

OI-OPPA. European Social Fund Prague & EU: We invests in your future.

SUPPORT VECTOR MACHINES

Václav Hlaváč

Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz

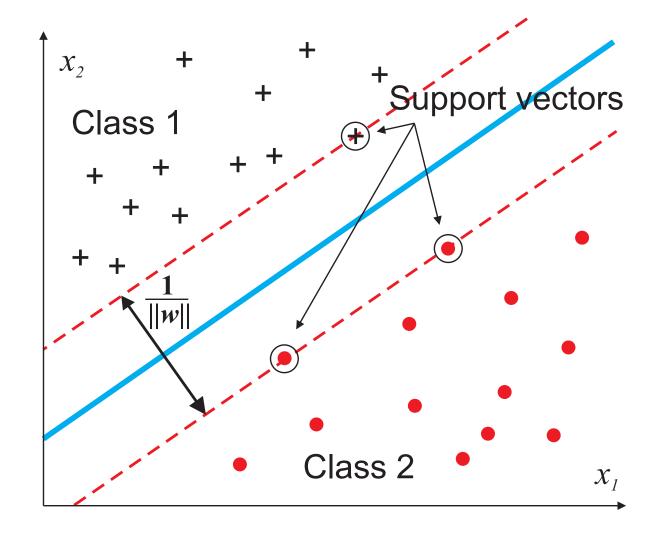
LECTURE PLAN

- Discriminative approach. Maximal margin classifier.
- Minimization of the structural risk.
- SVM, task formulation, solution: quadratic programming.
- Linearly separable case.
- Linearly non-separable case.

INTRODUCTION

- There are two principal approaches to design a classifier:
 - Generative.
 - Discriminative.
- ullet So far, the generative methods were used. A known statistical model was assumed \Rightarrow decision rule.
- Now, we will assume that class of decision rules is known.
 V. Vapnik: Learning is the selection of one decision rule from the class of rules.

- Maximizes margin between classes which increases generalization ability.
- The Vapnik's Support Vector Machine is based on the same idea.



SUPPORT VECTOR MACHINES, TASK

- ullet Two hidden states (classes) only, k_1 , k_2 .
- A separable hyperplane is sought which maximizes a distance (margin) between classes.
- The task is converted into a quadratic programming task

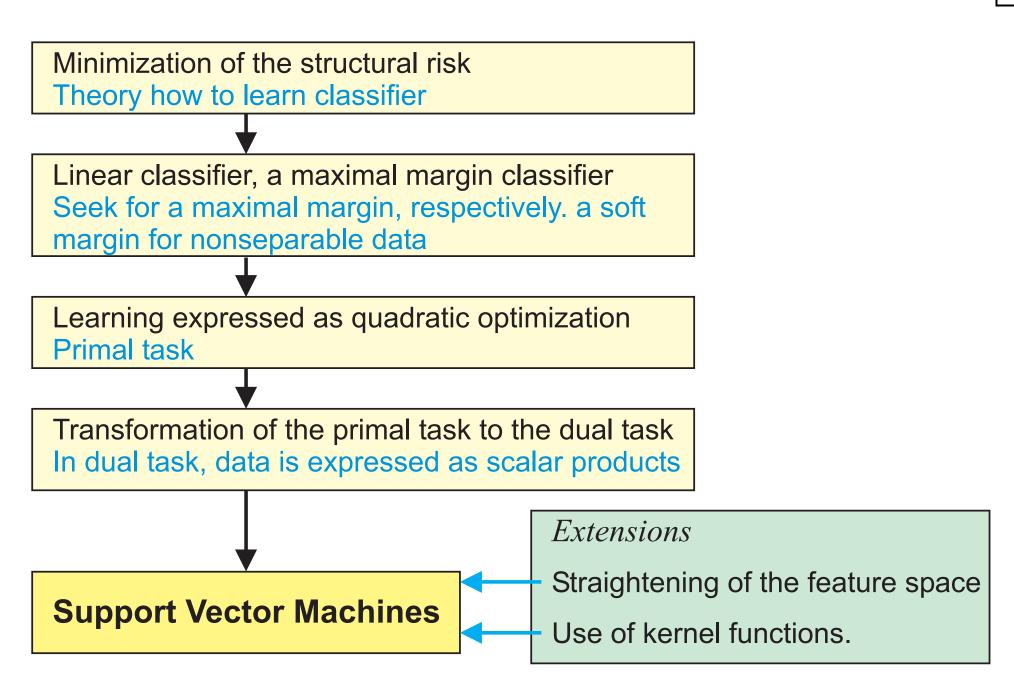
$$(w^*, b^*) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \|w\|^2$$

under constraints

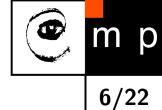
$$\langle w, x_j \rangle + b > 1$$
 for $k_j = 1$
 $\langle w, x_j \rangle + b < 1$ for $k_j = 2$

SUPPORT VECTOR MACHINES, A ROAD MAP

5/22



MINIMIZATION OF THE STRUCTURAL RISK



INTRODUCTION

- Learning the classifier from the finite training set.
- There is an estimate upper bound of the mean classification error.
- Solves problem of generalization, i.e. choice of a statistical model.

ASSUMPTIONS

- $x \in \mathbb{R}^n$. . . observation of the object (vector of measurements).
- $y \in \{-1, 1\}$. . . hidden states
- There is a training set available

$$\{(x_1,y_1), (x_2,y_2), \ldots, (x_L,y_L)\},\$$

which is drawn randomly and generated by an unknown probability distribution p(x, y).

8/22

THE AIM

is to find a classifier

$$f(x,a)$$
,

where a is a parameter with the minimal expected classification error (risk)

$$R(f(x,a)) = \int \frac{1}{2} |y - f(x,a)| d p(x,y).$$

Note: a 1/0 loss (penalty) function was used, i.e.,

$$\frac{1}{2}|y - f(x, a)| = \begin{cases} 0 & \text{if } y = f(x, a), \\ 1 & \text{if } y \neq f(x, a). \end{cases}$$

COMPLICATIONS

R(f(x,a)) cannot be calculated because the probability distribution p(x,y) is unknown.

SOLUTION

Use the upper bound for R by Vapnik-Červoněnkis.

$$R(f(x,y)) \le R_{emp} + \underbrace{\sqrt{\frac{h\left(\log\frac{2L}{h} + 1\right) - \log\frac{\eta}{4}}{L}}}_{\text{Structural risk}}$$

m p

MINIMIZATION OF THE STRUCTURAL RISK

10/22

Empirical risk
$$R_{emp} = \frac{1}{L} \sum_{i=1}^{L} \frac{1}{2} |f(x_i, a) - y_i|$$

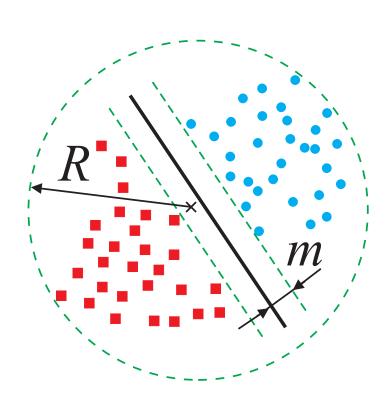
- h is a VC dimension characterizing the class of decision functions $f(x,a) \in F$.
- L is the length of the training set.
- η is the degree of belief into the bound R(f(x,a)), i.e., $0 \le \eta \le 1$.

Support Vector Machines implement structural risk minimization principle.

LINEARLY SEPARABLE SVM

The aim is to find linear discriminant function

$$f(x, w, b) = \operatorname{sign}(\langle w, x \rangle + b) = \operatorname{sign}(w^{\mathsf{T}}x + b)$$



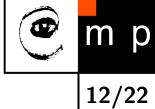
 $lackbox{ VC dimension (capacity) depends on the margin <math>m$

$$h \le \frac{R^2}{m^2} + 1$$

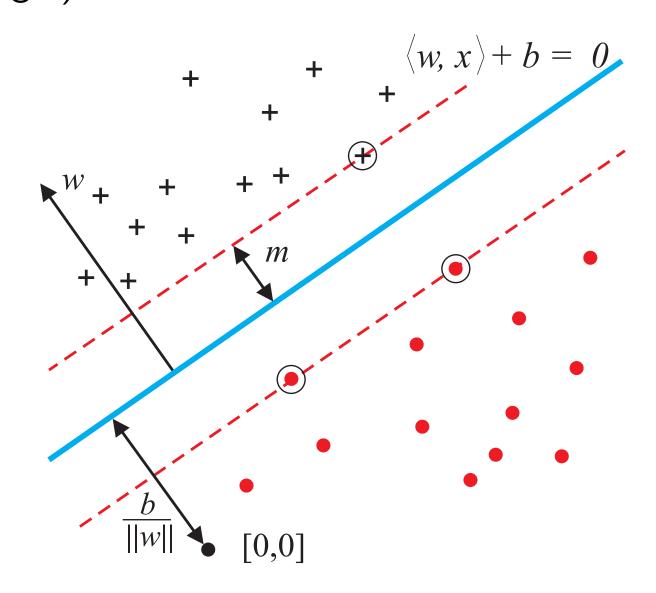
- lacktriangleright R is given by the data itself.
- lacktriangle Margin m can be optimized in the classifier design.

Conclusion: separation hyperplanes with larger margin have lower VC dimension ⇔ lower value of the upper bound.

LINEARLY SEPARABLE SVM (2)



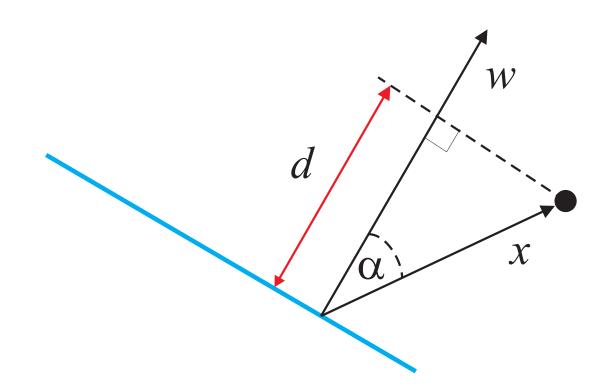
The separating hyperplane is sought which maximizes distance to data (margin).



m p

13/22

LINEARLY SEPARABLE SVM (3)



The distance between the observation x_i and the separating hyperplane $w^{\mathsf{T}}x_i + b = 0$ is

$$\cos \alpha = \frac{w^{\mathsf{T}} x_i}{\|w\| \|x_i\|}, \quad \cos \alpha = \frac{d}{\|x_i\|} \quad \Rightarrow \quad d = \frac{w^{\mathsf{T}} x_i + b}{\|w\|}$$

LINEARLY SEPARABLE SVM, PRIMAL TASK

The optimization task

$$(w^*, b^*) = \underset{w,b}{\operatorname{argmax}} \min_{i=1,...,L} \frac{w^{\mathsf{T}} x_i + b}{\|w\|} y_i$$

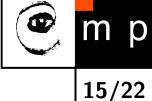
can be converted in to a standard quadratic programming problem (primal task)

$$(w^*, b^*) = \operatorname{argmin} \frac{1}{2} ||w||^2$$

 $w^\mathsf{T} x_i + b \ge +1 \; , \quad y_i = +1$

$$w^{\mathsf{T}} x_i + b \le -1$$
, $y_i = -1$

TOWARDS THE DUAL TASK



The aim is to convert the problem into a formulation without constraints.

Lagrange function L is introduced, α_i are Lagrange multipliers,

$$L(w,b,lpha_i) = rac{1}{2} \|w\|^2 - \sum_{i=1}^L lpha_i \left(w^\mathsf{T} x_i
ight) \ y_i + \sum_{i=1}^L lpha_i \ .$$
 (Eq. 1)

Now we have formulated the dual task, i.e., the problem without constraints

$$(w^*, b^*) = \underset{w,b}{\operatorname{argmin}} \max_{\alpha_i > 0} L(w, b, \alpha_i).$$

SOLUTION TO THE DUAL TASK

$$\min_{w,b} \max_{\alpha_i > 0} L(w, b, \alpha_i) = \max_{\alpha_i > 0} \min_{w,b} L(w, b, \alpha_i)$$

Seek optimum, i.e., 1st partial derivatives = 0,

$$\frac{\partial L}{\partial w} = 0 \implies w = \sum_{i=1}^{L} \alpha_i y_i x_i , \qquad \frac{\partial L}{\partial b} = 0 \implies \sum_{i=1}^{L} \alpha_i y_i = 0 .$$

Substitute to (Eq. 1), get rid off w, b and get

$$\alpha_i = \underset{\alpha_i}{\operatorname{argmax}} \sum_{i=1}^{L} \alpha_i - \frac{1}{2} \sum_{i=1}^{L} \sum_{j=1}^{L} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j ,$$
$$\alpha_i \ge 0 , \qquad \sum_{i=1}^{L} \alpha_i y_i = 0 .$$

Primal task

- Optimized according to vector $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$.
- \bullet Number of variables is n+1.
- lack Number of linear constraints is n.

Dual task

- Optimized according to $\alpha_1, \alpha_2, \ldots, \alpha_L, \alpha_i \in \mathbb{R}$.
- lack Number of variables is L.
- \bullet Number of linear constraints is L+1.
- lacktriangle Data appear as scalar products only, i.e., $x_i^\mathsf{T} x_j$.

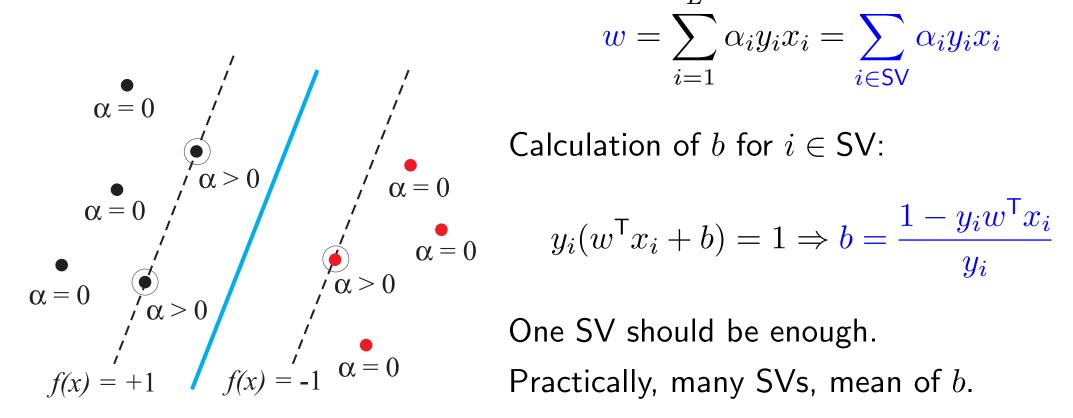
DUAL TASK PROPERTIES, cont.

lacktriangle The solution is sparse. Many α_i equal to 0.

$$\alpha_i = 0 \Rightarrow y_i(w^\mathsf{T} x_i + b) > 1.$$

$$\alpha_i > 0 \Rightarrow y_i(w^\mathsf{T} x_i + b) = 1.$$

lacktriangle Data x_i for which $\alpha_i > 0$ are called Support Vectors.



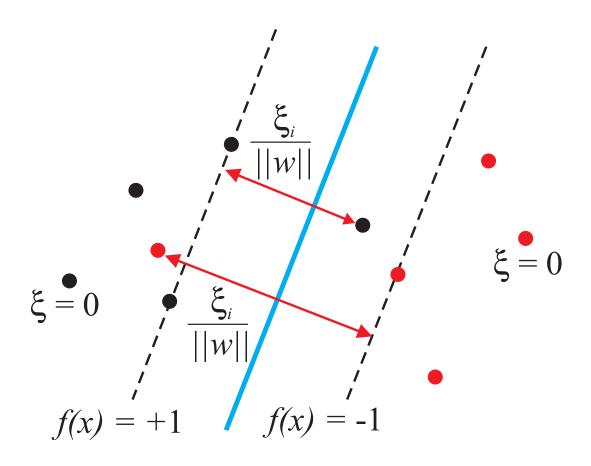
$$w = \sum_{i=1}^{L} \alpha_i y_i x_i = \sum_{i \in \mathsf{SV}} \alpha_i y_i x_i$$

$$y_i(w^\mathsf{T} x_i + b) = 1 \Rightarrow b = \frac{1 - y_i w^\mathsf{T} x_i}{y_i}$$

SVM LINEARLY NON-SEPARABLE

19/22

Nonseparable data. \Leftrightarrow It is not possible to find separable hyperplane without errors.



Solution: Regularization, i.e., introduction of slack variables $\xi \ge 0 \Rightarrow$ Soft Margin SVM.

SOFT MARGIN SVM

$$(w^*, b^*, \xi^*) = \underset{w, b, xi_i}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{L} \xi_i^k$$

$$w^{\mathsf{T}} x_i + b \ge +1 - \xi_i , \quad y_i = +1$$

 $w^{\mathsf{T}} x_i + b \le -1 + \xi_i , \quad y_i = -1$

Optimization criterion, marginal behavior

- \bullet min $||w||^2$ maximization of the margin.
- $\min \sum_{i=1}^{L} \xi_i^k$ minimal number misclassified training points (upper bound of the empirical error).

Quadratic programming for k = 1, 2.

SVM LINEARLY NON-SEPARABLE, cont.

How to choose regularization constant C? Common solutions:

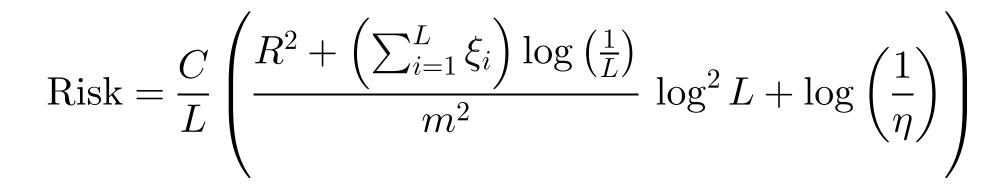
- Design the classifier for several values of $C = \{C_1, \dots, C_n\}$. Follow by 1D optimization.
- ullet Use some other criterion to choose C, e.g., cross validation.
- Transform to dual task, analogically to separable case.

$$\alpha_i = \underset{\alpha_i}{\operatorname{argmax}} \sum_{i=1}^{L} \alpha_i - \frac{1}{2} \sum_{i=1}^{L} \sum_{j=1}^{L} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j ,$$

$$0 \le \alpha_i \le C$$
, $\sum_{i=1}^L \alpha_i y_i = 0$.

Note: $\leq C$ above is the only difference when comparing to the linearly separable case.

SOFT MARGIN SVM, THEORETIC BACKING



is minimized when

$$\|w\|^2 R + \left(\sum_{i=1}^L \xi_i\right) \log \left(\frac{1}{\sqrt{(\|w\|)}}\right)$$

This matches to Soft Margin SVM criterion with exception to the last term on the right side.