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Abstract

Inertial navigation is one of the alternatives to specifying objects position without having 

virtually any information from the outer world. In this case, the object is the mobile robot 

from international NIFTi project. The reason to use inertial navigation is that we need to 

record the robot movement with high dynamics.

The result  of  this  work is  a  C++ implementation of  an inertial  navigation system (INS) 

mechanization  algorithm,  which  processes  data  collected  by  the  Xsens  MTi-G  inertial 

measurement unit (IMU).



Contents

1  Introduction..............................................................................................................3

2  Software requirements.............................................................................................4
2.1  System interface.................................................................................................4
2.2  Data logging.......................................................................................................5

3  Program configuration and execution ...................................................................6
3.1  Default launch file and its usage.........................................................................6
3.2  Launching pre-requisites.....................................................................................7

4  Implementation........................................................................................................9
4.1  Source code structure..........................................................................................9
4.2  Resources............................................................................................................9
4.3  MATLAB data types and operations emulation..................................................9
4.4  Node concept......................................................................................................9
4.5  Class SharedObjects.........................................................................................10

5  Experimental evaluation and results....................................................................11
5.1  Testing location.................................................................................................11
5.2  Common testing procedure...............................................................................11
5.3  Part 1 – Attitude mechanization (package ins)..................................................12
5.4  Part 2 – Attitude and position mechanization (package inso)............................13

5.4.1Test 1 – Repeated linear motion..............................................................................13
5.4.2Test 2 – The „L“ motion..........................................................................................15

6  Conclusion..............................................................................................................17
6.1  Implementation of ins and inso nodes...............................................................17
6.2  Summary of the summer work experience........................................................17

2



1 Introduction

The object of our work – the NIFTi robot (see http://www.nifti.eu/)  – uses a number of sensors to help 

specify its position. Let's start with odometry sensors that measure rotation of robot's motors. Using  

these sensors we can determine robot's speed and rotation about its  vertical axis, but there are some 

reasons,  why using odometry isn't  enough.  Firstly,  knowing the rotation about  the  vertical  axis is 

useless without knowing what the axis direction is. Secondly there may be some cases when the robot  

movement doesn't correspond with motors rotation, e.g. slipping or falling.

The  following  two sensors  are  located  in  the  IMU's  package  beside  the  inertial  sensors  (triaxial  

accelerometer and triaxial angular rate sensor). First of them, the GPS (Global Positioning System) 

receiver allows us to determine the robot's  position,  but  hardly it's  orientation.  The second one – 

triaxial magnetometer – can be used to determine orientation based on Earth's magnetic field, but this  

method is very inaccurate and unreliable due to possible disturbances created by metal objects and 

sources of parasitic magnetic fields, such as motors used to drive the robot. 

The reason for using inertial navigation is obvious – to keep track of robot's orientation using triaxial  

angular rate sensor and to record high movement dynamics using triaxial accelerometer.

The aim of this work was to implement two versions of the INS mechanization (according to [1]) for 

ROS (definition from [2]: „ROS (Robot Operating System) provides libraries and tools to help  

software  developers  create  robot  applications.  It  provides  hardware  abstraction,  device  

drivers, libraries, visualizers, message-passing, package management, and more. ROS is a  

completely open source (BSD) and free for others to use, change and commercialize upon.“). 

In order  to  properly understand this  work,  there must  be two additional  terms explained. 

Definition of the first of them – node – can be found at the site [3]: ,,A node is a process that  

performs computation.“. The other –  topic – is defined by [3] as well:  ,,Topics are named 

buses over which nodes exchange messages.“

First of the implemented nodes –  ins –  implements only attitude mechanization and was 

intended to be a final product, the other node – inso –  extends the ins node to complete INS 

mechanization (adding dual integration of acceleration to compute position) and is about to be 

extended further by implementing advanced non-linear state estimation methods using GPS 

and odometry data.  
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2 Software requirements

This chapter describes in its first part, how the program communicates with the rest of the system, and 

in the second, how the acquired and processed data are saved to files.

2.1 System interface
As it was said previously the robot we're working on is powered by the ROS middleware. The reason  

to use this system is that we can simply publish data, listen to them and display them. The next reason 

is that we can run the nodes from different machines and monitor them.

Both implemented nodes subscribe to topics listed in Table  1. The received data are processed and 

results are published to topics described by Table 2.

Topic name Data contained

/mtig_node/imu/data Inertial data measured by Xsens MTi-G IMU

/mtig_node/pos_nav GPS data measured by Xsens MTi-G IMU

/odom Data collected by odometry sensors 

Table 1: Subscriber topics for both ins and inso nodes 

Topic name Data contained

/mechanization_output 

Euler  angles  (degrees),  quaternion  and 
direction  cosine  matrix  for  transformation 
from body frame to navigation frame
For inso node only there is also the position in 
navigation frame (m) published 

/tf

standard  topic  used  to  broadcast 
transformations, for ins node only orientation, 
for inso node both orientation and position in 
the navigation frame are broadcasted

Table 2: Publisher topics for both ins and inso nodes 
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2.2 Data logging
Both nodes also output all the data (from subscribed and published topics) into files defined by ROS 

parameters according to Table 3.

ROS parameter name Effect if it is defined

ins_mech

IMU data (subscribed topic 
/mtig_node/imu/data)  and mechanization 
output (published 
topic /mechanization_output) are logged to 
file: ins_mech(current date & time)

ins_gps 
The GPS data (subscribed topic 
/mtig_node/pos_nav) are logged to file: 
ins_gps(current date & time)

ins_odometry
The odometry data (subscribed topic 
/odom) are logged to file: 
ins_odometry(current date & time)

Table 3: Setting of data log files

The data  are  saved line  by line  to  the  output  files.  Each line  is  constructed according to  pattern  

displayed in Fig. 1. Each two numbers in the log file are separated by comma. During the calibration 

period, EUL_MECH and PN are logged as zeros.

Figure 1: Format of the mechanization output file
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TIME_STAMP ACC GYR EUL_MECH

TIME_STAMP ACC GYR EUL_MECH EUL_IMU

TIME_STAMP ACC GYR EUL_MECH PN

TIME_STAMP ACC GYR EUL_MECH EUL_IMU PN

ins node
IMU-computed orientation NOT logged

IMU-computed orientation logged

inso node
IMU-computed orientation NOT logged

IMU-computed orientation logged

ACC – 3 accelerations (m/s^2), GYR – 3 angular rates (rad/s), EUL_MECH – 3 Euler
angles computed by mechanization (deg), EUL_IMU – 3 Euler angles computed by IMU  
(deg), PN – 3 positions in NED (m)



3 Program configuration and execution 

The both nodes accept arguments to control the program behavior or to show the help (see Table 4) . 

Paths  to  logging  files  are  parsed  by  ROS parameters  (if  they  are  defined)  when  the  program is  

executed: list of parameters including description is available in Table 4.

Short (-) and long (--) switch Effect of the argument

-h, --help Shows help with list of arguments and exits

-cf, --config-file 
Followed by specified path to configuration file 

(REQUIRED)

-y, --yaw

Specify  initial  yaw  euler  angle  (degrees), 

depending on following value:

– [none] – yaw determined automatically

– [specified  yaw  value 

(range = <-180,180>)]  –  load  specified 

value

-af, --attitude-feedback

choose the attitude feedback method, depending 

on following value: 

– [none] – attitude feedback disabled

– avg  –  weighted  averaging  using 

accelerations data

– fil – filtering feedback

-il, --internal-logged log the IMU-computed orientation data

Table 4: List of program arguments

3.1 Default launch file and its usage

Launch files are used in ROS to automate node launching process. The default launch file in 

ins package is displayed in Fig.  2, the only change to launch file in  inso package is in the 

name of the node.

This launch file sets up the parameters for log files paths (discussed in 2.2)  and executes the 

node with the desired arguments.  In this  case the arguments  are:  -cf  ,  which is  required, 
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followed by the path to the configuration file;  -il – the IMU-computed orientation data are 

logged; and -y setting the initial yaw value to 0 degrees (can be changed to obtain the initial  

heading information from the magnetometer measurements).

Using default  launch file is  sufficient and both nodes start  correctly and process the data 

published by mtig_node, if there are any. 

<launch> 

  <param name="ins_gps" value="/home/robot/ctu_logger/ins_gps" /> 
  <param name="ins_odometry"value="/home/robot/ctu_logger/ins_odometry" /> 
  <param name="ins_mech" value="/home/robot/ctu_logger/ins_mech" />   

  <node name="insnd" pkg="ins" type="ins" args="-cf   
/home/robot/workspace/ins/mechanization_config -il -y 0.0"/> 

</launch>

Figure 2: Default launch file for ins package

The  default  launch  files  are  located  in  directory  path_to_package/launch/ with  respective  names 

(ins.launch or inso.launch).

Using launch file:

The launch file is used by typing „roslaunch ins ins.launch“ (for inso: „roslaunch inso inso.launch“) 

into console.

3.2 Launching pre-requisites
In order for the nodes to work and publish relevant data, the basic steps must be made:

a) roscore command

– this command must be executed before any nodes can be launched. It starts the ROS 

Master,  ROS  Parameter  Server  and  rosout logging  node  (for  more  detailed 

description, see the web site [3])

b) /mtig_node/imu/data, /mtig_node/pos_nav, /odom topics published to

– with the a) pre-requisite satisfied the nodes would start correctly, but would be idle 

until  there  are  data  published  to  topics  the  nodes  subscribe  to.  This  can  be 

accomplished either by launching  mtig_node or by using  rosbag  utility to play the 
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previously  recorded  data  in  the  form  of  bagfiles (more  details  on  rosbag  again 

available at [3]).

NOTE: Both pre-requisites are required for using default launch file or running the node using rosrun 

command. However, the launch file can be customized to execute roscore command and even launch 

mtig_node or start playing back the data using rosbag.
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4 Implementation

This part of the document shows how the nodes were constructed. Description of the source files, the 

original algorithm and the node concept are discussed here.

4.1 Source code structure
The source code is divided into 4 files:

ins.cpp (inso.cpp) – contains main function of the node and SharedObjects class

definitions.h – holds constants and data type definitions (see Appendix A)

functions.cpp – implementations of almost all functions used in the project

functions.h – header used to include functions.cpp prototypes (see Appendix B)

4.2 Resources
The algorithm of INS mechanization was supplied by M. Reinštein, PhD. in the form of MATLAB 

script:  all  the  required  Mathworks  and  non-Mathworks  functions  were  included.  The  MATLAB 

implementation  was  realized  for  post-processing  of  the  inertial  data,  but  the  resulting  C++ 

implementation was required to run strictly real-time.

4.3 MATLAB data types and operations emulation
For maximum simplification of implementation of MATLAB vector,  matrices and operations with  

them, the open computer vision library (OpenCV) was used. Namely, for vector and matrices the 

cv::Matx template class was used. All the vectors used are columns, so they are implemented as one-

column cv::Matx. Multiplications are realized with standard * operator, transposing with t() function, 

both using OpenCV.

4.4 Node concept
In order to satisfy the requirement of being a subscriber to measured data topics, the concept based on 

callback functions was chosen.

The main function serves firstly to process arguments and to set the corresponding variables. After that 

it creates an instance of SharedObjects class (available in src/ins.cpp), which is discussed separately. 

Almost all  the time of the node's life it runs in an endless while loop with only one command –  

ros::spin()  – and running condition  ros::ok().  This means that  it  will  continue processing all  the 

callbacks until the ROS terminates the node.
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4.5 Class SharedObjects
This class is implemented in the file src/ins.cpp. It contains all the callback functions realizing the data 

processing:

Functions GpsCallback and OdometryCallback only log the respective data into their log files at the 

times the data are published by the  mtig_node, which was developed by ETH (Die Eidgenössische 

Technische Hochschule Zürich - The Swiss Federal Institute of Technology Zurich) from the base 

Xsens'  node  (available  in  ROS  repository).  The  callback  function  reacting  on  data  from  inertial 

measurements –  ImuCallback – performs the INS mechanization and publishes the output data to 

topics /mechanization_output and /tf and their logging into the respective file.

Function getParameters loads the user-definable constants into the program.
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5 Experimental evaluation and results

The  final  product  of  this  work  –  INS  mechanization  (package  inso)  is  an  extension  to  attitude 

mechanization implemented in the package ins. That is the reason the testing is divided into two parts.

The first part covers the testing of the ins node, i. e. attitude mechanization algorithm implementation, 

the other part covers the testing of the inso node, which includes the ins node's algorithms and extends 

them into full attitude and position mechanization.

5.1 Testing location
The testing data was collected in the lab number 10 in the G building (Center for Machine Perception,  

Faculty of  Electrical Engineering, Czech Technical University in Prague).

The IMU (see Appendix D) was embedded inside the robot by the manufacturer.

5.2 Common testing procedure
All the tests were performed using these steps:

1) Executing roscore command to initialize ROS.

2) Launching the nodes using  roslaunch ins ins.launch  or  roslaunch inso inso.launch 

command.

3) Using rosbag play <desired bagfile> command to play the collected data.

4) After finishing the bagfile playback, the mechanization output file is saved with name 

ins_matlab – the file for post-processing by resource algorithm.

5) Relaunching the node (see step 2) to create a new logging file.

6) Using rosbag to play only the first 500 samples of the bagfile (the first 500 samples 

are used by both algorithms – depending on settings – to perform basic calibration,  

but MATLAB uses the same data for mechanization cycle, the C++ implementation 

starts the cycle after the calibration, ignoring the calibration data).

7) Using rosbag to play the whole bagfile again (the first 500 samples are repeated to 

process all the data with the C++ mechanization cycle).

8) Saving the new file with the name ins_calib.

9) Processing ins_matlab with resource algorithm, loading ins_calib file to MATLAB.

10) Plotting MATLAB implementation results with results saved in ins_calib file (plotting 

realized by MATLAB script – Appendix C, for plotting other data used similar scripts)
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5.3 Part 1 – Attitude mechanization (package ins)
There were several  tests  performed to compare the original  algorithm with the implemented C++  

version. The results of all tests were virtually the same, so only one test's results are presented. Initial  

yaw Euler angle was set to 0 for both algorithms (C++, MATLAB script).

Movement description:

During this test the robot was manually rotated, firstly about its x-axis in both directions, then about its 

y-axis in both directions. After that it was rotated using its own motors around the z-axis. Its initial and 

final orientations were the same.

Measurement results:

Fig. 3 shows the movement described in the previous paragraph. The most important information the 

graphs  contain  cannot  be  seen  explicitly:  The  maximum  differences  between  MATLAB  post-

processing results and the ins node real-time processing results are shown in Table 5.

Figure 3: Comparison of the original MATLAB algorithm and C++ implementation (node ins)
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Table 5: Maximum differences between MATLAB and C++ implementation

5.4 Part 2 – Attitude and position mechanization (package inso)
There were two tests done to evaluate this node. The first of them was realized by moving the robot 

repeatedly forward and backward to see the characteristic steps in velocity. The other test was longer  

and it's motion copied an „L“ track there and then back. 

5.4.1 Test 1 – Repeated linear motion

Movement description:

The initial yaw angle for both algorithms was set to 0. The robot was moved forward and backward 5 

times with each movement about 1 m long, without any rotation.

Measurement results:

The computation of position requires double integration of acceleration. Because of that the 2 figures 

are shown – one for velocities comparison (Fig. 4) and the other one (Fig. 5) for positions comparison 

of both algorithms.

The maximum differences between velocities and positions computed by both algorithms are captured 

in Table 6 and Table 7, respectively.

Table 6: Maximum velocity differences

Table 7: Maximum position differences
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roll   0.075   -0.1958
  117.5   -0.3728
  117.5   0.0620
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  62.617  -0.5664

  62.617  -0.1787

  4.15    0.004244

v
N

v
E

v
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  62.617  -12.3470

  62.617  -3.3192

  62.617  0.0999
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P

N

P
E
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Figure 4: Velocities comparison plots

Figure 5: Positions comparison plots
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5.4.2 Test 2 – The „L“ motion

Movement description:

As it was said, the robot followed an „L“ path, firstly by moving about 3 m forward, turning 90  

degrees left and moving about 5 m forward. Then it followed the same path back.

Measurement results:

There are the same resulting data as in the previous test displayed here. The velocities and positions  

plots are shown in Fig. 6 and Fig. 7.

Figure 6: Velocities comparison plots

Table 8: Maximum velocity differences
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t (s) dv (m/s)

  96.417  -0.2404 

  96.417  -0.3161 

  96.417  -0.0038  

v
N

v
E

v
D



Figure 7: Positions comparison plots

Table 9: Maximum position differences
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  96.417  -8.2542

  96.417  -12.9992

  96.417  -0.1941
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6 Conclusion

6.1 Implementation of ins and inso nodes
The Fig. 3 and Table 5 show minimal differences between the implementations. Thanks to that we can 

say without discussion, that the ins node was implemented successfully.

Regarding the  inso node, the situation is different. All figures (Fig.  4 - Fig.  7) show that the  z-axis 

velocities  and  positions  are  almost  perfectly  identic  (except  minimal  error,  caused  probably  by 

different MATLAB and C++ numerics), but results of the remaining two axes are very different from 

the first look at the figures. The question is: Which results are better?

There is only one way how to evaluate the results: All the plots should be static in general, except of 

desired dynamics caused by the robot's motion. From this point of view the best plot to evaluate the 

results is Fig. 4. We can see that the dynamics of the velocity in the north direction is the same in both 

cases, but the drifting of the C++ implementation is much lower, but when we look into the ve plot the 

situation is different and the MATLAB implementation seems to be slightly better.

It  can't  be  concluded  definitely,  which  implementation  is  more  accurate.  The  inso node  is  still 

in-development product, which will be further extended (with odometry and GPS data fusion with 

advanced state estimation methods) and eventually debugged.

6.2 Summary of the summer work experience
Although this work is mainly about the conversion of MATLAB post-processing algorithms to C++ 

real-time implementation, there were many other things that needed to be done in order to successfully  

work with the robot.

1) Studying ROS documentation was necessary to operate the robot,  collect the data,  

launching nodes (including utilities rviz, rxbag).

2) Studying OpenCV documentation for successfully implementing both  ins  and  inso 

nodes.

3) Hours of experimental evaluation and field-testing , collecting of data, and testing the 

nodes.
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Appendix A – definitions.h header file

#include "cv.h" 
#include "ins/mechanization_output.h" 

// CONSTANTS 
#define PI 3.141592653589793238462643 
#define geo_a 6378137.0                  
#define geo_e 0.081819191 
#define  EULER 2.7182818284590452353602874713527 

// ATTITUDE FEEDBACK TYPES 
#define  ATT_NO_FEEDBACK 0 
#define  ATT_GYR_ACC_WEIGHTED_AVG 1  
#define  ATT_FILTERED 2 

// MEASUREMENT STATES 
#define MEAS_STATE_CALIB 0 
#define MEAS_STATE_CALIB_RESULT 1 
#define MEAS_STATE_FIRST 2 
#define MEAS_STATE_MECHANIZATION 3  

#define  YAW_NOT_SET 1000 

using namespace cv; 

/*­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
 * TYPES DEFINITIONS 
 *­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
 */ 

typedef Matx<double, 10, 1> Vec10fCol; 
typedef Matx<double, 7, 1> Vec7fCol; 
typedef Matx<double, 6, 1> Vec6fCol; 
typedef Matx<double, 3, 1> Vec3fCol; 

typedef Matx<double, 4, 1> quat; 

typedef Matx<double, 3, 3> Mat33f; 
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Appendix B - functions.h header file

#include "definitions.h" 

using namespace cv; 

double rad2deg(double angleInRadians); 
Vec3fCol rad2deg(Vec3fCol angleInRadians); 
double deg2rad(double angleInDegrees); 
Vec3fCol deg2rad(Vec3fCol angleInDegrees); 
Vec3fCol alignment_coarse(double mACCx, double mACCy, 

double mACCz, double mGYRx, double mGYRy, double mGYRz, 
double lat, double g, double er); 

Vec3fCol dcm2angle(Mat33f dcm); 
Vec3fCol threeaxisrot(double r11, double r12, double r21, 
double r31, double r32, double r11a, double r12a); 
Vec3fCol comp_gravity(Vec3fCol LLA); 
quat rotv2quat(Vec3fCol rotv); 
quat rotv2negquat(Vec3fCol rotv); 
quat euler2quat(Vec3fCol angles); 
Mat33f quat2dcm(quat quat); 
Vec3fCol quat2euler(quat q); 
quat quatnormalize(quat quat); 
quat quatmultiply(quat q, quat r); 
double myMean(double *data, int length); 
Vec3fCol myCross(Vec3fCol vec1, Vec3fCol vec2); 
Mat33f dcmecef2ned(double lat_deg, double lon_deg); 
quat quatned2ecef(Vec3fCol LLA); 
inso::mechanization_output outputMessage(Vec3fCol eul, quat 
quaternion, Mat33f dcm, Vec3fCol pos); 
Vec3fCol dcm2latlon(Mat33f dcm); 
Mat33f comp_skew(Vec3fCol vector); 
Vec3fCol quat2rotv(quat q); 
quat quatinv(quat q); 
quat quatconj(quat qin); 
double lalodist(double la1,double lo1,double la2,double lo2); 
double calculateR_N(double LAT); 
double calculateR_M(double LAT); 
double myNorm(Vec3fCol input); 
double myNorm(quat input);

20



Appendix C: plotScriptEul MATLAB script

function plotScriptEul(data1,data2,sampleRate) 
% make a new figure 
figure ;
    
% exclude the calibration period to match data lengths 
% indices 8­10: columns of mechanization­calculated 
% orientation in the output file 
data2 = data2(501:end,8:10); 

% plot all the data to single figure (but 3 plots ­ each 
% for 1 axis) with time axis values computed using sample 
% rate 
 
subplot(3,1,1); 
grid on ;
hold on ;
plot(linspace(0,(size(data1,2)­...

1)/sampleRate,size(data1,2)),data1(1,:)) ;

plot(linspace(0,(size(data2,1)­... 
1)/sampleRate,size(data2,1)),data2(:,1),'r­.') ;

ylabel('roll (deg)'); 
xlabel('time (s)'); 
legend('MATLAB','C++'); 
    
subplot(3,1,2) ;
grid on ;
hold on ;
plot(linspace(0,(size(data1,2)­...

1)/sampleRate,size(data1,2)),data1(2,:)) ;
plot(linspace(0,(size(data2,1)­...

1)/sampleRate,size(data2,1)),data2(:,2),'r­.') ;
ylabel('roll (deg)'); 
xlabel('time (s)'); 
legend('MATLAB','C++'); 
    
subplot(3,1,3) ;
grid on ;
hold on ;
plot(linspace(0,(size(data1,2)­...

1)/sampleRate,size(data1,2)),data1(3,:)) ;
plot(linspace(0,(size(data2,1)­...

1)/sampleRate,size(data2,1)),data2(:,3),'r­.') ;
ylabel('roll (deg)'); 
xlabel('time (s)'); 
legend('MATLAB','C++'); 
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Appendix D: Xsens MTi-G technical specification
(page number 5 of „MTi-G leaflet“ available for download at http://www.xsens.com/en/general/mti-g)
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