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The Correspondence Problem

2

Establishing correspondence is the key issue in many computer 
vision problems:

• Object recognition and Image retrieval
• Wide baseline matching
• Detection and localisation
• 3D Reconstruction
• Image Stitching
• Tracking



Local Features
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• Methods based on “Local Features”  are the state-of-the-art 
for number of computer vision problems (often those. that 
require local correspondences).

• E.g.: Wide-baseline stereo, object recognition and image 
retrieval. 

• Terminology is a mess:
Local Feature = Interest “Point”  =  The “Patch” =

= Feature “Point”
= Distinguished  Region   
= (Transformation) Covariant Region



Image Stitching: Building a Panorama:
Example of a  Method Based on Local Features

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003



How do we build a panorama?

 We need to match (align) images = find (dense) correspondence

 (technically, this can be done only if both images taken from the 
same viewpoint)



Possible Approach: Matching  Features

1. Detect feature points in both images

2. Find corresponding pairs

3. Estimate transformations (Geometry and Photometry)

4. Put all images into one frame, blend.



Matching with Features

 Problem 1:

• Detect the same point independently in both images*

• Note that the set of “points” is rather sparse

no chance to match!

A repeatable detector needed.
* does it have to be independent



Matching with Features

 Problem 2: 

• how to correctly recognize the corresponding points?

?

Solution:

1. Find a discriminative and stable descriptor

2. Solve the matching problem 



Matching with Features

•Detect feature points in both images

•Find corresponding pairs

•Use these pairs to align images

Any alternatives?



Perhaps “Feature Points” not needed? Classical Stereo.
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1. Local Feature (Region)  =  a rectangular “window”
• robust to occlusion, translation invariant
• windows matched by correlation, assuming small 

displacement 
2. Local Feature (Region) = a circle around an “interest point” 
• translation and rotation invariant, robust to occlusion 
• matching based on correlation or rotation invariants (note that 

the set of circles of a fixed radius is closed under translation and 
rotation).

• successful in tracking and stereo matching

Hard Impossible for a Local feature based method?



From Classical (= Narrow ) to Wide Baseline Stereo
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3. Widening of baseline or zooming in/out 
• local deformation is well modelled by    affine or similarity 
transformations  
• How can the “interest point” concept  be generalised?  The set of 
ellipses is closed under affine tr., but its too big to be tested ..
•Window scanning approach becomes computationally difficult. 



(Specific Object) Recognition:
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Pose space search v.  
Correspondence (matching) 
problem?

The pose space is high 
dimensional, but  translation, 
scale (in a pyramid), 
rotation (a discrete set of 
angles) can be handled already 
…in combination with sequential 
techniques.



Local Invariant Features



Design of Local Features

 “Local Features” are regions, i.e. in principle arbitrary sets of 
pixels (not necessarily contiguous) with

 High repeatability, (invariance in theory) under

• Illumination changes

• Changes of viewpoint ) geometric transformations

i.e. are distinguishable in an image regardless of 
viewpoint/illumination ) are distinguished regions

 Are robust to occlusion  ) must be local 

 Must have discriminative neighborhood ) they are “features”

Methods based on local features/distinguished regions (DRs) 
formulate computer vision problems as matching of some 
representation derived from DR 
(as opposed to matching of images)



Two core ideas (in “modern terminology”):
1. To be a distinguished region, a region must be at least 

distinguishable from all its neighbours. 
2. Approximation of Property 1. can be tested very efficiently, 

without explicitly testing.
Note: both properties were proposed before Harris paper, (1) by 

Moravec, (1)+(2) by Foerstner. 

undistinguished patches:

distinguished patches:

Harris detector (1988)         3500 citations



Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge 
direction

“corner”:
significant 
change in all 
directions

• We should easily recognize the point by looking through a 
small window

• Shifting a window in any direction should give a large change



Harris Detector: Mathematics
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Harris Detector: Mathematics
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Expanding E(u,v) in a 2nd order Taylor series expansion, we 
have,for small shifts [u,v],  a bilinear approximation:
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where M is a 2×2 matrix computed from image derivatives:



Harris Detector: Mathematics
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Intensity change in shifting window: eigenvalue
analysis

λ1, λ2 – eigenvalues of 

M

direction of 
the slowest 
change

direction of 
the fastest 
change

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const



Harris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are 
small;
E is almost 
constant in all 
directions

“Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of 
image points 
using eigenvalues 
of M:



Harris Detector: Mathematics

Measure of corner 
response:
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(k – empirical constant, k = 0.04-0.06)



Harris Detector: Mathematics

λ1

λ2 “Corner”

“Edge” 

“Edge” 

“Flat”

• R depends only on 
eigenvalues of M

• R is large for a corner

• R is negative with 
large magnitude for an 
edge

• |R| is small for a flat
region

R > 0

R < 0

R < 0|R| small



Selecting Good Features

λ1 and  λ2 are large



Selecting Good Features

large λ1, small λ2



Selecting Good Features

small λ1, small λ2



Harris Detector

 The Algorithm:

• Find points with large corner response function  R (R > 
threshold)

• Take the points of local maxima of R

 Parameters:

• Threshold on R

• Scale of the derivative operator (standard setting: very small, 
just enough to filter anisotropy of the image grid)

• Size of window W (“integration scale”)

•Non-maximum suppression algorithm 



Harris Detector: Workflow



Harris Detector: Workflow
Compute corner response R



Harris Detector: Workflow
Find points with large corner response: R>threshold



Harris Detector: Workflow
Take only the points of local maxima of R



Harris Detector: Workflow



Harris Detector: Summary

 Average intensity change in direction [u,v] can be 
expressed as a bilinear form: 

 Describe a point in terms of eigenvalues of M:
measure of corner response

 A good (corner) point should have a large intensity 

change in all directions, i.e. R should be large positive
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u

E u v u v M
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Harris Detector: Properties

 Rotation invariance

Ellipse rotates but its shape (i.e. 
eigenvalues) remains the same

Corner response R is invariant to image 
rotation



Rotation Invariance of Harris Detector

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Harris Detector: Intensity change

 Partial invariance to additive and multiplicative 
intensity changes

 Only derivatives are used => 
invariance to intensity shift I → I + b

? Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)



Harris Detector: Scale Change

 Not invariant to image scale!

All points will be 
classified as edges

Corner !



Harris Detector: Scale Change

 Quality of Harris detector for different scale changes

Repeatability rate:
# correspondences
# possible 
correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Models of Image Change

 Geometry

• Rotation

• Similarity (rotation + uniform scale)

• Affine (scale dependent on direction)
valid for: orthographic camera, locally planar object

 Photometry

• Affine intensity change (I → a I + b)



Scale Invariant Detection

 Consider regions (e.g. circles) of different sizes 
around a point

 Regions of corresponding sizes will look the 
same in both images



Scale Invariant Detection

 The problem: how do we choose corresponding 
circles independently in each image?



Scale Invariant Detection

 Solution:

• Design a function on the region (circle), which is 
“scale covariant” (the same for corresponding regions, 
even if they are at different scales)

scale = 1/2

– For a point in one image, we can consider it as 
a function of region size (circle radius) 

f

region size

Image 1 f

region size

Image 2



Scale Invariant Detection

 Common approach:

scale = 1/2
f

region size

Image 1 f

region size

Image 2

Take a local maximum of some function

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is found 
in each image independently! 
(but think about verificaiton)



Scale Invariant Detection

 A “good” function for scale detection:
has one stable sharp peak

f

region size

bad

f

region size

bad

f

region size

Good 
!

• For usual images: a good function would be a 
one which responds to contrast (sharp local 
intensity change)

? ?



Scale Invariant Detection

 Functions for determining scale
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Scale Invariant Detectors
Harris-Laplacian1

Find local maximum of:
• Harris corner detector in 

space (image 
coordinates)

• Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV 2004

scale
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← Harris →

←
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Laplacian-Laplacian = 
“SIFT” (Lowe)2

Find local maximum of:
– Difference of Gaussians 

in space and scale
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x

y

← DoG →

←
D

oG
 →

Other options: Hessian, …
Harris does not work well for scale selection



Scale Invariant Detectors

 Experimental evaluation of detectors 
w.r.t. scale change

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

Repeatability rate:

# correspondences
# possible 
correspondences



Affine Invariant Detection

 Above we considered:
Similarity transform (rotation + uniform scale)

• Now we go on to:
Affine transform (rotation + non-uniform 
scale)



Affine Invariant Detection

 Take a local intensity extremum as initial point

 Go along every ray starting from this point and stop 

when extremum of function  f is reached

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.
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f

points along the 
ray

• We will obtain 
approximately 
corresponding regions
Remark: we search for 
scale in every direction



Affine Invariant Detection

 The regions found may not exactly correspond, so we 
approximate them with ellipses

• Geometric Moments: 

2

( , )p q
pqm x y f x y dxdy= ∫



Fact: moments mpq
uniquely determine the 
function f

Taking  f to be the characteristic function of a 
region (1 inside, 0 outside), moments of orders up 
to 2 allow to approximate the region by an ellipse

This ellipse will have the same moments 
of orders up to 2 as the original region



Affine Invariant Detection

q Ap=

2 1
TA AΣ = Σ

1
2 1Tq q−Σ =

2 region 2

TqqΣ =

• Covariance matrix of region points defines an ellipse:

1
1 1Tp p−Σ =

1 region 1

TppΣ =

( p = [x, y]T is 
relative to the center 
of mass) 

Ellipses, computed for 
corresponding regions, also 
correspond!



Affine Invariant Detection

 Algorithm summary (detection of affine invariant region):
• Start from a local intensity extremum point

• Go in every direction until the point of extremum of 
some function  f

• Curve connecting the points is the region boundary

• Compute geometric moments of orders up to 2 for this 
region

• Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.



Harris/Hessian Affine Detector



: 
The Maximally Stable Extremal Regions
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 Consecutive image thresholding by all thresholds
 Maintain list of Connected Components
 Regions = Connected Components with stable area (or some 

other property) over multiple thresholds selected

J.Matas et.al. “Distinguished Regions for Wide-baseline Stereo”. Research Report of CMP, 2001.

video




The Maximally Stable Extremal Regions
54

video



MSER Stability
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Matas, Chum, Urban, Pajdla: “Robust wide baseline stereo from maximally stable extremal regions”. BMVC2002

Step 1: Detect MSERs
Properties:

Covariant with continuous deformations of images
Invariant to affine transformation of pixel intensities
Enumerated in O(n log log n), real-time computation

MSER regions (in green). The regions ‘follow’ the object (video1, video2).





Descriptors of Local Invariant 
Features



Descriptors Invariant to Rotation

 Image moments in polar coordinates

( , )k i l
klm r e I r drdθ θ θ−= ∫∫

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Res. Report of CMP, 2003

Rotation in polar coordinates is translation of the angle:
θ → θ + θ 0

This transformation changes only the phase of the 
moments, but not its magnitude

klmRotation invariant descriptor 
consists of magnitudes of 
moments:
Matching is done by comparing vectors [|mkl|]k,l



Descriptors Invariant to Rotation

 Find local orientation

Dominant direction of gradient

• Compute image derivatives relative to this 
orientation

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV 2004



Descriptors Invariant to Scale

 Use the scale determined by detector to 
compute descriptor in a normalized frame

For example:
• moments integrated over an adapted window
• derivatives adapted to scale: sIx



Affine Invariant Descriptors

 Affine invariant color moments

( , ) ( , ) ( , )abc p q a b c
pq

region

m x y R x y G x y B x y d xd y= ∫

F.Mindru et.al. “Recognizing Color Patterns Irrespective of Viewpoint and Illumination”. CVPR99

Different combinations of these 
moments are fully affine invariant

Also invariant to affine transformation 
of intensity I → a I + b



Affine Invariant Descriptors

 Find affine normalized frame

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Res. Report of CMP, 2003

2
TqqΣ =

1
TppΣ =

A

A1
1

1 1 1
TA A−Σ = A2

1
2 2 2

TA A−Σ =

rotation

• Compute rotational invariant descriptor in this 
normalized frame
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Stability of LAFs: concavity, curvature max 1, curvature max 2
Obdržálek and Matas: “Object recognition using local affine frames on distinguished regions”. BMVC02
Obdržálek and Matas: “Sub-linear Indexing for Large Scale Object Recognition”, BMVC 2005

Step 2:   Construct Local Affine Frames (LAFs) (local coordinate frames)
Step 3: Geometrically normalize some measurement region (MR) 

expressed in LAF coordinates
All measurements in the nomalised frame are Invariants!

Local Affine Frames




Affine-Covariant Constructions: Taxonomy

 Derived from region outer boundary
• Region area (1 constraint)

• Center of gravity (2 constraints)

• Matrix of second moments (symmetric 2x2 matrix: 3 constraints)

- Points of extremal distance to the center of gravity (2 constraints)

- Points of extremal curvature (2 constraints)
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Affine-Covariant Constructions: Taxonomy

 Derived from region outer boundary (continued)
• Concavities (4 constraints for 2 tangent points)

- Farthest point on region contour/concavity (2 constraints)
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Affine-Covariant Constructions: Taxonomy

 Derived from image intensities in a region (or its neigbourhood)
• From orientation of gradients

- peaks of gradient orientation histograms [Low04] (1 constraint)

• Direction of dominant texture periodicity (1 constraint)

• Extrema or centers of gravity of R, G, B components, 
or of any scalar function of the RGB values (2 constraints)

• many other

66



Affine-Covariant Constructions: Taxonomy

 Derived from topology of regions
• mutual configuration of regions (combined constraints)

- nested regions

- incident regions

- neighbouring regions

 Region holes and concavities can be considered as regions of their own

• all aforementioned constructions recursively applicable

 Convex hull of a region without loosing affine invariance
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + covariance matrix + curvature minima
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + covariance matrix + curvature maxima
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + tangent points of a concavity
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• tangent points + farthest point of the region
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• tangent points + farthest point of the concavity
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• tangent points + center of gravity of the concavity
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + covariance matrix + center of gravity of a concavity
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + covariance matrix + direction of a bitangent
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity of a concavity + covariance matrix of the concavity + the 

direction of the bitangent

76

FebruCVWW 2005



Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + covariance matrix + the direction of a linear segment of the 

contour
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + covariance matrix + the direction to an inflection point
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Constructions of Local Affine Frames

 Combinations of constructions used to form the local affine 
frames
• center of gravity + covariance matrix + the direction given by the third-order 

moments of the region
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Affine-Covariant Constructions: Taxonomy

 Derived from region outer boundary (continued)
• Points of curvature inflection (2 constraints)

- curvature changes from convex to concave or vice-versa

• Straight line segments (1 stable constraint for direction, or 4 for the end-points)

• Higher than 2nd order moments

a complex number formed from 3rd order moments

whose phase angle

changes covariantly with the region’s rotation [Hei04] (1 constraint)
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Canonical Frames are an old idea …
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• Multiple reference frames

• Grouping of distinguished 
points is based on ordering on 
the segment

Rothwell, Zisserman, Forsyth, Mundy: 
Canonical Frames for Planar Object Recognition, 1992



Construction of a projective frame
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p g     
occlusion, clutter, multiple objects
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Common Structure of “Local Feature” Algorithms
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1. Detect affine- (or similarity-) covariant regions (=distinguished 
regions) = local features
Yields regions (connected set of pixels)  that are detectable with 
high repeatability  over a large range of conditions.

2. Description: Invariants or Representation in Canonical Frames
Representation of local appearance in a Measurement Region 
(MR).  Size of MR has to be chosen as a compromise between 
discriminability vs. robustness to detector imprecision and image 
noise.

3. Indexing
For fast (sub-linear) retrieval of potential matches

4. Verification of local matches

5. Verification of global geometric arrangement
Confirms or rejects a candidate match



Local features meet Invariants:  Schmid and Mohr, 1997.
700 citations
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C. Schmid, R. Mohr, "Local Gray-Value Invariants for Image Retrieval", IEEE Trans. PAMI, 
vol. 19 (5), 1997, pp. 530--535.

• Multi-scale differential gray value invariants 
computed at Harris points

• Scale and rotation invariant
• Feature vectors compared by Mahalanobis distance
• Similarity-based geometric constraint to reject 

mismatches
• Canonical Frame

not used .



D. Lowe, Object recognition from local scale-invariant 
features, ICCV, 1999          2000 citations
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Detector:
• Scale-space peaks of Difference-of-Gaussians 

filter response (Lindeberg 1995 )
• Similarity frame from modes of gradient 

histogram
SIFT Descriptor:
• Local histograms of gradient orientation
• Allows for small misalignments

=> robust to non-similarity transforms
Indexing :
• kD-tree structure
Matching:
• test on euclidean distance of 1st and 2nd match
Verification:
• Hough transform based clustering of 

correspondences with similar transformations
Fast, efficient implementation, real-time 

recognition

D. G. Lowe: “Distinctive image 
features from scale-invariant 
keypoints”. IJCV, 2004.



Scale space processed one octave at a time



Sub-pixel/ Sub-level Keypoint Localization

 Detect maxima and minima of 
difference-of-Gaussian in scale space

 Fit a quadratic to surrounding values 
for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 2002)

 Taylor expansion around point:

 Offset of extremum (use finite 
differences for derivatives):

Blur 

Resample

Subtract



Building a Similarity Frame (s)  (my terminology)

Select canonical orientation  (s)

 Compute a histogram of local 
gradient directions computed at 
the selected scale

 Assign canonical orientation(s) at 
peak(s) of smoothed histogram

 (x, y, scale) + orientation defines 
a local similarity frame; equivalent 
to detecting 2 distinguished points

Note: if orientation of the object 
(image) is known, it may replace 
this construction 

0 2π



SIFT Descriptor

 A  4x4 histogram lattice of orientation histograms

 Orientations quantized (with interpolation) into 8 bins

 Each bin contains a weighted sum of the norms of the image 
gradients  around its center, with complex normalization



SIFT  Descriptor 

SIFT descriptor can be viewed as a 3–D histogram in which 
two dimensions correspond to image spatial dimensions and 
the additional dimension to the image gradient direction 
(normally discretised into 8 bins)



SIFT – Scale Invariant Feature Transform1

 Empirically found2 to show very good performance, 
invariant to image rotation, scale, intensity change, and to 
moderate affine transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5
Rotation = 450



SIFT invariances

 Based on gradient orientations, which are robust to illumination 
changes

 Spatial binning gives tolerance to small shifts in location and 
scale, affine change.

 Explicit orientation normalization

 Photometric normalization by making all vectors unit norm

 Orientation histogram gives robustness to small local 
deformations



SIFT Descriptor

 By far the most commonly used distinguished region descriptor:

• fast

• compact

• works for a broad class of scenes

• source code available

 large number of ad hoc parameters ) Enormous  follow up 
literature on both “improvements” and improvements [HoG, Daisy, 
Cogain]

• GLOH, HoG:  different grid, not 4x4, not necessarily a square
• Daisy: many parameters optimized





DAISY local image descriptor

I. Histograms at every pixel location are computed   

: histogram at location (u, v)

: Gaussian convolved orientation maps

II. Histograms are normalized to unit norm

III. Local image descriptor is computed as  



DAISY v. SIFT: computational complexity

 Convolution is time-efficient for separable kernels like Gaussian

 Convolution maps with larger Gaussian kernel can be built upon 
convolution maps with smaller Gaussian kernel:



Results







D. Lowe, Object recognition from local scale-invariant 
features, ICCV, 1999          2000 citations
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Detector:
• Scale-space peaks of Difference-of-Gaussians 

filter response (Lindeberg 1995 )
• Similarity frame from modes of gradient 

histogram

SIFT Descriptor:
• Local histograms of gradient orientation
• Allows for small misalignments

=> robust to non-similarity transforms
Indexing:
• Modified kD-tree structure
Verification:
• Hough transform based clustering of 

correspondences with similar transformations

Fast, efficient implementation, real-time 
recognition

D. G. Lowe: “Distinctive image 
features from scale-invariant 
keypoints”. IJCV, 2004.



Nearest-neighbor matching

 Solve following problem for all feature vectors, x:

 Nearest-neighbor matching is the major computational 
bottleneck

• Linear search performs dn2 operations for n features and d
dimensions

• No exact methods are faster than linear search for d>10 (?)

• Approximate methods can be much faster, but at the cost 
of missing some correct matches.  Failure rate gets worse 
for large datasets.
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K-d tree construction

Simple 2D example
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Feature space outlier rejection

• How can we tell which putative matches are more 
reliable?

• Heuristic: compare distance of nearest neighbor to that of 
second nearest neighbor
• Ratio will be high for features that are not distinctive

• Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf�
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf�
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf�
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf�


Approximate k-d tree matching 

Key idea: 

n Search k-d tree bins in 
order of distance from 
query

n Requires use of a priority 
queue

n Copes better with high 
dimensionality

n Many different varieties

n Ball tree, Spill tree 
etc.



Randomized Forests

 Feature matching as a classification problem

Lepetit, Lagger and Fua. Randomized Trees for Real-Time Keypoint
Matching, CVPR 2005



Synthesize training examples

 Planar object 3-D object

 Deliberately introduce jitter in location

 Illumination invariance, each patch normalized so min, max are 
same for all patches

Lepetit, Lagger and Fua. Randomized Trees for Real-Time Keypoint
Matching, CVPR 2005



Randomized Decision Tree

 Compare intensity of pairs of pixels

 In construction, pick pairs randomly

• Insert all training 
examples into tree

• Distribution at 
leaves is descriptor 
for the particular 
feature



Randomized Forests

 Use multiple trees (i.e. forest) to improve performance

 Very quick to compute in testing 

• Just comparison of pairs of pixels

• Real-time performance

 ~10x faster than SIFT, but slightly inferior performance



slide credit: Sara Arasteh et al.

Local Binary Pattern (LBP) Descriptor

Circularly symmetric neighbor sets (P: 
angular resolution, R: spatial  resolution)

The primitive LBP (P,R)  number that characterizes the spatial structure 
of the local image texture is defined as:

where ,

LBP values in a 3 x 3 block
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The LBP descriptor is invariant to any monotonic transformation of image



Rotation Invariant LBP …

 In order to remove the effect of rotation and assign a
unique identifier to each, Rotation Invariant Local Binary
Pattern is defined as:

where ROR(x,i) performs a circular bit-wise right shift on P-bit
number x , i time.

 36 unique rotation invariant binary patterns can occur in
the circularly symmetric neighbor set of LBP8,1.

{ }1,...,1,0),(min ,, −== PiiLBPRORLBP RP
ri

RP

slide credit: Sara Arasteh et al.



Rotation Invariant LBP …

• This figure shows 36 unique rotation invariant binary patterns.

slide credit: Sara Arasteh et al.



Rotation Invariant LBP …

 Rotation Invariant LBP patterns include:
• Uniform patterns

- At most two transitions from 0 to 1 
• Non-uniform patterns

- More than two transitions from 0 to 1 

Samples of non-uniform 
patterns

Samples of uniform 
patterns

slide credit: Sara Arasteh et al.



Uniform LBP (ULBP)

 It is observed that the uniform patterns are the majority,
sometimes over 90 percent, of all 3 x 3 neighborhood pixels
present in the observed textures.

 They function as templates for microstructures such as :
• Bright spot (0)
• Flat area or dark spot (8)
• Edges of varying positive and negative curvature (1-7)

Uniform Local Binary Patterns

slide credit: Sara Arasteh et al.

LBPs are popular, numerous modifications exist



MSER-LAF-Tree, Obdrzalek and Matas, 2005   180 citations
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Matas, Chum, Urban, Pajdla: “Robust wide baseline stereo from maximally stable extremal regions”. BMVC2002 
Obdržálek and Matas: “Object recognition using local affine frames on distinguished regions”. BMVC02
Obdržálek and Matas: “Sub-linear Indexing for Large Scale Object Recognition”, BMVC 2005

1. Detect Distinguished Regions Maximally 
Stable Extremal Regions (MSERs)

2. Construct Local Affine Frames    (LAFs)          
(local coordinate frames)

3. Geometrically normalize some measurement 
region (MR) expressed in LAF coordinates

4. Photometrically normalize measurements 
inside MR, compute some derived description 

5. Establish local (tentative) correspondences by 
the decision-measurement tree method 

6. Verify global geometry (e.g. by 
RANSAC, geometric hashing, Hough 
transform.)



MSER-LAF-Tree, Obdrzalek and Matas, 2005
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4. Photometrically normalize measurements inside MR, 
compute some derived description

video1,   video2




“Recognition” as a Sequence of
Wide-Baseline Matching Problems ??
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Properties: robust to occlusion, clutter, handles pose 
change, illumination but becomes unrealistic even for 
moderate number of objects. 

Recognition requires indexing



Simultaneous Recognition of Multiple Objects Using the Decision-
Measurement Tree
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Performance Evaluation 1.:Image Retrieval from ZuBuD[1]
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• Publicly available dataset ZuBuD
• Database: 201 buildings, each 

represented by 5 images, more 
than 1000 images in the DB

• Queries: 115 new images
• Forced match

Recognition rates (rank 1 correct):
• Repeated LAF-MSER matching: 

100%  @ 27 seconds /retrieval
• Tree matching:

93%   @ 0.014 seconds 
99%   @ 0.510 seconds   

[1] Shao, Svoboda, Tuytelaars, Gool: “HPAT indexing for fast object/scene retrieval”, CIVR2004



Example 2: D. Nistér, H. Stewénius. 

Scalable Recognition with a Vocabulary Tree, 
CVPR 2006

 MSER detector, SIFT descriptor, K-means 
tree

 Very carefully implemented

 Evaluated on large databases
• Indexing with up to 1M images

 Online recognition for database
of 50,000 CD covers
• Retrieval in ~1s

121



D. Nistér, H. Stewénius. Scalable Recognition with a 
Vocabulary Tree, CVPR 2006                   300 citations
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However:
• Recognition of images, not objects
• Some of the object have no chance 
of being recognized via MSER+SIFT on 
different background 



Local Features : Application Examples

 Detection of goods in tray at supermarket checkout 

 Database: 500 objects, 6 images each

123

♦ Queries: images captured from a camera at the checkout

♦ Output: list of objects identified in the tray



Local Features : Application Examples

 Traffic sign recognition from a moving car

 Database: images of known signs

124

♦ Output: identification of signs in images taken by an in-car camera
(scene-interpretation is not part of the system)

…



Local Features : Application Examples

 Detection of product logos in scanned 
commercials
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♦ Detection of company logos in automatic fax processing

♦ Detection of advertising side-boards in TV coverage of sport events. 
“For how long was my commercial actually broadcasted?”



Local Feature Methods: Analysis
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1. Methods work well for  a non-negligible class of  objects, that are 
locally approximately planar, compact and have surface markings 
or where 3D effects are negligible (e.g. stitching photographs 
taken from a similar viewpoint)

2. They are correspondence based methods
• insensitive to occlusion, background clutter
• very fast
• handles very large dataset
• model-building is automatic

3. The space of problems and object where it does not work is 
HUGE         (examples are all around us).



Challenge: Elongated, Wirey and Flexible Objects 
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In this case: “no recognition without segmentation”?

Where Local Features Fail:



Camouflage: No distinguished regions ! 
Very few animals can afford to be distinguishable ….
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Where Local Features Fail:



129

Thank you for your attention.
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