sought.

Problem

If the solution is poor

� poor choice of energy funtion

� local minimum is far from the global one
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Local minimum

a labeling f is a local minimum of the energy U if

U(f) ≤ U(f ′)

for any f ′ near to f . In case of discrete labeling near means withing single
move of f .

Many local minimization method use standard moves, where only one pixel
(site) may change label at a time.

Example: greedy optimization

for each pixel, the label which gives the largest descrease of the energy is
chosen.
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Fast approximate energy minimization via graph
cuts

We only sketch the main ideas from the seminal work [2]6

Allow more than just one label change at a time

7

α-β swap and α-expansion.

6Freely available implementation. Many difficult problems in computer vision were solved by using this
method and implementation.

7image from [2]
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Algorithm

24/50
Algorithm
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Algorithm
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α-β swap

� How many iterations in each cycle?

� A cycle is successful if a strictly better labeling is found in any iteration.

� Cycling stops after first unsuccessful cycle.
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α-β swap

The best α-β swap is found by composing a graph and finding min-cut.

� min-cut is equivalent to max-flow (Ford-Fulkerson theorem)

� Max-flow between terminals is a standard problem in Combinatorial
Optimization.

� Algorithms with low-order polynomial complexities exist.
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Finding optimal α-β swap

8

8illustration from [2]
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Finding optimal α-β swap, min-cut
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Finding optimal α-β swap, re-labeling
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Finding optimal α-β swap, re-labeling
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MRF in image segmentation

33/50
Zkouška

Pátek 4.6.
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Segmentation with seeds – Interactive GraphCuts

Idea: denote few pixels that trully belongs to object or background and than
refine (grow) by using soft constraints.

� data term

� boundary penalties and/or pixel interactions

� how to find the optimal boundary between object and background
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Segmentation with seeds – graph

9

9illustration from [1]
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Edges, cuts, segmentation

Explained on the blackboard.

See [1] for details.
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What data term?

Udata(obj,bck) =
∑

p∈obj

D(obj) +
∑

p∈bck

D(bck)

The better match between pixel and “obj” or “bck” model the lower energy
(penalty).

How to model?

for simplicity, you may think about the opposite case, the better match the
higher value

� background, foreground (object) pixels
� intensity or color distributions
� histograms
� parametric models: GMM – Gaussian Mixture Model
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Image intensities - 1D GMM
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10

10Demo codes from [6]
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Image intensities - 1D GMM
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Image intensities - 1D GMM
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2D GMM
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2D GMM
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2D GMM
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Data term by GMM – math summary

p(x|fi) =
K∑

k=1

wfik
1

(2π)
d
2

∣∣∣Σfik
∣∣∣
1
2

exp
(
−1

2
(x− µfik )T Σfik

−1
(x− µfik )

)
,

where d is the dimension.
� K number of Gaussians. User defined.
� for each label L = {obj,bck} different wk, µk,Σk estimated from the
data (seeds)

� x pixel value, can be intensity, color vector, . . .
Data term

D(obj) = − ln p(x|obj)

D(bck) = − ln p(x|bck)
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Results data term only

See the live demo11

11Demo codes courtesy of V. Franc and A. Shekhovtsov
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What boundary (interaction) term?

The Potts model: V (p, q) = λT (p 6= q), where T () = 1 if argument is true,
otherwise 0.

Effect of λ, see the live demo.

Results for data and interaction terms
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GrabCut – going beyond the seeds

The main idea: Iterate the graphcut and refine the data terms in each
iteration. Stop if the energy (penalty) does not decrease. [5]

The practical motivation

Further reduce the user interaction.

12

12images from [5]
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GrabCut – algorithm

Init: Specify background pixels TB. TF = 0; TU = T̄B

Iterative minimization:

1. assign GMM components to pixels in TU
2. learn GMM parameters from data

3. segment by using min-cut (graphcut algorithm)

4. repeat from step 1 until convergence

Optional: edit some pixels and repeat the min-cut.
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