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Support Vector Machines



Perceptron Revisited:

 Linear Classifier:

w.x + b = 0

w.x + b < 0

w.x + b > 0

y(x) = sign(w.x + b)



Which one is the best?



Notion of Margin

 Distance from a data point to the boundary:
 Data points closest to the boundary are called support vectors  
 Margin d is the distance between two classes.
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Maximum Margin Classification

 Intuitively, the classifier of the maximum margin is the best solution
 Vapnik formally justifies this from the view of Structure Risk Minimization 
 Also, it seems that only support vectors matter (is SVM a statistical classifier?)



Quantifying the Margin:

 Canonical hyper-planes:
 Redundancy in the choice of w and b:

 To break this redundancy, assuming the closest data points are on the hyper-planes (canonical 
hyper-planes):

 The margin is:

 The condition of correct classification
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Maximizing Margin:

 The quadratic optimization problem:

 A simpler formulation:

Find w and b such that

is maximized; and for all {(xi ,yi)}

w.xi + b ≥ 1 if yi=1;   w.xi + b ≤ -1   if yi = -1
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The dual problem (1)

 Quadratic optimization problems are a well-known class of mathematical 
programming problems, and many (rather intricate) algorithms exist for solving 
them. 

 The solution involves constructing a dual problem:
 The Lagrangian L:

 Minimizing L over w and b:
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The dual problem (2)

 Therefore, the optimal value of w is:

 Using the above result we have:

 The dual optimization problem
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Important Observations (1):

 The solution of the dual problem depends on the inner-product between data 
points, i.e., rather than data points themselves. 

 The dominant contribution of support vectors:
 The Kuhn-Tucker condition

 Only support vectors have non-zero h values
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Important Observations (2):

 The form of the final solution:

 Two features:
 Only depending on support vectors
 Depending on the inner-product of data vectors

 Fixing b:
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Soft Margin Classification  
 What if data points are not linearly separable?
 Slack variables ξi can be added to allow misclassification of 

difficult or noisy examples.

ξi

ξi



The formulation of soft margin

 The original problem:

 The dual problem:
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Linear SVMs:  Overview

 The classifier is a separating hyperplane.

 Most “important” training points are support vectors; they 
define the hyperplane.

 Quadratic optimization algorithms can identify which training 
points xi are support vectors with non-zero Lagrangian 
multipliers hi.

 Both in the dual formulation of the problem and in the solution 
training points appear only inside inner-products.



Who really need linear classifiers
 Datasets that are linearly separable with some noise, linear SVM 

work well:

 But if the dataset is non-linearly separable? 

 How about… mapping data to a higher-dimensional space:
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Non-linear SVMs:  Feature spaces
 General idea:   the original space can always be mapped to some 

higher-dimensional feature space where the training set becomes 
separable:

Φ:  x → φ(x)



The “Kernel Trick”

 The SVM only relies on the inner-product between vectors xi
.xj

 If every datapoint is mapped into high-dimensional space via 
some transformation Φ:  x→ φ(x), the inner-product becomes:

K(xi,xj)= φ(xi) .φ(xj)

 K(xi,xj ) is called the kernel function.
 For SVM, we only need specify the kernel K(xi,xj ), without need 

to know the corresponding non-linear mapping, φ(x).



Non-linear SVMs

 The dual problem:

 Optimization techniques for finding hi’s remain the same!
 The solution is:
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Examples of Kernel Trick (1)

 For the example in the previous figure: 
 The non-linear mapping

 The kernel

 Where is the benefit?
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Examples of Kernel Trick (2)

 Polynomial kernel of degree 2 in 2 variables
 The non-linear mapping:

 The kernel
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Examples of kernel trick (3)

 Gaussian kernel: 

 The mapping is of infinite dimension:

 The moral:  very high-dimensional and complicated non-linear mapping can 
be achieved by using a simple kernel!
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What Functions are Kernels?

 For some functions K(xi,xj) checking that K(xi,xj)= φ(xi) .φ(xj) 
can be cumbersome. 

 Mercer’s theorem:  
Every semi-positive definite symmetric function is a kernel



Examples of Kernel Functions

 Linear kernel:

 Polynomial kernel of power p:

 Gaussian kernel:

 In the form, equivalent to RBFNN, but has the advantage of that the center of basis 
functions, i.e., support vectors, are optimized in a supervised.

 Two-layer perceptron:
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SVM Overviews

 Main features:
 By using the kernel trick, data is mapped into a high-

dimensional feature space, without introducing much 
computational effort;

 Maximizing the margin achieves better generation 
performance;

 Soft-margin accommodates noisy data;
 Not too many parameters need to be tuned.

 Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml�
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml�


SVM so far

 SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 
gained increasing popularity in late 1990s.

 SVMs are currently among the best performers for many benchmark datasets.
 SVM techniques have been extended to a number of tasks such as regression 

[Vapnik et al. ’97].
 Most popular optimization algorithms for SVMs are SMO [Platt ’99] and 

SVMlight [Joachims’ 99], both use decomposition to handle large size datasets.
 It seems the kernel trick is the most attracting site of SVMs. This idea has now 

been applied to many other learning models where the inner-product is 
concerned, and they are called ‘kernel’ methods.

 Tuning SVMs remains to be the main research focus:  how to an optimal kernel? 
Kernel should match the smooth structure of data. 


