

OPPA European Social Fund Prague \& EU: We invest in your future.

GRAPHICAL MARKOV MODELS (WS2011)
 6. SEMINAR

Assignment 1. Consider the language L of all (rectangular) b / w images containing an arbitrary number of non-overlapping rectangular frames (one pixel wide).
a) Prove that L is not expressible by a locally conjunctive predicate i.e. a conjunction of predicates, each one defined on an image fragment of a fixed size.
b) Show that L can be expressed by introducing non-terminal symbols and a locally conjunctive predicate for these.

Assignment 2. Transform the Travelling Salesman Problem into a (min, +)-problem.
Assignment 3. Consider a CSP for K-valued labellings s of the vertices of a graph $\mathcal{G}=$ (V, E)

$$
G(s)=\left[\bigwedge_{i \in V} g_{i}\left(s_{i}\right)\right] \wedge\left[\bigwedge_{i j \in E} g_{i j}\left(s_{i}, s_{j}\right)\right]
$$

where $g_{i j}$ and g_{i} are predicates of arity 2 and 1 respectively. The task is to calculate $c=$ $\bigvee_{s \in K^{V}} G(s)$.
Mister X proposes the following algorithm. Edges and vertices are repeatedly visited, each time updating the functions $g_{i j}$ and g_{i} respectively by

$$
\begin{aligned}
& g_{i j}\left(s_{i}, s_{j}\right):=g_{i}\left(s_{i}\right) \wedge g_{i j}\left(s_{i}, s_{j}\right) \wedge g_{j}\left(s_{j}\right) \\
& g_{i}\left(s_{i}\right):=g_{i}\left(s_{i}\right) \wedge\left[\bigwedge_{j \in N_{i}}\left[\bigvee_{k \in K} g_{i j}\left(s_{i}, k\right)\right]\right] .
\end{aligned}
$$

The algorithm stops in a fix-point $g_{i}^{*}, g_{i j}^{*}$. If all these functions are identically equal to zero then $c=0$ is assumed. Otherwise c is assumed to be equal to 1 .
a) Prove that the algorithm is not correct in general. Construct a counterexample.
$\mathbf{b}^{* *}$) Prove that the algorithm is indeed correct if the arity 2 predicates $g_{i j}$ are supermodular w.r.t. an ordering of the label set K, i.e.

$$
g\left(\max \left(k_{1}, k_{1}^{\prime}\right), \max \left(k_{2}, k_{2}^{\prime}\right)\right) \wedge g\left(\underset{1}{\left.\min \left(k_{1}, k_{1}^{\prime}\right), \min \left(k_{2}, k_{2}^{\prime}\right)\right) \geqslant g\left(k_{1}, k_{2}\right) \wedge g\left(k_{1}^{\prime}, k_{2}^{\prime}\right), ~}\right.
$$

where the operations min and max return the greater and lower label respectively (w.r.t. the ordering of K).
Hints

- Prove, that the update rules preserve supermodularity.
- Consider $k_{i}^{*}=\max _{k}\left\{k \in K \mid g_{i}^{*}(k)=1\right\}$. Prove that s^{*} defined by $s_{i}^{*}=k_{i}^{*}$ is a solution, i.e. $G\left(s^{*}\right)=1$.

OPPA European Social Fund Prague \& EU: We invest in your future.

